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Abstract

Directed possibly cyclic graphs have been
proposed by Didelez (2000) and Nodelmann
et al. (2002) in order to represent the dy-
namic dependencies among stochastic pro-
cesses. These dependencies are based on a
generalization of Granger–causality to con-
tinuous time, first developed by Schweder
(1970) for Markov processes, who called them
local dependencies. They deserve special at-
tention as they are asymmetric. In this pa-
per we focus on their graphical representation
and develop an asymmetric notion of separa-
tion. The properties of this graph separation
as well as local independence are investigated
in detail within a framework of asymmetric
(semi)graphoids allowing insight into what
information can be read off these graphs.

1 INTRODUCTION

Classical graphical models and Bayesian networks rep-
resent (conditional) independence between random
variables. They can be adapted to variables observed
in discrete or discretized time, like e.g. time series or
dynamic Bayesian networks. This does not, however,
capture the intuitive notion of dynamic dependence
between processes, which is asymmetric, and we there-
fore propose an alternative.

Put informally, we are interested in the following
kind of dynamic (conditional) independencies among
stochastic processes X(t), Y (t) and Z(t):

present of X⊥⊥past of Y | past of (X, Z),

which will be denoted by Y →/ X|Z, or more formally

X(t)⊥⊥FY
t− | FX,Z

t− ,

where Ft− is the history of a process. Such indepen-
dence underlies the notion of Granger non–causality
for time series (Granger, 1969), which has been used
as the basis for a graphical representation by Eich-
ler (2002). It also underlies the continuous–time no-
tion of local independence given by Schweder (1970)
for Markov processes, and its bivariate version for gen-
eral continuous–time processes by Aalen (1987) with a
multivariate version in Didelez (2000, pp.65). A spe-
cial case of Schweder’s concept are the dependencies
represented in the continuous time Bayesian networks
developed by Nodelman et al. (2002) for homogenous
Markov processes. Cyclic graphs have also been pro-
posed to represent non–recursive structural equation
models or feedback processes (Sprites, 1995; Pearl and
Dechter, 1996), but with the above notion of depen-
dence between past and present we explicitly consider
processes instead of cross sectional measurements of
variables in equilibrium.

Consider the following example illustrating the idea of
local dependence and its graphical representation. In
some countries programs exist to assist the elderly, e.g.
through regular visits by nurses. Assume that these
visits reduce the frequency of hospitalizations but do
not in any other way affect future survival (this could
be the null hypothesis). Assume further that the fre-
quency of visits is intensified when a person has previ-
ously been hospitalized. Also assume that the general
health status affects the rate of future hospitalization
and the survival but not the frequency of future vis-
its. The proposed graphical representation of these
assumptions is given in Figure 1.
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Figure 1: Example for local independence graph.



The outline of the paper is as follows. We first re-
view, in Section 2, the notion of local independence
for Markov processes and its generalization to multi–
state processes. A graphical representation as well
as a suitable asymmetric separation are proposed in
Section 3. The properties of local independence and
the corresponding graphical representation are investi-
gated in Section 4 within the framework of asymmetric
graphoids.

2 LOCAL INDEPENDENCE

2.1 MARKOV PROCESSES

We consider a first order Markov process Y(t), t ∈ T ,
with a finite state space S and with transition intensi-
ties αqr(t), q 6= r ∈ S, which are assumed to exist. The
Markov process Y is assumed to consist of components
in the following sense (Schweder, 1970).

Definition 2.1 Composable Markov process
Let V = {1, . . . ,K}, K ≥ 2, and assume that there
are K spaces Sk, k ∈ V , with |Sk| ≥ 2, and that there
exists a one-to-one mapping f of S onto

⊗
k∈V Sk so

that elements y ∈ S can be identified with elements
(y1, . . . , yK) ∈ ⊗

k∈V Sk. Then, a Markov process Y
is a composable process with components Y1, . . . , YK

given by f(Y(t)) = (Y1(t), . . . , YK(t)) if for all A ⊂ V ,
|A| ≥ 2,

lim
h↓0

1
h

P

( ⋂

k∈A

{Yk(t + h) 6= yk}
∣∣∣∣∣

⋂

k∈A

{Yk(t) = yk}
)

= 0

for all yk ∈ Sk, k ∈ V , and t ∈ T . We then write
Y ∼ (Y1, . . . , YK).

The definition implies that for a composable process
the probability that more than one component changes
in a short period of length h is of magnitude o(h).
Hence, any change of state can be represented as a
change in only one of the components which justifies
regarding the processes as composed of different com-
ponents. The components are not necessarily unique.
If for example Y ∼ (Y1, . . . , YK) then Y ∼ (YA,YB)
with A ⊂ V and B = V \A. Note that the compo-
nents of such a Markov process correspond to the local
variables of Nodelman et al. (2002).

From now, we consider composable finite Markov
processes (CFMPs) and write α(t; (y,y′)) instead of
αyy′(t) for notational convenience. Schweder (1970)
proves the following.

Corollary 2.2 Transition intensities for CFMPs
Let Y ∼ (Y1, . . . , YK) be a CFMP. The intensity

α(t; (y,y′)) for any y 6= y′ ∈ S is given by

α(t; (y,y′)) =
{

αk(t; (y, y′k)), yk 6= y′k ∧ y−k = y′−k

0, else,

where y−k = yV \{k}, and

αk(t; (y, y′k)) = lim
h↓0

1
h

P (Yk(t + h) = y′k | Y(t) = y) .

The dependence structure of (Y1, . . . , YK) is thus de-
termined by the quantities αk(t; (y, y′k)),y ∈ S, y′k ∈
Sk\{yk}, k ∈ V .

Definition 2.3 Local independence in a CFMP
Let Y ∼ (Y1, . . . , YK) be a CFMP. Then, Yj is locally
independent of Yk, k 6= j, if and only if αj(t; (y, y′j))
is constant in the k-th component yk of the first argu-
ment ∀ y−k ∈ S−k and y′j ∈ Sj , y′j 6= yj , for all t ∈ T .
We denote this by {k} →/ {j}|V \{j, k}.
For disjoint subsets A,B,C of V we say that B →/ A|C
if for all j ∈ A the transition intensities αj(t; (y, y′j))
are constant in all the components yB of y for any
yA∪C ∈ SA∪C and y′j ∈ Sj , y′j 6= yj , written as
B →/ A|C.

Since for small h > 0

P
(
Yj(t + h) = y′j | Y(t) = y

) ≈ h · αj(t; (y, y′j))

one can roughly say that {k} →/ {j}|V \{j, k} means
Yj(t + h) is conditionally independent of Yk(t) given
Y−k(t) for small h, hence local independence.

A straightforward graphical representation of local
dependence structures is to depict components Yk

by nodes and local dependencies by directed edges.
We can then summarize the transition intensities as
αk(t; (ycl(k), y

′
k)), where cl(k) is the closure of node k,

i.e. its parents and itself. In the terminology of Nodel-
man et al. (2002), a component Yk can be regarded as
a conditional Markov process, the transition intensi-
ties of which depend on the states of Ypa(k) and can
be represented in a collection of conditional transition
matrices for the transitions yk → y′k, yk 6= y′k ∈ Sk,
one matrix for each value of ypa(k) ∈ Spa(k).

In the above we assume that a component is always
locally dependent on its own past so that this is not
explicitly stated in the conditioning set when writing
{k} →/ {j}|V \{j, k} or in the parent set in the cor-
responding graph. For practical applications it seems
unlikely that a component is locally independent of it-
self, but such processes can of course be constructed.
If we wanted to allow this, the graphs would need to be
extended to include self–loops (j, j), j ∈ V , and there
would be a difference between {k} →/ {j}|V \{j, k}
and {k} →/ {j}|V \{k}. But we do not pursue this any
further here.



2.2 MULTI–STATE PROCESSES

Marginally, a subprocess YA, A ⊂ V , of a CFMP
is not necessarily Markov anymore unless pa(A) = ∅
(Didelez, 2005b). Hence it is useful to generalize the
notion of local independence to a larger class of pro-
cesses like multi–state processes that are not necessar-
ily Markov (cf. Didelez, 2005a).

Let Y denote a multi–state process with a one–to–one
mapping of its state space S onto

⊗Sk yielding the
components Y1, . . . , YK similar to Definition 2.1. Let
further FA

t , A ⊂ V , denote the filtration generated
by the subprocess YA, i.e. FA

t = σ{YA(s), s ≤ t}.
Then we assume that for each component Yk there
exists a process Λk such that Mk = Yk − Λk is a FV

t –
martingale, i.e.

Yk = Λk + Mk. (1)

Property (1) is the Doob–Meyer decomposition (cf.
Andersen et al., 1993) and is similar to a regression
model, where Λk(t) is the predictor based on the past
FV

t− of this and all other components (formally this
means that Λk(t) is a FV

t –predictable compensator),
and Mt corresponds to a zero–mean error term (con-
ditionally on the past). Further, the martingales Mk,
k = 1, . . . , K, are assumed to be orthogonal, which can
be regarded as a dynamic version of an ‘independent
errors’ assumption. It also ensures that no two compo-
nents ‘jump’ at the same time in analogy to Definition
2.1.

For a Markov process the predictor Λk(t) can be con-
structed from the transition intensities and suitable
indicator functions for the state of a process just be-
fore the transition. If it is absolutely continuous then
its derivative λk(t) is called the intensity process. E.g.
for a Markov process Y , and considering one particular
transition q → r, we have λqr(t) = αqr(t)I{Y (t−)=q},
q 6= r ∈ S, and Λqr(t) =

∫ t

0
λqr(s)ds.

Under mild regularity conditions the assumptions al-
lowing (1) are also satisfied by multivariate counting
processes and hence by (not necessarily Markovian)
multi–state processes, where each change of state can
be represented as a jump in a multivariate counting
process (cf. Andersen et al., 1993). This leads to
the following more general definition of local indepen-
dence.

Definition 2.4 Local independence
Let Y ∼ (Y1, . . . , YK) satisfy the above assumptions.
Then, Yj is locally independent of Yk, k 6= j, if and
only if Λj(t) is F−k

t –measurable for all t ∈ T .

In words this means that the predictor Λj does not
depend on the past history of the component Yk given
the whole past of all other components.

3 GRAPHICAL REPRESENTATION

We now formally define the graphs representing local
independence structures.

Definition 3.1 Local independence graph
Let YV ∼ (Y1, . . . , YK) be a composable process sat-
isfying the assumptions of Section 2.2 and let G =
(V, E) be a directed graph, where V = {1, . . . , K} and
E ⊂ {(j, k)|j, k ∈ V, j 6= k}. Then G is the local inde-
pendence graph of YV if for all j, k ∈ V

(j, k) /∈ E ⇔ {j} →/ {k} | V \{j, k}. (2)

We can regard (2) as a dynamic version of the pairwise
Markov property (Lauritzen, 1996) and hence call it
the pairwise dynamic Markov property.

In the special case of YV being a homogenous Markov
process its local independence graph is the same as a
continuous time Bayesian network (Nodelman et al.,
2002).

A local independence graph is directed but not nec-
essarily acyclic. Furthermore, it allows two edges be-
tween two vertices, one in each direction. The notation
familiar for DAGs can still be applied, such as parents,
ancestors, non–descendants. In particular we will need
the notion of an ancestral set An(A) = an(A) ∪ A.
Also, the operation of moralizing a graph can be car-
ried out as usual, by marrying parents of a common
child and then making the whole graph undirected,
i.e. Gm = (V, Em) with Em = {{j, k}| (j, k) ∈ E or
(k, j) ∈ E} ∪ {{j, k}|∃ υ ∈ V : j, k ∈pa(υ)}. In Gm

we can check for usual separation in undirected graphs
and will denote this by the symbol ⊥⊥u .

In Section 2.1 we said that the transition intensities
can be summarized as αk(t; (ycl(k), y

′
k)). In the general

case this corresponds to the following property.

Definition 3.2 Local dynamic Markov property
Let G = (V, E) be a directed graph. For a multivariate
process YV the property

∀ k ∈ V : V \cl(k) →/ {k} | pa(k), (3)

is called the local dynamic Markov property w.r.t. G.

In general (2) does not imply (3), e.g. if two compo-
nents, k, l say, contain the same information we might
have that {k} →/ {j}|{l} as well as {l} →/ {j}|{k}
without {k, l} →/ {j}. However under additional con-
ditions, such as the one of orthogonal martingales, we
can show that in our setting the implication holds, be-
cause counting processes that are almost sure identical
do not have orthogonal martingales (Andersen et al.,
1993, p.73). The precise condition for the implication
(2) ⇒ (3) is given by (9) below.



In order to formulate a global dynamic Markov prop-
erty we need a suitable notion of separation.

Definition 3.3 δ–separation
Let G = (V, E) be a directed graph. For B ⊂ V ,
let GB denote the graph given by deleting all directed
edges of G starting in B, i.e. GB = (V,EB) with EB =
E\{(j, k)|j ∈ B, k ∈ V }.
Then, we say for pairwise disjoint subsets A,B,C ⊂ V
that C δ–separates A from B in G if A⊥⊥u B|C in the
undirected graph (GB

An(A∪B∪C)
)m.

In case that A,B and C are not disjoint we define that
C δ–separates A from B if C\B δ–separates A\(B∪C)
from B. The empty set is always separated from B.
Additionally, we define that the empty set δ–separates
A from B if A and B are unconnected in (GB

An(A∪B)
)m.

Note that deleting edges out of B does not change
An(A∪B ∪C) so that GB

An(A∪B∪C)
is not ambiguous.

Equivalently to Definition 3.3 we can use a trail con-
dition, where a trail is a sequence of not necessarily
direction preserving edges connecting two nodes. De-
fine that any allowed trail from A to B contains no
edge of the form (b, k), b ∈ B, k ∈ V \B. Then, for dis-
joint subsets A,B,C of V , we have that C δ–separates
A from B if and only if all allowed trails from A to B
are d–separated by C (Didelez, 2000, pp.22).

As mentioned above, δ–separation is not symmetric in
A and B. This can be seen in the simple graph given
in Figure 2(a). From the moral graphs in Figures 2(b)
and (c) we see that a⊥⊥u b|c in (Ga)m but not in (Gb)m.
Alternatively, there are two trails between a and b:
{(a, b)} and {(c, a), (b, c)}. Consider separating b from
a, then the first trail is not allowed and the second is
d–separated by c since the directed edges do not meet
head–to–head in c. In contrast, if we want to separate
a from b, the second path is not allowed and the first
is not d–separated by c. Hence c δ–separates b from a
but not a from b.
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Figure 2: Example for the asymmetry of δ–separation.

The significance of δ–separation is due to the following
global dynamic Markov property.

Definition 3.4 Global dynamic Markov property
Let YV ∼ (Y1, . . . , YK) be a composable process and
G = (V, E) a directed graph. For disjoint subsets

A,B, C ⊂ V the property

C δ–separates A from B in G ⇒ A →/ B | C. (4)

is called the global dynamic Markov property w.r.t. G.

To understand why δ–separation works, consider again
the above example, Figure 2(a). For a Markov pro-
cess and small h > 0 this corresponds to the infinites-
imal conditional independencies in Figure 3. Check-
ing, e.g. whether c δ–separates b from a corresponds
to Ya(t + h)⊥⊥Yb(t)|(Ya(t), Yc(t)), which can be ver-
ified in Figure 3. Whereas c δ–separating a from b
would mean to Ya(t)⊥⊥Yb(t + h)|(Yb(t), Yc(t)), which
is clearly not the case.
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Figure 3: Infinitesimal dependence structure.

4 ASYMMETRIC GRAPHOIDS

The (semi)graphoid axioms first introduced by Dawid
(1979) (cf. also Pearl and Paz, 1987; Pearl, 1988, p. 84;
Dawid, 2001) are properties that we would like to be
satisfied by an irrelevance relation. They hold for in-
stance for undirected graph separation ⊥⊥u and for d–
separation (Verma and Pearl, 1988) as well as for prob-
abilistic conditional independence. Symmetry is one of
the basic (semi)graphoid properties. As yet, there is no
general framework for asymmetric irrelevance relations
available although other examples apart from local in-
dependence exist (e.g. Dawid, 1979, 1980; Galles and
Pearl, 1996; Cozman and Walley, 1999). In the fol-
lowing we re–define the (semi)graphoid axioms for the
asymmetric case and check which of them are satisfied
by δ–separation and local independence.

Definition 4.1 Asymmetric (semi)graphoid
Consider a lattice (V,≤), where A ∨ B denotes the
least upper bound and A∧B the largest lower bound.
Further, let (A irB|C) be a ternary relation on this
lattice. The following properties are called the asym-
metric semi–graphoid properties:

Left redundancy: A irB | A
Right redundancy: A irB | B
Left decomposition: A irB | C, D ≤ A ⇒ D irB | C



Right decomposition:
A irB | C, D ≤ B ⇒ A irD | C

Left weak union:
A irB | C, D ≤ A ⇒ A irB | (C ∨D)

Right weak union:
A irB | C, D ≤ B ⇒ A irB | (C ∨D)

Left contraction:
A irB | C and D irB | (A∨C)⇒ (A∨D) irB | C

Right contraction:
A irB | C and A irD | (B∨C)⇒ A ir (B∨D) | C

If, in addition, the following properties hold we have
an asymmetric graphoid:

Left intersection:
A irB | C and C irB | A⇒ (A∨C) irB | (A∧C)

Right intersection:
A irB | C and A irC | B ⇒ A ir (B∨C) | (B∧C).

While Definition 4.1 applies for possibly overlapping
sets, the following lemma clarifies the conditions under
which it suffices to consider non–overlapping sets.

Lemma 4.2 Irrelevance for disjoint sets
Let V be the power set of V and A,B, C ∈ V. For
a ternary relation A irB|C that satisfies left redun-
dancy, decomposition, and contraction we have that

A irB | C ⇔ A\C irB | C. (5)

For a ternary relation that satisfies right redundancy,
decomposition, and contraction we have that

A irB | C ⇔ A irB\C | C. (6)

Proof: To see (5) note that it follows directly from
left decomposition that A irB|C ⇒ A\C irB|C. To
show A\C irB|C ⇒ A irB|C, note that trivially
A\C irB|(C ∪ (C ∩A)). Additionally, it follows from
left redundancy (i.e. C irB|C) and left decomposition
that (C ∩ A) irB|C. Left contraction now yields the
desired result. Property (6) is shown similarly.

The following corollary exploits (5) and (6) to reformu-
late the intersection property in a more familiar way.

Corollary 4.3 Alternative intersection property
Let V be the power set of V and A,B, C ∈ V. Given
an ternary relation with property (5), left decomposi-
tion, and left intersection. For pairwise disjoint sets
A,B, C, D ∈ V it holds that

A irB | (C ∪D) and C irB | (A ∪D)
⇒ (A ∪ C) irB | D. (7)

With property (6), right decomposition, and right in-
tersection it holds that

A irB | (C ∪D) and A irC | (B ∪D)
⇒ A ir (B ∪ C) | D. (8)

Proof: With property (5) we have that A irB|(C∪D)
⇔ (A ∪ C ∪ D) irB|(C ∪ D) from where it follows
with left decomposition that (A ∪ D) irB|(C ∪ D).
With the same argument we get C irB|(A ∪ D) ⇒
(C ∪D) irB|(A∪D). Left intersection yields (A∪C ∪
D) irB|D which is again equivalent to (A∪C) irB|D
because of (5). Implication (8) can be shown similarly.

4.1 PROPERTIES OF LOCAL
INDEPENDENCE

An obvious way to translate local independence into
an irrelevance relation is by letting A irB | C stand
for A →/ B | C, where A,B, C ⊂ V . The semi–order
is given by the set inclusion ’⊂’, the join and meet
operations by union and intersection, respectively.

Proposition 4.4 Local independence as graphoid
The following properties hold for local independence:

(i) left redundancy,

(ii) left decomposition,

(iii) left and right weak union,

(iv) left contraction,

(v) right intersection.

Proof: Didelez (2000, pp.70)

With the above proposition we have that (5) holds,
i.e. A →/ B | C ⇔ A\C →/ B | C. In contrast, it is
clear by the definition of local independence that right
redundancy does not hold because otherwise any pro-
cess would always be locally independent of any other
process given its own past. It follows that property (6)
does not hold. Instead we have:

Lemma 4.5 Special version of right decomposition
The following implication holds for local independence:

A →/ B | C, and D ⊂ B ⇒ A →/ D | (C ∪B)\D

The importance of intersection for the equivalence of
pairwise, local and global Markov properties in undi-
rected conditional independence graphs is well–known
(cf. Lauritzen, 1996). It is of similar importance for
local independence graphs.



Proposition 4.6 Left intersection
Under the assumption that

FA
t ∩ FB

t = FA∩B
t ∀ A,B ⊂ V, ∀ t ∈ T (9)

the property of left intersection holds for local inde-
pendence.

Proof: Left intersection assumes that the FA∪B∪C
t –

compensators Λk(t), k ∈ B, are FB∪C
t – as well as

FA∪B
t –measurable. With (9) we get that they are

FB∪(A∩C)
t –measurable which yields the desired result.

Property (9) formalizes the intuitive notion that the
considered components of the process are ‘different
enough’ to ensure that common events in the past are
necessarily due to common components. Its main con-
sequence is the following.

Corollary 4.7 Pairwise implies local dynamic MP
Under (9) the pairwise dynamic Markov property (2)
and the local one (3) are equivalent.

Proof: (3) ⇒ (2) follows from left weak union and left
decomposition. (2)⇒ (3) follows immediately from (7)
which holds if (9) holds.

Right decomposition requires special consideration be-
cause it makes a statement about the irrelevance of a
subprocess YA after discarding part of the possibly
relevant information YB\D. If the irrelevance of YA

is due to knowing the past of YB\D then it will not
necessarily be irrelevant anymore if the latter is dis-
carded. It therefore only holds under specific restric-
tions on the relation among the processes. The first
restriction exploits property (9) to show that under an
additional condition right decomposition also holds for
local independence.

Proposition 4.8 Right decomposition (I)
Given (9) right decomposition holds for local indepen-
dence under the following additional conditions:

(B ∩A)\(C ∪D) = ∅ and B →/ D | A ∪ C. (10)

Proof: Didelez (2000, p.72)

Another situation where right decomposition holds is
given as follows.

Proposition 4.9 Right decomposition (II)
Let A,B, C,D ⊂ V with (B ∩A)\(C ∪D) = ∅. Right
decomposition holds under the conditions that

B →/ A\(C ∪D) | (C ∪D) (11)

and

A →/ {k} | C ∪B or B →/ {k} | (C ∪D ∪A) (12)

for all k ∈ C\D.

Proof: Didelez (2000, pp.72)

4.2 PROPERTIES OF δ–SEPARATION

The interpretation of δ–separation as irrelevance rela-
tion should be that if C δ–separates A from B in G
then A is irrelevant for B given C. This is denoted by
A irδ B|C.

Proposition 4.10 δ–separation as graphoid
δ–separation satisfies the following properties:

(i) left redundancy,

(ii) left decomposition,

(iii) left and right weak union,

(iv) left and right contraction,

(v) left and right intersection.

Proof: Didelez (2000, pp.27).
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Figure 4: Counterexample for property (6).

With these results not only property (5) but also (7)
hold for δ–separation. So far, however, the condi-
tions for (6) and (8) are not satisfied because right
redundancy does not hold. By definition right re-
dundancy would imply that A irδ B|B ⇔ A\B irδ B|∅
which is only true if A\B and B are unconnected
in (GB

An(A∪B)
)m. A simple counterexample is given

by the graph with V = {a, b} and E = {(a, b)}.
Additionally, property (6) does not hold, as can be
seen by another example shown in Figure 4. Let
A = {a}, B = {b1, b2}, and C = {b1, c}. Then,
A irδ B\C|C but not A irδ B|C since the latter only
holds if A irδ B|C\B. In contrast, the converse does
hold because it is a special case of the subsequent re-
sult paralleling Lemma 4.5.

Lemma 4.11 Special version of right decomposition
Given a directed graph G, it holds that:

A irδ B | C, D ⊂ B ⇒ A irδ D | (C ∪B)\D

Proof: Let A∗ = A\(B∪C) and C∗ = C\B. Then, we
have to show that A∗⊥⊥u B|C∗ in (GB

An(A∪B∪C)
)m im-

plies A∗⊥⊥u D|C∗ ∪ (B\D) in (GD
An(A∪B∪C)

)m. Note

that A∗⊥⊥u D|C∗ ∪ (B\D) in (GB
An(A∪B∪C)

)m holds
due to weak union and decomposition of ⊥⊥u . Chang-
ing the graph to (GD

An(A∪B∪C)
)m means that all edges



that are present in G as directed edges starting in
B\D are added. Additionally, those edges have to be
added which result from vertices in B\D having com-
mon children with other vertices. Since all these new
edges involve vertices in B\D there can be no addi-
tional path between A∗ and D in (GD

An(A∪B∪C)
)m not

intersected by C∗ ∪ (B\D).

Although (6) does not hold in full generality it is easily
checked that (8) does.

Proposition 4.12 Alternative intersection property
Property (8) holds for δ–separation, i.e.

A irδ B | (C ∪D) and A irδ C | (B ∪D)
⇒ A irδ (B ∪ C) | D

for pairwise disjoint sets A, B,C, D.

Proof: Given that A⊥⊥u B|(C ∪D) in (GB
A∪B∪C∪D)m

and A⊥⊥u C|(B ∪ D) in (GC
A∪B∪C∪D)m, both sepa-

rations also hold in (GB∪C
A∪B∪C∪D)m. With the prop-

erties of ⊥⊥u it follows that A⊥⊥u (B ∪ C)|D in
(GB∪C

A∪B∪C∪D)m.

The above proposition does not necessarily hold if
B,C, D are not disjoint. But it can be shown by a
very similar proof that it remains valid if A ∩ B 6= ∅
or A ∩ C 6= ∅.
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Figure 5: Counterexample for right decomposition.

A simple counterexample for right decomposition of δ–
separation is given in Figure 5, where {c} δ–separates
{a} from B = {b, d} but it is not true that {c} δ–
separates {a} from {d}. In the first case we delete the
arrow from b to a whereas in the second case it is kept.
However, we can obtain the following result paralleling
Propositions 4.8 and 4.9.

Proposition 4.13 Right decomposition
Right decomposition holds for δ–separation in the spe-
cial case that (A ∩B)\(C ∪D) = ∅ and

(i) either B irδ D|(A ∪ C)

(ii) or B irδ A\(C ∪ D)|(C ∪ D) and for all
k ∈ C\D either A irδ {k}|((C\{k}) ∪ B) or
B irδ {k}|((C\{k}) ∪D ∪A).

Proof: Didelez (2000, pp.31).
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Figure 6: Illustration of condition (i).

Property (i) of Proposition 4.13 is illustrated in Fig-
ure 6 which includes the moral graph (Gd)m. Choose
A = {a}, B = {b, d} and C = {c}. Property (ii)
of Proposition 4.13 is illustrated in Figure 7 which
includes the moral graph (Gd)m. Choose A = {a},
B = {b, d} and C = {c}. Roughly one can summa-
rize the assumptions of Proposition 4.13 as that either
B\D does not affect D or A and B\D do not affect
common nodes in C as this would open a path between
them.
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Figure 7: Illustration of condition (ii).

The main consequence of the properties of local inde-
pendence and δ–separation is that we can indeed use
δ–separation to read off local independencies among
sub–processes from a local independence graph.

Theorem 4.14 Pairwise implies global MP
With the above properties, using right decomposition
under the conditions specified by Propositions 4.8, 4.9
and 4.13, we have that the pairwise dynamic Markov
property (2) and the global dynamic Markov property
(4) are equivalent.

Proof: That (4) implies (2) is easily seen because
V \{j, k} δ–separates j from k if (j, k) /∈ E. The struc-
ture of the proof of (2) ⇒ (4) corresponds to the one
given by Lauritzen (1996, p. 34) for the equivalence
of the Markov properties in undirected conditional in-
dependence graphs. Due to the asymmetry of local
independence the present proof is more complicated
and is given in Didelez (2000, pp.90).

In order to illustrate the significance of Theorem 4.14
we return to the example given in the Introduction
and depicted in Figure 1. We can see from the graph
that in an analysis that only uses data on the visits,
hospitalization and survival, i.e. where health status
is ignored, we might find that survival depends on the
visits. This is somewhat surprising as the visit pro-
cess is locally independent of the health status process



given the other components. The reason is that the
node ‘visits’ is not separated from ‘survival’ by ‘hos-
pitalization’ alone. In other words, a history of e.g.
hospitalization without prior visit by a nurse carries a
different information than a history of hospitalization
with prior visit — it is informative for the unobserved
health process. The health status could be regarded
as a particular type of time dependent confounder.

5 DISCUSSION

Local independence graphs and δ–separation represent
dynamic dependencies among continuous time multi–
state processes. They are a valuable tool for reasoning
in dynamic settings in the presence of time–dependent
confounding and censoring (Didelez, 2005a). In ad-
dition, the framework of asymmetric (semi)graphoids
developed here can be applied more generally to asym-
metric irrelevance relations.

Similar to the classical Bayesian networks, the graph
structure can be exploited to simplify and accelerate
computations. In this context some further results on
collapsibility and likelihood factorization are derived in
Didelez (2005a, 2005b). Such a likelihood factorization
is also exploited by Nodelman et al. (2003) for learning
the graph. However, as can be seen from their work the
computational side is more intricate than for standard
networks and deserves further investigation.
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