MATH11007 SHEET 15: THE DIRECTIONAL DERIVATIVE.

Set on Tuesday, February 22: Qs 1, 2 and 5.

(1) In what direction(s) does the directional derivative of $f(x, y)=x y$ at the point $(2,0)$ take the value -1 ?
(2) You are given that the directional derivative of a function $f(x, y)$ at a point (a, b) in the direction of the vector $(1,2)$ is 2 , and in the direction of the vector $(-1,1)$ is 3 . Find the partial derivatives of f at (a, b).
(3) Find the directional derivative of $f(x, y)=\sqrt{x y}$ at the point $P(2,8)$ in the direction of the point $Q(5,4)$.
(4) Find the maximum rate of change of $f(x, y, z)=\ln \left|x y^{2} z^{3}\right|$ at the point $(1,-2,-3)$. In what direction doest it occur?
(5) For each of the following, find a normal vector to the given curve (or surface) at the given point, and the equation of the tangent line (or plane) at that point:
(a) $x^{2} y^{2}=1$ at $(2,-1 / 2)$.
(b) $x^{2}+2 y^{2}+3 z^{2}=6$ at $(1,-1,1)$.
(c) $z=p^{4}-x^{2}-y^{2}$ at $\left(1,-1, p^{2}\right)$.
(6) You are standing on a very steep hillside; the height of the ground at a point (x, y) is given by $f(x, y)$. If you head due North, you go uphill at a slope of 60°; if you head due East, you go uphill at 30°. In which direction is the slope greatest? What is the value of the greatest slope?
(7) Let $z=f(x, y)=x^{2} y$, and let $\mathbf{u}=(u, v)$ be a unit vector. Write a formula for $\mathrm{D}_{\mathbf{u}} f(1,-1)$ in terms of u and v. Find u and v such that the derivative is zero.

References

1. Frank Ayres, Jr. and Elliott Mendelson, Schaum's Outline of Calculus, Fourth Edition Chapters 48 and 52, Mc-Graw-Hill, 1999.
