Server Advantage in Tennis Matches

Jonathan Rougier (and Iain MacPhee)

Department of Mathematics University of Bristol, UK

Iain MacPhee day, 3 April 2014, Durham, UK

J. Appl. Prob. 41, 1182–1186 (2004) Printed in Israel © Applied Probability Trust 2004

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

SERVER ADVANTAGE IN TENNIS MATCHES

I. M. MACPHEE * AND JONATHAN ROUGIER,* ** University of Durham G. H. POLLARD,*** University of Canberra

Abstract

We show that the advantage that can accrue to the server in tennis does not necessarily imply that serving first changes the probability of winning the match. We demonstrate that the outcome of tie-breaks, sets and matches can be independent of who serves first. These are corollaries of a more general invariance result that we prove for *n*-point win-by-2 games. Our proofs are non-algebraic and self-contained.

Keywords: Tennis; tie-break; n-point win-by-k games

2000 Mathematics Subject Classification: Primary 91A60; 91A05 Secondary 60J20

The fish plot

A tennis tie-break is an example of a 7-point win-by-2 game.

(日)、

ъ

э

etc. etc. on the righthand side.

The Flip-Flop Lemma

Assumption

Individual points comprise independent Bernoulli trials with fixed probability of success depending only on a single two-level factor, say $\{A, B\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Flip-Flop Lemma

Assumption

Individual points comprise independent Bernoulli trials with fixed probability of success depending only on a single two-level factor, say $\{A, B\}$.

Definition

A *pairwise factor ordering (PFO)* is a concatenation of the pairs of factor levels *AB* and *BA* according to some rule.

The Flip-Flop Lemma

Assumption

Individual points comprise independent Bernoulli trials with fixed probability of success depending only on a single two-level factor, say $\{A, B\}$.

Definition

A *pairwise factor ordering (PFO)* is a concatenation of the pairs of factor levels *AB* and *BA* according to some rule.

Flip-Flop Lemma

Let the factor levels conform to a PFO with given rule. Under the assumption, the probability of attaining the terminal score i-j is invariant to the rule when either

- (i) the game is played for exactly 2m points, or
- (ii) the game is *n*-point win-by-2, and $\min\{i, j\} \ge n 1$.

Imagine a game of exactly 8 points, which terminates at 5-3.

・ロト・日本・モト・モート ヨー うへで

Imagine a game of exactly 8 points, which terminates at 5-3.

・ロト・日本・モート モー うへぐ

Imagine a game of exactly 8 points, which terminates at 5-3.

Rule R _A	1 A	0 B	1 B	1 A	0 A	1 B	1 B	0 A	5–3
Rule R _B	0 B	1 A	1 A	1 B	1 B	0 A	0 A	1 B	5–3

Imagine a game of exactly 8 points, which terminates at 5-3.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Imagine a game of exactly 8 points, which terminates at 5-3.

▶ These two paths to 5-3 have the same probability. The probability of the outcome 5-3 under R_A is the sum of the probabilities of the paths to 5-3. The bijective relationship between paths under R_A and R_B shows that the probability of 5-3 is the same for R_A and R_B .

Imagine a game of exactly 8 points, which terminates at 5-3.

- ▶ These two paths to 5-3 have the same probability. The probability of the outcome 5-3 under R_A is the sum of the probabilities of the paths to 5-3. The bijective relationship between paths under R_A and R_B shows that the probability of 5-3 is the same for R_A and R_B .
- The conditions of the Lemma ensure that there are an even number of points, and that the swapping operation does not imply a different terminating score.

Theorem

Under the assumption, the probability that A wins a tiebreak does not depend on who serves first.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollaries

The same result also holds for sets and for matches.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ● ○ ●

We condition on the path passing through (n-1)-(n-1). If this point is on the path, then all terminating points satisfy case (ii) of the Flip-Flop Lemma.

<ロト <回ト < 注ト < 注ト

æ

For paths not passing through this point,

For paths not passing through this point, *the probability on the two sets, pink and red, is the same.* But each of the red points satisfies case (i) of the Flip-Flop Lemma.

Our model implies that the games themselves are independent Bernoulli trials, and the PFO is ABABAB... or BABABA... .

(ロ)、(型)、(E)、(E)、 E) の(の)

Our model implies that the games themselves are independent Bernoulli trials, and the PFO is ABABAB... or BABABA...

1. Sets *without* tiebreaks (the final set of the match). A set without a tiebreak is a 6-point win-by-2 game. Our result hold for all n-point win-by-2 games.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our model implies that the games themselves are independent Bernoulli trials, and the PFO is ABABAB... or BABABA...

- 1. Sets *without* tiebreaks (the final set of the match). A set without a tiebreak is a 6-point win-by-2 game. Our result hold for all n-point win-by-2 games.
- 2. Sets *with* tiebreaks. We condition our argument on passing through the score 5-5 in games. If we pass through 5-5, then each of 7-5, 5-7, and the tiebreak are invariant to the PFO. If we do not pass through 5-5, then apply the same reasoning as the second branch of the tiebreak proof.

Our model implies that the games themselves are independent Bernoulli trials, and the PFO is ABABAB... or BABABA...

- 1. Sets *without* tiebreaks (the final set of the match). A set without a tiebreak is a 6-point win-by-2 game. Our result hold for all n-point win-by-2 games.
- 2. Sets *with* tiebreaks. We condition our argument on passing through the score 5-5 in games. If we pass through 5-5, then each of 7-5, 5-7, and the tiebreak are invariant to the PFO. If we do not pass through 5-5, then apply the same reasoning as the second branch of the tiebreak proof.

So it does not matter, for winning the set, who serves first. And hence it does not matter for winning the match.