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Two types of experiment

System experiment

I Multiple experimental
units may not be available!

I Many uncontrolled sources
of variation

I Difficulty of doing the
experiment you want

Computer experiment

I Can do more-or-less any
experiments we want

I Have to account for
limitations in the simulator

I Difficulty of interpreting
the experiment you do
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Current practice in Environmental Science

System Complex interdependencies:

W Global oceans and climate, biosphere
X Local seas, local climate
Y Volume and dynamics of Greenland ice-sheet

Simulator y = s(x , θ), deterministic, ignores W , asserts causal
direction from X to Y , contains unknown
parameters θ̃

Observations Z = zobs where usually Zi ∼ N
(
mi · Y , σ2

i

)
‘Tuning’ Select a representative value x̂ for X and then

θ̂ = argmin
θ

∑
i

1

σ2
i

{
zobs
i −mi · s(x̂ , θ)

}2
.

‘Prediction’ ŷ = s(x̂ , θ̂).
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A quick inventory

I In the previous outline, there are two sources of uncertainty
unaccounted for:

I The true value of X – using x̂ as a plug-in may mask a large
impact from variability in X .

I The limitations of the simulator – implicitly it is treated as
perfect.

I There is an additional source of information that has been
ignored:

I Physical interpretation of θ̃, for which some components may
relate to observable features of the system.

I Ideally, we would like to incorporate all of these, and we can
do this within a Bayesian framework in which learning about
(X ,Y , θ̃) takes the form of estimating or sampling from

Pr{X ,Y , θ̃ | Z = zobs}.
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Structuring the joint distribution

We factorise the joint distribution of (X ,Y , θ̃) as

π(X ,Y , θ̃) = π(Y | X , θ̃)︸ ︷︷ ︸
structural,

×π(X )︸ ︷︷ ︸
input,

× π(θ̃)︸︷︷︸
parametric uncertainty

where X ⊥⊥ θ̃ seems reasonable.

The three sources of uncertainty (terminology):

Parametric Not knowing the ‘correct’ value of the simulator
parameters;

Input Not knowing the true value of X ;

Structural Not knowing the true value of Y , even were we to
know X and θ̃.



Structural uncertainty

Including structural uncertainty is a big advance.

I The ‘perfect simulator’ has

π(Y | X , θ̃) = δ
(
Y − s(X , θ̃)

)
,

where δ(·) is the Dirac delta function.

I The current SOTA (‘best input’ approach) has

π(Y | X , θ̃) = πε

(
Y − s(X , θ̃)

)
where, typically,

ε ∼ N(0,Σ);

ε is known as the discrepancy and Σ as the discrepancy
variance. In the case Σ → 0 we are back at the perfect
simulator, so this is a friendly generalisation.
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The main challenges

At its simplest, the Bayesian approach to calibration requires us to
‘score’ samples from the prior distribution of θ̃ using the likelihood
function

L(θ) ∝ φ
(
zobs;Ms(x̂ , θ),MΣMT + D

)
where φ is the Gaussian density function, M is the incidence
matrix, D is the diagonal matrix of measurement error variances.

(For simplicity: not integrating out X , although we could.)

Challenges

1. Specifying π(X ) and the discrepancy variance, Σ. We may
choose to revert to π(X ) = δ(X − x̂), as above, if uncertainty
about X is not thought to be substantial.

2. Doing the inferential calculation. This is a problem whenever
the simulator is sufficiently expensive that it is unrealistic to
span the parameter space with evaluations.
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Enter The Emulator

An emulator is a Bayesian statistical
framework for predicting the simulator
output, which augments information
from an ensemble of evaluations with
additional judgements about:

I Smoothness and differentiability

I Monotonicity and explicit
functional relationships

I Important low-order interactions.
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Enter The Emulator (cont)

I Emulators are usually fitted as Gaussian Processes (possibly
after transformation), in which case the output from an
emulator is a mean function µ(θ) := E{s(x̂ , θ)} and variance
function Ψ(θ) := Var{s(x̂ , θ)}.

I The likelihood function in this case is

L(θ) ∝ φ
(
zobs;Mµ(θ),M(Ψ(θ) + Σ)MT + D

)
,

i.e. µ(θ) has replaced s(x̂ , θ), and there is an extra
contribution to the variance of Ψ(θ).

I Much of the skill in emulator construction is choosing a good
set of training data, using screening and experimental design,
often sequentially. One useful way to present the emulator is
using probabilistic sensitivity analysis.

There are all sorts of additional challenges when the
parameter space becomes large.
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Summary

I Inevitably, when we model complicated systems, we will ignore
some aspects, and simplify others. Our simulators of such
systems are always imperfect.

I Quantifying uncertainty does not happen at the end of the
analysis: it occurs right at the start, when we describe the
informativeness of our simulator in terms of parametric, input,
and structural uncertainty.

I Expensive simulators can only be run a limited number of
times; in this case, the choice of runs has to be made carefully,
and the information in those runs can be augmented with
additional judgements, through constructing an emulator.


