
Setting up your simulator

Jonathan Rougier∗

School of Mathematics

University of Bristol

Compiled October 17, 2015, from SUYS3.tex

Abstract

The parameters of a computer simulator are often poorly defined, and

their ranges for a particular application can be mysterious. But the

negative consequences of getting these ranges wrong, either too small

or too large, endure through all subsequent uses. So ‘setting-up’, by

which I mean the process of adjusting the individual ranges in the light

of a few carefully-chosen observations, is a crucial first step. Happily

there is a relatively straightforward process for setting-up, based on

the notion of ‘implausibility’, and making use of simple calculations

and visualisations. This process works much better if the analyst

is able to proceed sequentially, through several waves of runs. The

paper also considers the extension of this process to different types

of simulator: simulators with large fields of parameters, stochastic

simulators, and expensive-to-run simulators.

1 Introduction

I doubt that the benefits of representing a complex system as a computer

model need to be reiterated for the readers of this Journal. So I start by

∗School of Mathematics, University Walk, Britol BS8 1TW, UK. Email
j.c.rougier@bristol.ac.uk. Webpage http://www.maths.bris.ac.uk/∼mazjcr/.

1

supposing that you have taken the trouble to construct such a model, and

I describe some ways in which such a model might be brought into useful

service. My general affiliation for this topic is to the ‘Durham school’ of

history matching (section 5), but much of the material is original. So this

paper is partly a review, but mainly a reflection on my own practice, and

mistakes. I hope it is helpful in fixing concepts and terms, even if you, the

reader, think that some of the suggestions are a bit ‘out there’.

Here is an outline of the sections that follow. Section 2 provides some

basic concepts and terms for computer models, which I prefer to call ‘simu-

lators’, and provides some examples. The focus in the following sections is

to set lower and upper limits for each of the simulator’s ‘parameters’, which

I refer to as ‘setting-up’. Section 3 describes the objective when setting-up

a simulator, contrasting my approach with a more probabilistic approach,

and rejecting the latter at this early stage of the process of developing the

simulator. Similarly, I explain why setting-up has to come before screening

and global sensitivity analysis. Section 4 gives a set of sanity checks to be

performed at the start of the process of setting-up.

Section 5 gives a formal treatment of the calculus of ‘implausibility’ in

terms of confidence sets, and explains how the implausibilities of an ensemble

of runs can be used to constrain the ranges of individual parameters. Sec-

tions 6 and 7 are the heart of the paper, describing an iterative and visual

approach to setting-up, which proceeds in waves of runs. The two critical

issues are discussed together in section 6: how many runs to do in the next

wave and which observations to use in order to compute implausibility. Vi-

sualisation is by Parallel Coordinates Plot, discussed in section 7.

The final four sections cover other issues that frequently arise in applica-

tions. First, the crucial issue of how to handle a field of parameter values,

such as the Manning’s n values along the reaches of a channel: section 8.

Second, the need at some stage, usually late in the experiment, to generate

a large number of acceptable parameter sets: ‘last gasp’ design in section 9.

Third, stochastic simulators, what they represent and how implausibility can

be adapted to them: section 10. Finally, the use of emulators: section 11.

The paper ends with a Glossary, and the first occurence of each term in the

2

Glossary is given in italics.

The supplementary information contains an R worksheet (R Core Team,

2013) which demonstrates the workflow of setting-up, contains useful func-

tions, and produces the figures in the paper.

2 Simulators

I find it helpful to reserve the word simulator for the computer model: ‘model’

is already heavily overloaded (Rougier et al., 2013a). ‘Model’ might conve-

niently be reserved for the representation of the system on which the simula-

tor is based. In this usage, Beven (2009, sec. 1.4) distinguishes between the

‘perceptual’ model, the ‘formal’ model, and the ‘procedural’ model (the al-

gorithm that the simulator executes). These first two models are also termed

the ‘conceptual’ model and the ‘mathematical’ model. None of this is ger-

mane in what follows.

Figure 1 illustrates what might be termd a ‘kitchen sink’ simulator, which

has all of the features that may be found in a simulator. I introduce some

common terms. The inputs are the forcing, boundary, parameters, and ini-

tial values. One run of the simulator maps the inputs to the outputs. In a

stochastic simulator, two runs at the same inputs do not necessarily produce

the same outputs; otherwise the simulator is deterministic. A well-designed

stochastic simulator will make the random number seed available as an addi-

tional input, in order that the user can control this source of variation (e.g.

for reproducibility and checking); for simplicity, I have not shown this in

Figure 1. Stochastic simulators are discussed in section 10.

A hydrological simulator of a floodplain has all of the inputs of this kitchen

sink simulator. The boundary is the topography of the flood plain, tiled into

pixels. The parameters are Manning’s n values (roughnesses), one for each

pixel. The initial values are the depths of the surface water for each pixel.

The forcing f = (f1, f2, . . .) is a sequence of net fluxes (i.e. change in depth),

where each ft is a vector of fluxes at time t, one for each pixel. The outputs

x = (x1, x2, . . .) are a sequence of water depths, where each xt is a vector of

depths at time t, one for each pixel—this would be the entire ‘state vector’ for

3

S
im

u
la

to
rB

θ

x0
x

fForcing

Boundary

Parameters

Initial values

︸︷︷︸
Outputs



In
p
u
ts

Figure 1: The ‘kitchen sink’ simulator, which has all of the features that
may be found in a simulator. Each of these symbols may represent a large
collection of values.

the simulator. See Hunter et al. (2007) and Neal et al. (2009) for illustrations

of this type of simulator. In large applications each pixel might be classified

as one of a small number of types, with each type given a common Manning’s

n; this greatly reduces the number of parameters.

The floodplain simulator is an example of a dynamical simulator. For such

simulators, the need for initial value x0 (which can be high-dimensional) can

sometimes be finessed by ‘spinning up’ the simulator, which involves starting

the simulation well before time t = 0, say at time t = −s, at a simplistic

initial value x−s, and then allowing realistic forcing (f−s+1, . . . , f0) to erase

the memory of x−s. For example, the floodplain simulator could be spun-up

over a quiet period in which the forcing was the net inflow and outflow of the

river channels at the points where they enter and exit the floodplain, and zero

elsewhere. Spinning-up is common practice with climate simulators, in which

a preindustrial year such as 1750 is used again and again to bring the state

vector into something like a physically plausible configuration (Rougier and

Goldstein, 2014). Note that spin-up needs to be performed for each distinct

4

value of the parameters, which is a major computational cost in perturbed

parameter experiments on climate simulators (see, e.g., Murphy et al., 2011).

In a simulator, all of the inputs tend to be adjustable, possible excluding

the boundary for really large simulators, where it might be hardwired in, for

speed. The same core code can be used to represent many different appli-

cations of the same system. For example: different topographies, different

flow patterns, different flood defences, or different control regimes for flood

defences. I would tend to reserve ‘boundary’ for static features of the system

and ‘forcing’ for the more variable features of the system; e.g., those that

could vary in time. This is not an important distinction, though.

Parameters tend to correspond to non-measurable aspects of the sys-

tem, which is how they are distinguished from forcing or boundary values,

and they tend to be static in dynamical simulators. Often, parameters are

‘lumped’ quantities standing in for processes which are not well-understood,

or which operate on a scale below that of the simulator’s solver. Our beliefs

about parameters tend to be much vaguer than about the other inputs, which

correspond to measurable aspects of the system.

As another example, from the other end of the scale to the floodplain

simulator, consider a simulator for the steady-state velocity profile of a snow

avalanche, as used in Rougier and Kern (2010). The boundary is the slope

angle, the forcing is the snow depth and density, and the four parameters

control the snow rheology and the interaction between the snow and the

underlying surface. The output is steady-state velocity as a function of slope-

normal height. This simulator can easily be implemented in a spreadsheet.

We still have to connect the simulator to the system it represents. Figure 2

adds observations to the kitchen sink simulator. Observables are specified

functions of the simulator outputs, corresponding to operationally-defined

system quantities, and observations are the measured values of these quan-

tities. This distinction is practically useful, as will be demonstrated below.

The observables represent ‘points of contact’ between the simulator and

the underlying system. The correspondence between observables and system

quantities is not exact, but it must be quantifiable. Is this reasonable? I

suggest it is—a simulator with no points of contact with the system is not

5

x0
x = (x1, . . . , xm)︸ ︷︷ ︸

Observables yj = gj(x0, x1, . . . , xm)

Observations yobsj

}
j = 1, . . . , n

Figure 2: The bottom of the ‘kitchen sink’ simulator, with added observables
and observations. When focusing on the role of the parameters, I write
yj(θ) := gj

(
x0, x1(θ), . . . , xm(θ)

)
.

capable of providing useful quantitative assessments of system behaviour. If

you think that your simulator can provide such an assessment, then there

must be at least one observable for which you can say, e.g.,

I believe that there is a parameter value θ∗ for which the simulator

observable yj(θ
∗) is likely to be within ±1.5 m/s of the true value

in the system, given knowledge of the other inputs.

The value θ∗ is not known to you. Its purpose is to represent the idea that

the tolerance ±1.5 m/s is the best you think your simulator can do for this

observable: effectively, you do not think you can reduce this value through

more careful tuning of the parameters. If you are not able to provide at least

one such tolerance, then other people ought to be suspicious about whether

your simulator provides any useful quantification of system behaviour. They

might think that you wanted to have your cake and eat it too—all the fun of

building a simulator, and none of the responsibility of thinking about how it

relates to the system.

The use of known functions includes simple observables such as yj = xti,

the ith output at time t, but in many applications the observables are sum-

maries such as averages. In Zammit-Mangion et al. (2014), for example,

6

there are single pixel measurements of elevations from GPS, ‘small footprint’

measurements from LIDAR, which give elevation averages over a neighbour-

hood of pixels, and ‘large footprint’ measurements from the GRACE satellite,

which give mass averages over hundreds of pixels.

But we can also be much more creative in our observables, using highly

non-linear functions if that better suits our beliefs. Dynamical simulators

provide a good example. The simulator’s time-series of outputs might well

have a complex relationship with the system’s time-series. For example, it

might be out-of-phase in a way that depends on the values of the parameters.

In this case, observables which are not affected by mis-phasing would be

useful. For example, the peak value of the time-series in a window, or perhaps

the elapsed time between successive peaks, or perhaps the shape of the peak

(e.g. the exponential coefficient of the run-down). Ideally, the observable

has the property that its tolerance is relatively invariant to the value of the

observable. Sometimes this can be achieved by taking logs, if tolerances are

more naturally expressed in terms of percentages.

For the floodplain simulator, one set of observables is the maximum water

height at a set of locations following a flood (implemented in the simulator in

terms of precipitation and flow forcing), which can be collected from marks

on structures after the water has subsided (Neal et al., 2009). This would

be an appropriate set of observables for hazard assessment if the main loss

from flooding was derived from the footprint of inundation, rather than the

speed with which the water level rose and fell. For the avalanche simulator,

optical sensors installed in an experimental chute can be used to infer speed

at a fixed set of slope-normal heights, in an experiment where the slope and

the snow depth and density are all known (Tiefenbacher and Kern, 2004).

Much more ambitious experimental sites have also been developed (see, e.g.,

Maggioni et al., 2013).

I have focused on the observable outputs but the forcing and the bound-

ary are also part of the system. These values must be specified before the

simulator is run, and so there is a presumption that they are either measur-

able or specified in some way (e.g. future climate scenarios), which I have

adopt here. But the next section will start with a more general description

7

of simulator experiments, in which all inputs and outputs are potentially

uncertain, and only some are observed, possibly with error.

3 Objectives

Most simulator experiments can be described in the same way: some inputs

are specified, some inputs and/or observables are measured, possibly with

error, and some of the remaining inputs/outputs are to be reconstructed.

The language of probability provides a simple picture of such an experiment.

A stochastic simulator provides a conditional distribution for the outputs

given the inputs (in this context, a deterministic simulator is just a special

case). A joint distribution over inputs and outputs is therefore induced by

providing a marginal distribution for the inputs. This joint distribution can

be conditioned on the measured values of the inputs and on the observations

using Monte Carlo simulation methods (see, e.g., Robert and Casella, 2004),

and the result can be marginalised to provide a probabilistic reconstruction of

the inputs/outputs of interest. Rougier (2007) provides a detailed treatment

of this process for a climate simulator.

This probabilistic approach presupposes a well-specified distribution for

the inputs, notably the parameters. This cannot be assumed, in the early

stages of constructing a new simulator, or at the point of using existing core

code with a new set of forcing and boundary values. A similar problem besets

less-probabilistic approaches such as GLUE (see, e.g., Beven, 2009, sec. 4.5).

Therefore I will not adopt such approaches in this paper. Instead, I will

focus on the task of constraining the inputs according to observed values of

(some of) the inputs and outputs. For simplicity I will focus on constraining

the parameters, treating the forcing and boundary values as known. For the

same reason I will initally assume that the simulator is deterministic (relaxed

in section 10), and that it can be run many times (relaxed in section 11).

There are some fields, like hydrology, where uncertainty in the forcing is an

unavoidable and important feature. To some extent this can be addressed by

a careful choice of observables (see above, at the end of section 2). Another

option is to add a stochastic component to the forcing (see section 10).

8

What would a well-set-up simulator look like? The standard situation,

representing the vast majority of experiments, would be a piece of code (or

just an algorithm), and ranges for each of the parameters, suitable for a

specified set of forcing, boundary, and initial values. Let Rk := (`k, uk)

represent the range for the kth parameter, and

R := R1 × · · · × Rp

represent the parameter space: a p-dimensional box, for a p-vector of param-

eters. Why a box? A box is the simplest way to represent a p-dimensional

space, being parsimonious to conceive and represent, easy to fill, and easy

to adjust. But of course a box might not be the ‘right’ shape for the param-

eters. Thus the convention must be that the exterior of the box defines a

‘ruled out’ region: it is necessary for the parameter values to be inside the

box, but not sufficient. Setting-up a simulator is firstly about creating a box

R with this property; secondly, it would be better if the box were as small as

possible. This is what this paper is about.

It is important to distinguish setting-up from screening and global sen-

sitivity analysis. If the ranges of the parameters are already well-constrained,

then screening can be used to identify the active parameters (see, e.g., Fitzger-

ald et al., 2011; Pianosi et al., 2015). But if the ranges are dubious, then

screening may do no more than identify parameters whose ranges are too

large, and fail to identify parameters whose ranges are too small. So the first

task is to get the ranges about right. The practical difference is that screen-

ing can proceed without any observations, but setting-up cannot. But it is a

delusion that you can therefore do screening before collecting observations,

unless you already have strong beliefs about R.

In the rest of this section I consider some trickier cases. Sometimes pa-

rameters take discrete values (see, e.g., Table 1 in Rougier et al., 2009b) and

so their range is not convex; some are levels of a factor and not directly in-

terpretable on a numerical scale. The methods I outline in this paper can be

extended to these parameters, but for simplicity I am not going to consider

them here.

9

Sometimes there are constraints on the parameters. Simple ordering con-

straints like θ1 ≤ · · · ≤ θk can be elegantly handled as follows. First, ignore

the constraint when generating θ1, . . . , θk values (which presumably all have

the same range). Then reorder these values from the smallest to the largest.

See Cox and Hinkley (1974, Appendix 2) for the statistical justification for

this technique, and Rougier et al. (2015) for an application. With more

complicated constraints, one possibility is for the simulator to return NA for

values of θ not satisfying the constraints. While this is crude, it is entirely

compatible with the approach I describe below.

Some runs may not complete. It is very important to find this out before

launching a large batch of runs and going away for the weekend. Edwards

et al. (2011) started with a large experiment which took much less time than

we anticipated, because many of the runs failed during the spin-up. This

was not a good outcome. Non-completers should be treated suspiciously, as

possible evidence of a coding error. This is a subtle issue. The numerical

solvers in climate simulators are tuned to particular values of the parameters,

and do not take well to large parameter perturbations (and definitely not to

several large perturbations in the same run). Does a failure of the solver

indicate a ruled-out value for the parameters? In the case of Edwards et al.

we inspected the outputs and decided that the solver was failing due to a

non-physical state vector, and so we classified the parameter values of non-

completers as a fortiori ruled-out. Such non-completers are not removed

from the experiment, but their outputs are recorded as NA; see section 9.

4 Sanity check

I inserted this section after reflecting on my own failings (as a statistician).

The trick with setting-up is not to waste too much time, or too many

CPU cycles. If you are like me, you will have to resist the urge to plunge in

and do a really cool experiment. With every simulator there are important

sanity checks to do, even in cases where the core code has been used hundreds

of times. In my experience, the problem is not usually with the core code,

but with the ‘wrapper’ that connects the core code with the inputs, extracts

10

the outputs, and computes the observables. For example, in a large and

complex simulator, like a climate simulator, it is easy to miss that a non-

default initialisation file was not loaded. Defensive coding can help, plus very

detailed log files produced during the run and stored alongside the output

files. This is a heartfelt recommendation because tracking down a wrapper

error in raw output is a tedious and time-consuming task.

Here is a minimal set of sanity checks for a simulator. They apply across

the entire set of parameters, but where some of the parameters are a field

of values, it makes more sense to apply them to a subset after reparameter-

ising; see section 8. The starting point is a tentative assessment of R, the

parameter box, plus a short list of important observables, with their obser-

vations. ‘Important’ depends on context, but they should be sensitive to key

parameters, and similar to the kinds of observables that will be used in later

stages of the analysis. The analysis in section 5 suggests that it is better if

these observables are qualitatively different one from another.

1. Do a run at the midpoint of R.

2. Do 2p axial runs, taking each parameter down to its lowest value and up

to its highest value, with the other parameters at their central values.

Reflect on the values of the observables from these axial runs.

3. Lo-hi runs: for each of a set of important observables do the following

two runs:

(a) Set each parameter at the value (low, midpoint, or high) which

gives the lowest value of the observable, based on the midpoint

run and that parameter’s two axial runs.

(b) The same, but for the highest value of the observable.

You may not need to do one or both of these runs, because there may

be duplication. Check that the observable value from the first run

is lower than the observable value from the second run, and that the

observation lies inside this interval.

11

These sanity checks are neither necessary or sufficient, because non-

linearities and interactions in the simulator could cause some weird effects.

But it would be good to know about this as soon as possible. Where the

observations are not inside the interval, I would consider extending one or

more of the ranges, rather than assuming that non-linearities and interac-

tions will come to my rescue—I would be concerned about my ability to set

up a simulator where this assumption was required. Mind you, some of the

non-linearities and interactions may fade in importance as the size of R is

reduced, so setting-up might get easier if the first few waves (see section 6)

have a strong effect on some of the parameter ranges.

It is helpful to have a running example, to illustrate this design and the

analysis in sections 6, 7, and 9. So consider a simulator with five parameters,

each with Rk ← (0, 1), and for which the first observable has the form

y1(θ)← 3θ0.51 − {1 + 4(θ1 − 0.5)2}θ2 + θ3(1− θ4)θ5. (1)

The observation is yobs1 ← 1.84. The sanity check runs are shown in Table 1.

The sanity checks all pass. There is evidence of non-linearity in θ1 from the

axial runs. There is evidence of interactions from the lo-hi runs, inferred as

follows. The (local) main effect of θ1 is 2.12 − (−0.88) ≈ 3, and the main

effect of θ2 is 2.25−1.25 ≈ 1. The main effects of the other three parameters

are smaller, 1.87 − 1.62 ≈ 0.3, say a total of ≈ 1 between them. The total

effect from the lo-hi runs is 4.00− (−2.00) ≈ 6, which is 20% larger than the

sum of the main effects, ≈ 5. The suspicion would be a θ1 · θ2 interaction,

given that these are the two parameters with large main effects.

At the end of the sanity check, you should be happy that your R, possibly

after adjustment and some re-running, is not too small. It is likely to be much

too large. Doing runs that span an R which is much too large is extremely

wasteful, which strongly suggests proceeding iteratively. This is discussed in

sections 6 and 7.

12

Table 1: Sanity check runs for observable
y1. The first run is a midpoint, the next ten
runs are axial runs for the five parameters,
and the final two runs are the lo-hi runs for
y1.

θ1 θ2 θ3 θ4 θ5 y1
0.5 0.5 0.5 0.5 0.5 1.75

0 0.5 0.5 0.5 0.5 −0.88

1 0.5 0.5 0.5 0.5 2.12

0.5 0 0.5 0.5 0.5 2.25

0.5 1 0.5 0.5 0.5 1.25

0.5 0.5 0 0.5 0.5 1.62

0.5 0.5 1 0.5 0.5 1.87

0.5 0.5 0.5 0 0.5 1.87

0.5 0.5 0.5 1 0.5 1.62

0.5 0.5 0.5 0.5 0 1.62

0.5 0.5 0.5 0.5 1 1.87

0 1 0 1 0 −2.00

1 0 1 0 1 4.00

13

5 Implausibility

A parameter value θ ∈ R is implausible for you exactly when the value of

at least one observable is further from its corresponding observation than is

consistent with your beliefs about the relationship between the simulator and

the system. Your beliefs are themselves subject to revision through the pro-

cess of screening. For example, if you find that the whole of R is implausible,

as far as you can tell, then perhaps the simulator is not as good as you think

it is (good advice in this situation is provided by Beven, 2009, sec. 4.5.9).

Implausibility was introduced by Craig et al. (1996, 1997), and discussed

more recently in Vernon et al. (2010). A related concept is the more quali-

tative behavioural/non-behavioural distinction, separating parameter values

which give the right sort of behaviour from those that do not (see, e.g.,

Beven, 2009, sec. 3.5.4, for a discussion and references). Implausibility can

be seen as a generalisation of this approach, providing a numerical scale from

‘behavioural’ to ‘non-behavioural’ which can be manipulated (combined, pro-

jected) in accordance with statistical rules.

Suppose that there is such a thing as a ‘best’ value of the parameter,

denoted θ∗. I will not explore the meaning of ‘best’ in this paper: see Gold-

stein and Rougier (2004, 2009) for a discussion. Let’s just agree that this is

a helpful concept, without getting too bogged down. As already stated in

section 2, the existence of θ∗ is asserted, but its value is unknown.

Consider the jth observable. The tolerable distance between the observa-

tion yobsj and the ‘best’ simulator value yj(θ
∗) obviously includes a contribu-

tion from measurement error. It also includes a contribution from represen-

tation error, which is the incommensurability between a simulator observable

and a system observation (e.g. between a pixel and a point). Plus a contribu-

tion from structural error, which represents the limitations of the simulator

(see, e.g., Rougier and Beven, 2013). For simplicity I will assume that struc-

tural error is insensitive to the value of θ∗; this has already been discussed

in section 2, concerning good choices of observables, and is discussed further

at the end of this section.

Taking our cue from statistical errors, we can quantify each of these con-

14

tributions to the difference between yobsj and yj(θ
∗) as standard deviations

and combine them by adding their squared values, to get a single scale for

tolerable distance, denoted σj. Implicitly we are treating each of these er-

rors for observable j as independent, in simply adding their variances; this

seems uncontroversial. In this sum of three variances, one large term might

dominate—typically this might be structural error, for a simulator which

represents a complex system. In practice, though, many people seem to use

just measurement error (e.g. in scaling RMSE), which sets the bar for the

parameters far too high. It is not sensible to judge the parameters of a sim-

ulator that is known to have structural limitations by the standards of one

that does not.

As stated in section 2, if you cannot find one observable for which you can

quantify a tolerance, then other people ought to be suspicious about whether

your simulator provides any useful quantification of system behaviour. If you

can find one such observable, then you ought to be able to find a set of them

with only a little more effort. I reiterate the point made above, that you may

end up revising your values for the tolerances in the light of things you learn

about the simulator when you run it—they are not set in stone.

This standard deviation σj can be used in a unitless measure of implau-

sibility for parameter θ based on observation j,

Ij(θ) :=

∣∣yobsj − yj(θ)
∣∣

σj
where σj :=

√
σ2
meas,j + σ2

repr,j + σ2
str,j ; (2)

if yj(θ) = NA, then Ij(θ)←∞. General results about standardised deviations

from the expectation of a random quantity can be used to give upper bounds

for the probabilities of large implausibiliites.

Take Chebyshev’s inequality. This states that an implausibility Ij(θ) ≥ 3

has a probability of not more than 1/9 ≈ 0.11 of occurring under the null

hypothesis H0 : θ∗ = θ. A tighter result is possible if your beliefs about

the difference between yobsj and yj(θ
∗) can be represented by an absolutely

continuous and unimodal distribution (e.g. a Normal distribution). In this

case an implausibility of at least 3 has a probability of not more than 0.05 of

occuring under the null hypothesis (the ‘3σ rule’, see Pukelsheim, 1994, and

15

below). Stronger still, if your beliefs can be represented by an actual Normal

distribution, then an implausibility of at least 3 has a probability of 0.003

under the null hypothesis.

In turn, these probability bounds can be turned into confidence sets for

θ∗. The set

Cj :=
{
θ ∈ Rp : Ij(θ) ≤ 3

}
(3)

is a level 89% confidence set for θ∗ according to Chebyshev, a 95% confidence

set according to the 3σ rule, and a 99.7% confidence set according to the

Normal distribution. The formal reasoning is given at the end of this section.

The set Cj uses just one observable. It would be better to use more, but

there is a difficulty. There are dependencies between the structural errors

of different observables, because simulators tend to be systematically wrong,

even when run at the ‘best’ value of the parameters. In an extreme case,

the structural error may be the same in all observables; e.g. the whole set of

outputs may be vertically shifted by an unknown amount. The presence of

dependencies makes it hard to assess the level of a confidence set created by

combining individual confidence sets; hard, but not futile. If the components

of error for observable i are effectively independent of those for observable j

then

Pr{θ∗ ∈ Ci(Yi) ∩ Cj(Yj); θ
∗} = Pr{θ∗ ∈ Ci(Yi); θ

∗} · Pr{θ∗ ∈ Cj(Yj); θ
∗}

≥ 0.95 · 0.95 ≈ 0.90,

say, if each C is defined using (3) under the 3σ rule (the notation comes from

the explanation at the end of this section). Under a positive dependence, the

lower bound would be higher, possibly as high as 0.95.

If we take two independent confidence sets defined using (3) and combine

them, then their intersection has level 79% (Chebyshev), 90% (3σ, as shown

above), or 99.4% (Normal). Although it is rather heuristic, if your beliefs

lie somewhere between 3σ and Normal, then a few (say three or four) inter-

sections will push the level down to about 95%. So let J be a subset of a

few observables that are qualitatively different one from another, in the sense

16

that you believe their structural errors are effectively uncorrelated. Starting

with (3), since θ ∈
⋂
j∈J Cj if and only if Ij(θ) ≤ 3 for all j ∈ J , the joint

implausibility measure and confidence set are

IJ(θ) := max
j∈J

Ij(θ) and CJ :=
{
θ ∈ Rp : IJ(θ) ≤ 3

}
. (4)

CJ defines a roughly 95% confidence set for θ∗ based on observables J . In

other words, it has a coverage probability of roughly at least 95%, no matter

what the value of θ∗ happens to be. I write ‘roughly’ rather than ‘approxi-

mately’ here and elsewhere to emphasize that this is a very crude assessment

of the lower bound on coverage.

Confidence sets also have a projection property, which is that if C is a

level 95% confidence set for θ∗, then g(C) is a level 95% confidence set for

g(θ∗). Because we are interested in constraining the box R, our primary

interest is in one-dimensional projections (although the following argument

also works for higher dimensions). Let g(θ) ← θk, so that g(C) is the set

of θk values for every θ ∈ C. It follows straightforwardly that the projected

implausibility measure and projected confidence set are

IJ(θk) := min
θ−k

IJ(θk, θ−k) and CJk :=
{
θk ∈ R : IJ(θk) ≤ 3

}
(5)

where θ−k denotes all parameters bar θk. Thus CJk is a roughly 95% confi-

dence set (often an interval) for θ∗k, based on the observables J .

This definition of implausibility, and the aggregration and projection rules

given in (4) and (5), were originally discussed in Craig et al. (1996, 1997),

under the name ‘history matching’. Their justification of the threshold of 3

was in terms of the 3σ rule, and their justification of the rules for aggregation

and projection was intuition; other intuitive rules have also been proposed,

see Vernon et al. (2010). As far as I am aware, this paper offers the first

interpretation of implausibility in terms of confidence sets, and explains the

conditions under which CJ in (3) can be interpreted as a roughly 95% con-

fidence set for θ∗ based on the observables J , and CJk as a roughly 95%

confidence set for θ∗k.

17

Vernon et al. (2010) describe the values of θ in CJ as ‘Not Ruled Out

Yet’ (NROY, or ‘enroy’). This term reflects the fact that adding another

observable to J can never increase the size of the confidence set for θ or θk,

according to (4) and (5). Thus confidence sets have a natural affinity with

the way that the exterior of the box R defines a ruled-out region. Ideally we

want the smallest box which contains CJ , and this will be the box

RJ := CJ1 × · · · × CJp, (6)

for which we automatically have RJ ⊃ CJ . The advantage of this approach

to setting the ranges is that RJ also has the property of being a roughly 95%

confidence set for θ∗, recollecting from its definition that a level β confidence

set has coverage of at least β for all θ∗.

An attraction of the confidence set approach to implausibility, which is

not available for the just-intuitive approach, is that it gives more guidance

about the implausibility threshold, as a function of the number of observables

in J . As Pukelsheim (1994) shows, under the 3σ conditions the general rule

for being r from the expectation is

Pr{|X − µ| ≥ r} ≤ (4/9)(σ2/r2),

for sufficiently large r. So a value r = 4σ, for example (rather than 3σ),

implies an exceedance probability of less than 1/(9 · 4) ≈ 0.028 (rather than

4/92 ≈ 0.05), which can be used to contruct roughly 95% confidence sets for

a larger number (say, five or six) of clearly different observables. Likewise, r

can be adjusted to give a different level of coverage, say 99%.

Formal reasoning for implausibility and confidence sets

This subsection gives the formal statistical reasoning under which a set such

as Cj defined in (3) can be treated as a 95% ‘observed’ confidence set. The

simulator is used as part of a statistical model for the observables. In this

model, there is a ‘best’ value of the parameters, θ∗ ∈ R, for which the

18

statistical model asserts that

E(Yj; θ
∗) = yj(θ

∗) and Var(Yj; θ
∗) = σ2

j

where Yj is the observation, thought of at this stage as a random quantity

parameterised by θ∗. Then the 3σ rule (Pukelsheim, 1994) states that

Pr

{
|Yj − yj(θ∗)|

σj
≤ 3; θ∗

}
≥ 0.95 for all θ∗ ∈ R (7)

(subject to smoothness conditions on the distribution of [Yj; θ
∗] which we

assume hold). Now define

Cj(v) :=

{
θ ∈ Rp :

|v − yj(θ)|
σj

≤ 3

}
(8)

where v is any possible value of Yj. Because

|v − yj(θ)|
σj

≤ 3 ⇐⇒ θ ∈ Cj(v)

for every possible v, (7) can be written as

Pr
{
θ∗ ∈ Cj(Yj); θ

∗} ≥ 0.95 for all θ∗ ∈ R

and this confirms that Cj(·) in (8) is a 95% confidence set for θ∗, according to

the standard definition (see, e.g., Casella and Berger, 2002, sec. 9.1). Finally,

I use the shorthand Cj for the confidence set associated with the observed

value of Yj, from which

Cj := Cj(y
obs
j) =

{
θ ∈ Rp : Ij(θ) ≤ 3

}
according to (8) and the definition of implausibility in (2).

Different assumptions give different values on the righthand side of (7).

The weaker assumption that σj is finite (i.e. without any smoothness) gives

the Chebyshev lower bound of 8/9 ≈ 0.89; the much stronger assumption

that Yj is Normal gives the exact value 0.997. There would be no theoretical

19

difficulty in allowing σj to vary with θ∗; only the practical difficulty of quan-

tifing this relationship in practice. Both section 10 and section 11 involve

generalisations where σj varies with θ∗, in a way that can be fairly easily

quantified.

6 Proceeding in waves

After the sanity check runs in section 4 you should have satisfied yourself

that your R is not too small—but if so, it is likely to be too big, maybe much

too big. After all, nothing you have done so far has reduced R from your

initial assessment, unless you have got NA’s from your simulator in the sanity

check runs, and had to shrink one or more of the Rk’s. This section explains

why proceeding in waves can be beneficial, and how you can make a crude

assessment of how many runs to do in each wave.

But before going any further—start running your simulator! Run it on a

Sobol sequence over R, and keep it running until you send an interrupt (or

exhaust your budget, or the patience of other computer users). Run it on

multiple CPUs if you can, so that a few sticky runs, which take a long time

to complete, do not hold up all of the other runs. Not collecting the sticky

runs is a minor ‘missing not at random’ problem; not collecting many runs

at all because the sticky runs held up all of the other runs is a major ‘small

data’ problem. Make sure to trap errors in your simulator and code their

outputs as NA (i.e. do not discard them, see section 9); again, you do not

want them to derail your simulations. I would also code unfinished sticky

runs as NA, pending further investigation.

What you now have is a diary management problem (DMP). You will

need, say, three hours in order to analyse the first wave of runs—three hours

might be a bit long to implement the approach in this section and section 7,

but it is best to be cautious (take the rest of the afternoon off!). The wave

needs to be big enough that you have a realistic expectation of revising R

based on the outputs. So you need to calculate the minimum number of

runs you will need in the wave, and then the time for these runs to complete

(which you can approximate from the run times you have so far, e.g. from the

20

Table 2: Notation in section 6.

θ := (θ1, . . . , θp) ∈ R The parameter vector, and parameter space

θ∗ The ‘best’ value of the parameter vector

yj(θ), y
obs
j The jth observable and its observation

Aj ⊂
{

1, . . . , p
}

The active parameters of the jth observable

J A set of observables

AJ :=
⋃
j∈J Aj The active parameters of the set of observables J .

RAJ
The subset of R corresponding to the parameters
in AJ

CJ ⊂ R A confidence set for θ∗ based on the set of observ-
ables J .

CJk ⊂ Rk A confidence set for θ∗k based on CJ .

sanity check). Then you can identify the earliest time at which you might

send the interrupt, and look in your diary for the first block of three hours

after this time. You need to do this calculation even if your simulator is

fast; it’s just that in this case you may find that you can compress the whole

process of running the wave and analysing the results into one session.

You will probably want to iterate this process. You cannot expect to learn

about more than one or two parameter ranges in each wave. Typically at least

one of the initial Rk’s will be far too large, and runs with θk values spread

across the whole of this range will almost all be implausible according to an

observable which is sensitive to θk. But this presents a good opportunity to

shrink Rk. Once shrunk, runs in the new R can be used to restrict the ranges

of other parameters which were previously overshadowed by θk.

At the heart of this process is an approach for choosing how many runs to

do in the next wave, and which observables to use in the next implausibility

assessment. That is the subject of the rest of this section. How to analyse

the runs is discussed in section 7.

Consider the jth observable. Typically, yj(θ) will be more sensitive to

some parameters than to others; term these the active parameters for yj, de-

21

noted θAj
, where Aj ⊂ {1, . . . , p}. Given an observation yobsj and a tolerance

σj, the set Cj defined in (3) contains NROY values for θ, and represents,

roughly, one constraint on the values of θAj
. At this point intuition from

linear algebra is helpful. If we can find a set of v observables J for which the

size of AJ :=
⋃
j∈J Aj is no greater than v, then CJ ought to be compact in

RAJ
(because there are at least as many constraints as parameters in AJ),

and at least one of its 1D projections ought to have the property that CJk is

a strict subset of Rk, indicating that Rk can be shrunk.

Now this is interesting but a bit speculative. However, you have the

means to identify good candidates for J and to decide how many runs to do

in order to have a chance of revising Rk for at least one of the k ∈ AJ . From

the complete ensemble of runs, remove all legacy runs which have values for

θ outside the current R, and also all runs with NA outputs. Now do the

following calculation:

1. Standardise the parameter values for the runs so that they lie in the

unit cube; i.e. linearly transform each parameter so that `k maps to 0

and uk maps to 1, where Rk = (`k, uk) is the current range for θk.

2. For each observable for which you have an observation yobsj and a tol-

erance σj, linearly regress the values of the observable on a constant

plus the standardised parameter values, to estimate the regression co-

efficents, βjk. These have the same units as yj.

3. For each observable and each parameter, compute πjk := |βjk|/σj.
These are unitless and non-negative.

The πjk’s show how much moving the value of θk from `k to uk affects yj as a

proportion of the tolerance σj. A large πjk among πj1, . . . , πjp indicates that

θk is an active parameter for yj. A large πjk among the entire set of πjk’s

indicates that observable j is useful for constraining Rk, because it suggests

that many values of θk will imply a value of yj(θ) which lies outside the set

of tolerable values surrounding yobsj .

If you lay-out the πjk’s in a table with observables down the rows and

parameters along the columns, then you will be able to see at a glance where

22

the good choices for J are, and which parameters they constrain. This is

still an informal process, but you might start with the largest πjk, find out

what the other active parameters for that observable are, find out which

other observables also have these active parameters, and so on, until you

have compiled a set of observables J with active parameters AJ , hoping of

course that |AJ | ≤ |J |.
After applying this procedure you may have several candidate J ’s. If you

are really lucky you will have a J for which AJ will be a singleton, say {k},
indicating that there are |J | observables which have the same single active

parameter θk; |J | = 1 would be good, but |J | > 1 would be better. However,

I will not assume this in what follows, but consider the general case. What

you would really like to do with your next wave is put some runs into CJ ,

and plenty of runs outside it. This ought to allow you to shrink Rk for at

least one k ∈ AJ .

Let nJ be the number of runs needed to put at least ten runs in CJ and at

least ten outside it, where ‘ten’ is just a place-holder for some number which

you think appropriate. My simple strategy for finding nJ is to use the linear

regressions already computed as a surrogate for the simulator. This would

be a bad strategy if we wanted to know the value of the simulator at untried

values of the parameters, but all we want to do here is get a feeling for the

volume of the parameter space which is occupied by CJ . So let C̃J denote

the NROY region based on the linear regressions in standardised parameters,

rather than based on the simulator. Then define

vJ :=

∫
· · ·
∫

(0,1)p

1{z ∈ C̃J} dz1 · · · dzp (9)

which is the proportion of (0, 1)p occupied by C̃J , which is a proxy for the

proportion of R occupied by CJ . In practice this integral would be approxi-

mated numerically at negligible cost. So a space-filling design of d1/vJe runs

will put roughly one run in C̃J , and, by extension, roughly one run in CJ . I

would prefer to put at least ten runs into CJ , not just one, and at least ten

23

runs outside it, and so I would set

nJ ← 10 · dmax{1/vJ , 1/(1− vJ)}e.

This calculation can be performed for each candidate J . As already

discussed, we should prefer those J for which AJ is a singleton (i.e. a single

active parameter), and those with |AJ | ≤ |J |, as both of these will project

better into individual Rk’s. I would also prefer nJ ’s which are smaller, on

the grounds that, diary permitting, it is more effective to proceed in many

small waves than in a few large ones, where the low-hanging fruit are picked

first.

Among the favoured candidates, there may be two (or more) with no

common active parameters, i.e. a J and a J ′ for which AJ ∩ AJ ′ = ∅. If a

wave of size max{nJ , nJ ′} is feasible, then both J and J ′ can be retained for

the analysis in section 7.

Returning to the example of section 4, the only possible choice is J ← {1},
simply because this is the only available observable. Let the tolerance for y1

be σ1 ← 0.1. The π1k values are then

πT

1 = (32.1, 12.1, 4.6, 4.6, 4.6) (10)

indicating that θ1 is an active parameter for y1, and possibly θ2 is as well.

A scrambled Sobol sequence of 104 points is used to compute vJ = 0.19. A

cruder calculation based on θ1 alone gives vJ ≈ 6/π11 ≈ 0.19, a very similar

answer. The value for vJ gives nJ = 10d1/0.19e = 60. Doing 60 runs in a

space-filling design is expected to produce roughly 10 runs that are NROY

according to yobs1 .

7 Restricting the ranges

Now you are in the situation of having an ensemble of runs, and you anticipate

that some of these runs will be NROY according to a set of observables

J . As before, ignore legacy runs which are outside your current R and NA

runs; denote the parameter values of the n runs that remain as θ(1), . . . , θ(n).

24

For each of these runs you have computed an implausibility with respect to

observables J using (4), denote these as I
(1)
J , . . . , I

(n)
J . If you have a second

set of observables J ′ (as explained at the end of section 6), then the following

approach can be applied separately to each set.

As explained in section 5, around (6), the marginal confidence set CJk can

be used for the revised value of Rk, for k = 1, . . . , p. The problem is that the

operation of maximising the implausibility over all but the kth parameter is

not available, since it would require multiple further runs of the simulator

for each possible value of θk. However, this operation can be approximated

within the current set of runs because that set is space-filling.

Consider the question of whether tk ∈ CJk. We would like to compute

IJ(tk) = min
θ−k

IJ(tk, θ−k)

to find out whether IJ(tk) ≤ 3, according to (5). We can approximate this

value with

ĨJ(tk) := min
{
I
(i)
J , for those i for which θ

(i)
k ∈ Bδ(tk)

}
, (11)

where Bδ(tk) represents an interval of width 2δ centered at tk. In other words,

minimise the implausibility over the subset of runs which have values of θk

within δ of tk, where δ needs to be a small value on the scale of Rk. This

approximation works, if it works at all, because the set of runs is space-filling

in θ, and hence space-filling in the thick slice of R around θk = tk for any

tk ∈ Rk.

The choice of semi-width δ in (11) seems to be crucial. Too small and

the subset is not large enough to span R−k effectively; too large and the

implausibilities are not relevant to the value θk = tk. Luckily this task can

be delegated to the human eye, using a Parallel Coordinates Plot (PCP, see

Venables and Ripley, 2010, sec. 11.1). The PCP is described in Figure 3. The

eye does the smoothing by seeing systematic patterns in the colours along

each of the parameter axes, notably finding the subset of Rk where there

is unlikely to be any low-implausibility values. This subset is likely to be

25

outside CJk, and can be (tentatively) excluded from the revised Rk.

Figure 3 includes both the 12 sanity check runs (8 were NROY) and the 60

first wave runs (18 were NROY) from the toy problem. 18 NROY runs is a bit

more than the ‘roughly ten’ we were expecting (we ignored non-linearities and

interactions). Focusing on the dark-blue lines, which have I
(i)
J ≤ 3, it looks

reasonable to revise both R1 and R2. This is a good outcome, because one

observable may not be able to constrain two active parameters, as explained

in section 6. If R1 and R2 are both shrunk to the extremal NROY values,

the new ranges are

R1 ← (0.27, 1.00) R2 ← (0.05, 0.81)

for a new volume for R which is 56% of the original volume. This is quite an

aggressive shrinking, but it is not irreversible. Moreover, the last gasp design

(section 9) will tend to push the ranges back out again, if necessary.

There are NROY runs at the edges of θ3, θ4, and θ5. However, the values

of π1 in (10) suggested that y1 was not likely to be very informative about

these three parameters, and so I would leave these ranges unchanged for the

second wave.

It is tempting to ‘squeeze’ y1 further, with some more runs in the shrunken

space. However, these runs cannot shrink R any further, since there are now

NROY runs which reach the lower and upper limits of each of the ranges.

Further progress will require a new observable.

So, to summarise. From the previous section, choose observables J , com-

pute vJ and nJ , do a space-filling design of at least nJ runs. In this section,

compute the implausibility of each run using J , draw the PCP, and, for each

θk, decide if any of Rk can be ruled out. We expect to rule out parts of

those Rk for k ∈ AJ , but this expectation can be overturned, if the simulator

is non-linear or has interactions. Rk can always be extended, rather than

shrunk, if the NROY runs are piling up against the lower or upper boundary.

Then go back to the previous section and initiate the next wave with a new

observable, or set of observables.

A more sophisticated approach, appropriate when the ensemble of runs

26

θ1 θ2 θ3 θ4 θ5

0

1

0

1

0

1

0

1

0

1

Figure 3: Parallel Coordinates Plot (PCP) for assessing CJk for each param-
eter k = 1, . . . , 5. Each parameter has its own vertical axis, and each run
is represented as a line joining the axes. The colour of each line represents
the implausibility, with I

(i)
J ≤ 3 = dark-blue, 3–6 = green, > 6 = yellow.

I use darker colours and thicker lines for lower implausibilities, and set the
plotting order of the lines from high to low implausibility, so that the NROY
runs stand out. This PCP is drawn for 13 sanity check runs plus 60 runs in
a Sobol sequence, using J ← {1} and the observation yobs1 from the example
in the text (see section 4 and the end of section 6). The sanity check runs
are shown with dashed lines.

27

inside the current R is large, is to use a non-linear response surface in com-

puting vJ in (9), and in choosing between alternative candidates for J . The

crudely-constructed πjk table from section 6 is used for generating candidates

for J , but not for choosing between them. This table is useful in the absence

of strong beliefs about the simulator, but strong beliefs should take prece-

dence, if they exist. Note that it is quite consistent to have a strong belief

about θk being an active parameter for yj, while at the same time being very

uncertain about Rk.

Section 9 (Last gasp design) would follow on naturally at this point, but

the following material on reparameterisation is more important.

8 Reparameterising fields

I am going to assume that you have your reasons for specifying the parameters

the way you have. You have chosen (θi, θj) rather than, say, (θi + θj,
√
θi)

because θi and θj are somewhat meaningful to you. Therefore, you are not

particularly interested in transformations of the parameters.

There is one obvious exception, though, which is when a subset of the

parameters is a field of similar values, such as Manning’s n values for the

reaches of a channel, or permeabilities for the voxels of a 3D hydrocarbon

reservoir simulator. The problem here is that space-filling designs take a very

long time to visit all of the corners of R. Therefore, the range of values for

the arithmetic mean of a field of parameters from a space-filling design will

typically be much less than the range of the individual parameters. Unfortu-

nately, the amount of variation in the mean depends on the number of runs

in the design and the number of parameters in the field: it is not under the

direct control of the experimenter.

This issue is important if the mean of the field is uncertain. Furthermore,

it often happens that there is an observable which is sensitive to the mean.

For example, flow in a channel may be measured at a particular reach, but

it is sensitive to all of the Manning’s n values in the channel, not just the

one at the reach. In this situation it is crucial to be able to vary the mean

of the field within a specified range, and to be able to revise this range using

28

observations.

I generalise slightly, to allow for the field to be divided into k regions,

where the mean of the field in each region is to be varied within a specified

range: this is the case in hydrocarbon reservoir simulators, where the regions

are defined by geological features such as faults. Let there be p parameters

in the field, with p� k, and let A be a non-negative k× p matrix satisfying

A1p ≤ 1p, where 1p is the p-dimensional vector of 1’s. So Aθ would typically

be the vector of regional means, with A satisfying A1p = 1p. Assume,

without loss of generality, that the range of each parameter is (0, 1), so that

the range of each Aθ must be contained in (0, 1).

For an n-run design, let X be a n× p design matrix for values of θ, and

let Z be a n × k matrix of values for Aθ. X will likely be a space-filling

design on (0, 1)n×p; Z might also be a space-filling design on (0, 1)n×k, if it

is desired to take the means to their lowest and highest possible values, but

it might also be space-filling on narrower ranges. Simple linear algebra can

be used to nudge each row of X to hit the target value from Z. If xT and zT

are the rows, then

x′ ← x− AT (AAT)−1(Ax− z), (12)

where x′ is the nudged value (premultiply by A to check that Ax′ = z). Read-

ers familiar with spatial statistics will recognise this approach as conditioning

by Kriging, see Rue and Held (2005, sec. 2.3.3).

Some of the x′ values may lie outside the parameter space (0, 1)p. This

can be fixed by transforming each element of x and z to the real line using the

Probit transformation, computing x′, and then transforming back. Although

this does not exactly ensure that Ax′ = z (the transformation being non-

linear), the main objective will have been achieved, which is to substantially

increase the range of Aθ compared to its range in a space-filling design.

In the pre-wave analysis of section 6 and in the PCPs of section 7, the

components of θ that correspond to the field should be replaced by Aθ’s.

In other words, replace p parameters with k transformed parameters, where

k � p. With any luck some observations will revise the ranges of some of the

Aθ’s. These revised ranges can be used in constructing the Z matrix for the

29

next wave, while also preserving the full range of the individual parameters.

Figures 4 and 5 show some of a 100-point Sobol sequence over 20 param-

eters, without and with the nudging. The lack of variation in the original

mean is very clear in the final column of Figure 4. This has been corrected

by the nudging, in Figure 5. It is true that the nudged design is not as beau-

tiful as the original, and that it is a bit clumpier. But the original design

is basically useless as far as varying the mean is concerned, and the effect

would be even worse for a design with fewer runs, or a field with a larger

number of components.

9 Last gasp design

There may come a time, as you approach the end of setting-up, when you

feel the urge to generate a final wave of runs that are mainly NROY. Un-

derstandably, you would like to push at the boundaries of the NROY region

from the inside. There is a simple strategy for this, which relies on you hav-

ing kept all of the runs you have done so far, including those that were NA.

Standardise the parameter values for the complete set of runs to (0, 1)p us-

ing the minimum and maximum values for each parameter. Then fill (0, 1)p

with a space-filling design. Compute the Euclidean distance between each

point in the space-filling design and each point in the complete set of runs.

Then discard all of the points in the space-filling design that are closer to

an implausible point (including NA) than to an NROY point. Then run the

ones that are left, or a space-filling subset of them, if it is too expensive to

run them all.

Figure 6 shows the result of doing a last gasp design after just one wave

of the toy problem. One thousand points were used in a space-filling design,

of which 349 were closer to an NROY run than implausible one. These were

reduced to 30 points by finding a subset with a large minimum interpoint

distance (the maximin criterion). These 30 were run, and the PCP of the

result is shown in Figure 6, on the original scale. 12 of these runs are NROY.

When added to the 26 from the sanity check and first wave, this makes a

pool of 38 sets of parameter values that are NROY. In terms of proportions,

30

θ17 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

θ18 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

θ19 ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

θ20 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

Mean

Figure 4: Bottom corner of a pairs plot for a 100-point Sobol sequence in 20
dimensions, plus the mean value (final column).

31

θ17 ●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●●

●
● ●

●

●

●

●
●

● ●

●
●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●
●●

●

●

●

●
●

●●

●
●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●
●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●
● ●

●

●

●

●
●

●●

●
●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●●

●
● ●

●

●

●

●
●

●●

●
●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

θ18 ● ●●

●

●

●●

●

● ●
●

●

●

●
●
●

●

●

●

●
●

●

●

● ●

●

●

●
●
●

● ●

●●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●●●

●

●

●●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

● ●●

●

●

●●

●

● ●
●

●

●

●
●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●

● ●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

θ19 ●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●
●

● ●

●

●

● ●

●●

●●

●

●

●●●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●●
●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●
●

●●

●

●

● ●

●●

●●

●

●

● ●●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●●
●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

θ20 ● ●●

● ●●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

0.0 0.5 1.0
0.0

0.5

1.0

Mean

Figure 5: Same as Figure 4, except after nudging the points to get better
coverage of the mean; see section 8 for details.

32

the last gasp design has 12/30 = 0.40 of NROY runs, while the sanity check

and first wave together have 26/73 ≈ 0.36 of NROY runs. The proportion

of NROY runs in any follow-up design can be made arbitrarily close to 1,

simply by shadowing existing NROY runs. The last gasp design is designed

to fill the space around the NROY runs, and therefore there is always the

possibility that some of its runs will be implausible: this is the price of a

space-filling design.

Figure 7 shows the PCP for all 103 runs. There is a small expansion to

be made at the upper end of R2, from 0.81 to 0.85. Because the last gasp

runs push at the NROY region from the inside, it is to be expected that the

parameter ranges might expand slightly. Again, it is worth reiterating that

this reduction in size of both R1 and R2 on the basis of one observable is a

good outcome.

10 Stochastic simulators

A stochastic simulator is a deterministic simulator with an additional in-

put: the seed of a numerical random number generator. Hence a stochastic

simulator can be written as the deterministic simulator

f(θ, ω0)

where ω0 is the seed. In a computer, ω0 expands out to the deterministic

sequence ω0, ω1, . . . , ωm, and so a stochastic simulator can also be written as

the deterministic simulator

f(θ, ω0, ω1, . . . , ωm).

It is the constructor of the simulator who has decided to collapse the whole

sequence of ω’s down to a single arbitrary value ω0. This must follow from her

belief that the available observations are not able to constrain the individual

ω’s in a useful way. Thus ω0 represents a source of uncertainty, but not an

opportunity for uncertainty reduction.

There are three main uses for a stochastic sequence in a simulator, all of

33

θ1 θ2 θ3 θ4 θ5

0

1

0

1

0

1

0

1

0

1

Figure 6: PCP of 30 last gasp design runs (section 9). See Figure 3 for details
of the PCP.

34

θ1 θ2 θ3 θ4 θ5

0

1

0

1

0

1

0

1

0

1

Figure 7: PCP for all 103 runs, combining the runs in Figures 3 and 6.

35

which can be exemplified in a dyamical simulator for x(t),

dx = ft(x; θ) dt

in its deterministic form. First, the system might include a high-dimensional

process that is best captured by a stochastic process. In a climate simulator,

for example, this might be the effect of forcings such as volcanism or solar

insolation; in hydrology it might be precipitation on the catchment, at the

pixel scale. This high-dimensional process can be added to the deterministic

form of the simulator as

dx = ft(x; θ) dt+ τ dξ (13)

where ξ is a standardised stochastic process. Its scale τ can be treated as an

additional parameter, or it can be specified if the properties of the process

are known.

Second, the stochastic sequence can provide a more nuanced treatment

of structural uncertainty. The form would be the same as (13), although in

this case τ dξ would be the correction from the deterministic simulator value

x(t+ dt) = x(t) + ft(x; θ) dt

to the system value. In this case τ is more likely to be unknown, and treated

as an additional parameter, and ξ might also be a more complex process than

simple Brownian motion. Penland (2007) gives a more detailed account of

this approach, while Crucifix and Rougier (2009) is an implementation for a

low-order simulator of ice-ages (see also Rougier, 2013). In this use, the value

σ2
str,j in (2) can be set to zero, as it will be replaced by the value described

below.

Third, a stochastic initial condition plus a spin-up can be used to initialise

a deterministic dynamical simulator with a stochastic x0, particularly in a

simulator with sensitive dependence on initial conditions.

When a stochastic differential equation is solved numerically, for example

using a stochastic predictor-corrector scheme (see Burrage et al., 2004), the

36

result is one replication. Averaging the simulator observables over r replica-

tions, involving r different values for ω0, gives the sample mean vector ȳ(θ)

and the sample variance matrix S(θ). These are estimates of the true values

(no scare quotes), which could be determined to arbitrary precision with an

unlimited number of replications.

For computing implausibility, yj(θ) in (2) needs to be replaced by ȳj(θ),

and the variance σ2
j needs to include the additional term Sjj(θ)(1 + 1/r)

if there are r replicates. To understand this additional term, imagine that

a separate very accurate estimate of the variance were available, say T (θ).

If the expectation of yj(θ) is used in the numerator of (2), then σ2
j should

include Tjj(θ) in the denominator, to account for the extra uncertainty from

the stochastic term. But if the expectation in the numerator is replaced by

the sample mean ȳj(θ), then there is an additional source of uncertainty,

which would give Tjj(θ) + Tjj(θ)/r in the denominator. If we do not have

T (θ) then it must be replaced by S(θ), and we end up with Sjj(θ)(1 + 1/r).

Of course, the extra 1/r may not matter, given all of the other terms in σ2
j .

With small numbers of replicates it makes sense to use a smoothed esti-

mate for S(θ), such as a pooled estimate over a set of similar observables. A

pilot study at the start of the experiment might show that S(θ) is relatively

insensitive to θ (in terms of its contribution to the σ2
j ’s), in which case pool-

ing over different values of θ is also possible. If this pooled estimate is T ,

then the additional term in σ2
j is Tjj(1 + 1/r).

Rougier and Goldstein (2014) consider a related situation which arises in

deterministic dynamical simulators with attractors, such as climate simula-

tors. In this case dimensional reduction and time-series methods could be

used to summarise the attractor in terms of a ȳ(θ) and S(θ), even though

the simulator itself is deterministic.

11 Emulators

What happens if the number of runs in a wave exceeds the budget of CPU

cycles or time? An emulator offers a partial solution. An emulator is a

statistical model of the simulator, and the idea is to use as many runs as

37

you can afford (in a space-filling design) to build the emulator for the chosen

observables, and then use the emulator in place of the simulator to compute

the implausibility. The use of emulators for history matching is described in

Vernon et al. (2010).

The key thing to appreciate is that building an emulator is usually an act

of desperation. The simulator observables are likely to be a more complex

function of θ than an emulator can reasonably represent, and the limited

number of runs cannot adequately represent the complexity of the simulator.

In this situation, the advantage of a statistical emulator over a less-statistical

approach (such as a neural network) is that it attempts to represent its

uncertainty about the simulator output at θ. Thus the emulator predicts the

observable yj(θ) in terms of an expectation µj(θ) and a variance Σjj(θ). For

simplicity, I will assume that the simulator is deterministic. Then µj(θ) is an

interpolator of the runs in a neighbourhood of θ, and Σjj(θ) is the expected

squared interpolation error. Emulators also extrapolate outside the convex

hull of the runs, although Σjj(θ) is less reliable when extrapolating.

The form of µ and Σ are learnt from the available runs, typically after

removing legacy runs which lie outside the current R, although some on the

edge might be retained to reduce extrapolation. Emulators built by condi-

tioning Gaussian processes are consistent in the sense that if the parameter

value θ has been run, then µ(θ′)→ f(θ) and Σ(θ′)→ 0 as θ′ → θ. This is a

very attractive property, if the simulator is a smooth function of the parame-

ters. Gaussian process are described in Rasmussen and Williams (2006) and

Forrester et al. (2008). Software for Gaussian process emulation is provided

by Roustant et al. (2012). Rougier (2008) describes a tractable multivariate

gaussian process emulator, and Rougier et al. (2009a) illustrate some of the

issues that arise when emulating a large and complex simulator.

For computing implausibility, yj(θ) in (2) needs to be replaced by µj(θ),

and the variance σ2
j needs to include the additional term Σjj(θ). The presence

of Σjj(θ) flattens the implausibility surface and enlarges the NROY region,

compared to the case where the simulator can be run directly. On the other

hand, the emulator µ and Σ are very fast to evaluate, and this means that

the projection operation from IJ(θ) to IJ(θk) can be done explicitly, rather

38

than approximately using a thick slice through the runs, as was described in

section 7. So the PCP for an emulator can have thousands of lines, if the

emulator is used to evaluate implausibility on a high-resolution space-filling

design in the parameter space.

With a well-built emulator we have, in effect, an accurate determination

of a superset of the NROY region, compared to an inaccurate determination

of the actual NROY region. In the best possible outcome the emulator pre-

diction error Σjj is small across the parameter space (relative to the other

terms in the σj’s), and then an emulator improves on the outcome from using

the runs directly, giving an accurate determination of the NROY region. But

this must be set against the cost of building and checking the emulator for

the observables in J , which is not (yet) an automated process, since there

are many subjective and influential choices to be made (see, e.g., Rougier

et al., 2009a). An emulator is a complex statistical model, and constructing

an emulator is a task for a statistician, working in conjunction with system

experts.

Acknowledgements

The list of people who have helped me to develop my understanding of

computer experiments would stretch to several pages—if I could remember

everyone! But I cannot not mention my former colleagues at Durham (UK),

notably Peter Craig, Michael Goldstein, and Allan Seheult, and the ‘new

generation’ of history matchers, notably Ian Vernon and Daniel Williamson.

I must also mention Tamsin Edwards, who has been an exemplary collab-

orator on several very challenging computer experiments. For this paper I

would like to thank Keith Beven in particular for his perceptive comments

on a previous draft, and also for the many discussions we have had about the

intersection of statistics and environmental modelling; I must also absolve

him of some of the views expressed here. This work was supported by the

Natural Environment Research Council (NERC) funded Consortium on Risk

in the Environment: Diagnostics, Integration, Benchmarking, Learning and

Elicitation (CREDIBLE); grant number NE/J017450/1.

39

A Glossary

Active parameters Those parameters whose values are the main determi-

nants of the value of a specified output/observable.

Boundary values Fixed features of the system which are an input to the

simulator.

Calibration Probabilistic conditioning of the parameters (and other inputs)

on observations.

Diary management problem (DMP) Setting-up a simulator is about mak-

ing the best use of your time, as well as your computing resources.

Emulator A statistical model of the simulator, constructed from an ensem-

ble of runs.

Forcing Variable (typically in time) features of the system which are an

input to the simulator.

History matching Proceeding by ruling out regions of the parameter space

according to the disagreement between the simulator observables and

the observations.

Implausible A parameter value for which a simulator observable is too far

away from the corresponding observation.

Inputs Forcing, boundary, parameters, and initial values, all requiring to

be specified before the simulator will run.

Legacy runs Runs from previous waves whose parameter values are no

longer in the current parameter ranges.

Model Reserved for the respresentation of the system, on which the simu-

lator is based.

Non-behavioural Parameter values for which the simulator output is in-

consistent with our understanding of system behaviour. Sufficient for

implausible.

40

NROY Not Ruled Out Yet, of a point in the parameter space; a point with

a currently low implausibility.

Observables Known functions of the simulator outputs which correspond

to operationally-defined system values.

Observations Measured system quantities corresponding to observables.

Outputs The values produced by the simulator for specified inputs.

Parameters Ajustable coefficients in the simulator which tend to corre-

spond to non-measurable aspects of the system.

Replications Multiple runs of a stochastic simulator at the same input

values (by changing the value of the random seed).

Representation error Incommensurability between the simulator observ-

ables and the observations.

Setting-up Identifying the key parameters, and setting/adjusting their ranges.

The subject of this paper.

Simulator The computer code which maps inputs into outputs. If two runs

of the simulator at the same inputs do not necessarily produce the same

outputs, the simulator is ‘stochastic’, otherwise it is ‘deterministic’.

Spin up Running a dynamical simulator from an earlier starting point in

order to replace the choice of initial value with a less non-behavioural

one.

Sticky run A run that takes a long time to complete, often because of

adaptive time-stepping in a dynamical simulator.

Structural error The mismatch between the simulator outputs and the

system values that cannot be tuned away given knowledge of forcing,

boundary, and initial values.

System The process under study.

41

Tuning Iteratively adjusting the parameters (and possibly other inputs) to

improve the agreement between the simulator observables and the ob-

servations.

Wave One iteration of the process of running the simulator multiple times,

and then analysing the results in terms of revising the parameter space.

References

K.J. Beven, 2009. Environmental Modelling; An Uncertain Future. Rout-
ledge, Abingdon, Oxon, UK.

K. Burrage, P.M. Burrage, and T. Tian, 2004. Numerical methods for strong
solutions of stochastic differential equations: An overview. Proceedings of
the Royal Society of London, Series A, 460, 373–402.

G. Casella and R.L. Berger, 2002. Statistical Inference. Pacific Grove, CA:
Duxbury, 2nd edition.

D.R. Cox and D.V. Hinkley, 1974. Theoretical Statistics. London: Chapman
and Hall.

P.S. Craig, M. Goldstein, A.H. Seheult, and J.A. Smith, 1996. Bayes linear
strategies for matching hydrocarbon reservoir history. In J.M. Bernado,
J.O. Berger, A.P. Dawid, and A.F.M. Smith, editors, Bayesian Statistics
5, pages 69–95. Oxford: Clarendon Press.

P.S. Craig, M. Goldstein, A.H. Seheult, and J.A. Smith, 1997. Pressure
matching for hydrocarbon reservoirs: A case study in the use of Bayes Lin-
ear strategies for large computer experiments. In C. Gatsonis, J.S. Hodges,
R.E. Kass, R. McCulloch, P. Rossi, and N.D. Singpurwalla, editors, Case
Studies in Bayesian Statistics III, pages 37–87. New York: Springer-Verlag.
With discussion.

M. Crucifix and J.C. Rougier, 2009. On the use of simple dynamical systems
for climate predictions: A Bayesian prediction of the next glacial inception.
The European Physics Journal – Special Topics, 174(1), 11–31.

N. Edwards, D. Cameron, and J.C. Rougier, 2011. Precalibrating an inter-
mediate complexity climate model. Climate Dynamics, 37, 1469–1482.

42

P.W. Fitzgerald, J.L. Bamber, J. Ridley, and J.C. Rougier, 2011. Exploration
of parametric uncertainty in a surface mass balance model applied to the
Greenland ice sheet. Journal of Geophysical Research, 117, F01021.

A.I.J. Forrester, A. Sóbester, and A.J. Keane, 2008. Engineering Design via
Surrogate Modelling: A Practical Guide. Chichester, UK: John Wiley &
Sons.

M. Goldstein and J.C. Rougier, 2004. Probabilistic formulations for trans-
ferring inferences from mathematical models to physical systems. SIAM
Journal on Scientific Computing, 26(2), 467–487.

M. Goldstein and J.C. Rougier, 2009. Reified Bayesian modelling and infer-
ence for physical systems. Journal of Statistical Planning and Inference,
139, 1221–1239. With discussion, pp. 1243–1256.

N.M. Hunter, P.D. Bates, M.S. Horritt, and M.D. Wilson, 2007. Simple
spatially-distributed models for predicting flood inundation: A review. Ge-
omorphology, 90, 208–225.

M. Maggioni et al., 2013. A new experimental snow avalanche test site at
Seehore peak in Aosta Valley (NW Italian Alps)–part I: Conception and
logistics. Cold Regions Science and Technology, 85, 175–182.

J. Murphy, R. Clark, M. Collins, C. Jackson, M. Rodwell, J.C. Rougier,
B. Sanderson, D. Sexton, and T. Yokohata. Perturbed parameter en-
sembles as a tool for sampling model uncertainties and making cli-
mate projections. In Proceedings of ECMWF Workshop on Model
Uncertainty, 20-24 June 2011, pages 183–208, 2011. Available on-
line, http://www.ecmwf.int/publications/library/ecpublications/
_pdf/workshop/2011/Model_uncertainty/Murphy.pdf.

J.C. Neal, P.D. Bates, T.J. Fewtrell, N.M. Hunter, M.D. Wilson, and M.S.
Horritt, 2009. Distributed whole city water level measurements from the
Carlisle 2005 urban flood event and comparison with hydraulic model sim-
ulations. Journal of Hydrology, 368, 42–55.

C. Penland, 2007. Stochastic linear models of nonlinear geosystems. In A.A.
Tsonis and J.B. Elsner, editors, Nonlinear Dynamics in Geosciences, pages
485–515. New York: Springer.

F. Pianosi et al., 2015. Sensitivity analysis of environmental models: A
systematic review with practical workflow. In submission.

43

F. Pukelsheim, 1994. The three sigma rule. The American Statistician, 48,
88–91.

R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2013.

C.E. Rasmussen and C.K.I. Williams, 2006. Gaussian Processes for Machine
Learning. MIT Press, Cambridge MA, USA. Available online at http:

//www.GaussianProcess.org/gpml/.

C.P. Robert and G. Casella, 2004. Monte Carlo Statistical Methods. Springer,
New York NY, 2nd edition.

J.C. Rougier, 2007. Probabilistic inference for future climate using an en-
semble of climate model evaluations. Climatic Change, 81, 247–264.

J.C. Rougier, 2008. Efficient emulators for multivariate deterministic func-
tions. Journal of Computational and Graphical Statistics, 17(4), 827–843.

J.C. Rougier, 2013. ‘Intractable and unsolved’: Some thoughts on statistical
data assimilation with uncertain static parameters. Phil. Trans. R. Soc. A,
371, 20120297.

J.C. Rougier and K.J. Beven, 2013. Model and data limitations: The sources
and implications of epistemic uncertainty. In Rougier et al. (2013b), chap-
ter 3.

J.C. Rougier and M. Goldstein, 2014. Climate simulators and climate pro-
jections. Annual Review of Statistics and Its Application, 1, 103–123.

J.C. Rougier, M. Goldstein, and L. House, 2013a. Second-order exchangeabil-
ity analysis for multi-model ensembles. Journal of the American Statistical
Association, 108, 852–863.

J.C. Rougier, S. Guillas, A. Maute, and A. Richmond, 2009a. Expert knowl-
edge and multivariate emulation: The Thermosphere-Ionosphere Electro-
dynamics General Circulation Model (TIE-GCM). Technometrics, 51(4),
414–424.

J.C. Rougier and M. Kern, 2010. Predicting snow velocity in large chute
flows under different environmental conditions. Applied Statistics, 59(5),
737–760.

44

J.C. Rougier, D.M.H. Sexton, J.M. Murphy, and D. Stainforth, 2009b.
Analysing the climate sensitivity of the HadSM3 climate model using
ensembles from different but related experiments. Journal of Climate, 22
(13), 3540–3557.

J.C. Rougier, R.S.J. Sparks, and K.V. Cashman, 2015. Global recording
rates for large eruptions. In submission, available from the first author,
email j.c.rougier@bristol.ac.uk.

J.C. Rougier, R.S.J. Sparks, and L.J. Hill, editors, 2013b. Risk and Un-
certainty Assessment for Natural Hazards. Cambridge University Press,
Cambridge, UK.

O. Roustant, D. Ginsbourger, and Y. Deville, 2012. DiceKriging, DiceOptim:
Two R packages for the analysis of computer experiments by Kriging-based
metamodelling and optimization. Journal of Statistical Software, 51(1),
1–55. http://www.jstatsoft.org/v51/i01/.

H. Rue and L. Held, 2005. Gaussian Markov Random Fields: Theory and
Applications, volume 104 of Monographs on Statistics and Applied Proba-
bility. Chapman & Hall/CRC, Boca Raton FL, USA.

F. Tiefenbacher and M. Kern, 2004. Experimental devices to determine snow
avalanche basal friction and velocity profiles. Cold Regions Science and
Technology, 38, 17–30.

W.N. Venables and B.D. Ripley, 2010. Modern Applied Statistics with S.
Springer, New York NY, USA, fourth edition.

I. Vernon, M. Goldstein, and R.G. Bower, 2010. Galaxy formation: A
Bayesian uncertainty analysis. Bayesian Analysis, 5(4), 619–670.

A. Zammit-Mangion, J.C. Rougier, J. Bamber, and N. Schön, 2014. Resolv-
ing the Antarctic contribution to sea-level rise: A hierarchical modelling
framework. Environmetrics, 25, 245–264.

45

