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1.0 Some preliminary observations

Currently, the dominant approach to statistical inference is to
start with probability as the primitive notion, implemented, in its
most abstract form, in terms of a ‘probability triple’: an atomic set
usually denoted W, a ‘sigma field’ of sets of W, often denoted F,
and a measure on F, usually denoted P:

Probability triple =
�

W,F, P
 

;

see, for example, the opening chapters of Grimmett and Stirzaker
(2001) or Rosenthal (2006). This starting-point enables probability
theory to bed itself in the rich soil of measure theory. Treatments of
probability from this starting-point are Kingman and Taylor (1966),
Billingsley (1979), or Williams (1991). A comprehensive treatment of
statistical theory from this starting-point is Schervish (1995).

But for me, this starting-point interposes too much distance be-
tween the practice of reasoning about uncertainty, and formalising
that reasoning in a useful calculus of uncertainty. Let us accept, as
a fact established beyond doubt, that humans are poor at reasoning
about uncertainty. In fact we can take this as a corollary of the more
general fact that humans are bad at reasoning, as discussed, for
example, in Kahneman (2011). And let us accept also that mathe-
matics can help in this respect, by automating features of reasoning
that we recognise as self-evident (see, e.g., Ellenberg, 2014). And
finally, let us appreciate that statistical inference is not performed
in a vacuum, but in the context of people needing to make choices
under uncertainty, as captured by our mission statement, Helping
people to make better choices under uncertainty. How does this shape a
useful calculus of uncertainty?

I find the following narrative helpful, based on the discussion
in Smith (2010, ch. 1). Some stakeholders with a common interest
get together and hire a risk manager to make decisions on their be-
half. She in turn hires a statistician to help her in reasoning under
uncertainty, as well as other domain experts (e.g. engineers). She
is answerable to an auditor, who is also hired by the stakeholders.
Effectively, she needs to be able to convince the auditor that the
choices she makes are in the best interests of the stakeholders. In a
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nutshell, her choices must be transparent and defensible. I think these
should be the hallmarks of a good statistical inference, and the
yardstick by which the statistician’s contribution is judged. While
in many applications one or more of these players is absent, and
the statistician may be his own client, I think the same standards
should prevail. And this leads me to the conclusion that uncertain
quantities and our beliefs about them should be the primitives of an
uncertainty calculus, if it aspires to being more than a mathematical
edifice.

This is quite contrary to the starting-point of probability as the
primitive notion, for two reasons. First, if probability is primitive
then a random quantity is a derived concept, constructed on top
of a specified probability triple.1 Second, ‘probability as primitive’ 1 It is a specified measurable function

of W.presupposes too much: that our beliefs about uncertain quanti-
ties extend all the way to specifying probability distributions. In
practice, we humans struggle to quantify our beliefs about inter-
esting and decision-relevant quantities, and we may find that we
have only a very limited appreciation of our uncertainty about,
say, sea-level rise by 2100. Neither of these objections applies if
we take uncertain quantities as primitive, and ‘expectation’ as the
elementary quantification of belief.

This chapter and the two that follow expound this approach, of
taking random quantities and their expectations as the starting-
point of a calculus of uncertainty: ‘expectation as primitive’. This
chapter defines expectation (and probability) and identifies some of
its properties. Chapter 2 considers the task of statistical inference,
and the role of data. Chapter 3 defines conditional expectation
(and conditional probability) and explores its relationship with
‘unconditional’ expectation. All of the standard results of the prob-
ability calculus are recovered, although I contend that they acquire
meaning through the interpretation of expectation and conditional
expectation as extra-mathematical constructs.2 2 As I explain in Sec. 3.1, I prefer

‘hypothetical’ to ‘conditional’.Although these three chapters represent my own construction
of expectation and statistical inference, they are heavily influenced
by much deeper thinkers than myself. The most famous and influ-
ential proponent of ‘expectation as primitive’ was Bruno de Finetti
(1937, 1972, 1974/75), whose work strongly influenced Lad (1996)
and Goldstein and Wooff (2007). In a related strand, Walley (1991)
provides a detailed assessment of how we might reason with only
a limited set of beliefs; Troffaes and de Cooman (2014) is a recent
contribution to the same question. The celebrated book of Whittle
(2000) is also relevent. This might be thought of as a probabilist’s in-
terpretation of ‘expectation as primitive’, ignoring vexed questions
of interpretation, but full of elegant and useful results.

1.1 Random quantities and their realms

My starting-point is a random quantity. A random quantity is a set
of instructions which, if followed, will yield a real value; this is
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an operational definition. Experience suggests that thinking about
random quantities is already hard enough, without having to factor
in ambiguitities of definition—hence my insistence on operational
definitions. Real-valued functions of random quantities are also
random quantities.

It is conventional in statistics to represent random quantities us-
ing capital letters from the end of the alphabet, such as X, Y, and Z,
and, where more quantities are required, using ornaments such as
subscripts and primes (e.g. Xi, Y0). Functions of random quantities
are expressed directly. Thus XY represents the random quantity
that arises when the instructions X and Y are both performed, and
the resulting two values are multiplied together. Representative
values of random quantities are denoted with small letters. I will
write ‘X ! x’ to represent ‘instructions X were performed and the
value x was the result’.

The realm of a random quantity is the set of possible values
it might take; this is implicit in the instructions. I denote this
with a curly capital letter, such as X for the realm of X, where
X is always a subset of R.3 I write a collection of random quan- 3 I have taken the word ‘realm’ from

Lad (1996); ‘range’ is also used,
although this might better be reserved
for the lower and upper limits of the
realm.

tities as X := (X1, . . . , Xm), and their joint realm as X, where
x := (x1, . . . , xm) is an element of X, and

X ⇢ X1 ⇥ · · ·⇥Xm ⇢ Rm.

Figure 1.1 shows some examples of realms for X  (X1, X2). A
random quantity in which the realm contains only a single element
is a constant, and typically denoted by a small letter from the start
of the alphabet, such as a, b, or c.

Values for X1

Va
lu

es
fo

r
X

2

A product realm

Values for X1

Va
lu

es
fo

r
X

2

Almost a product realm

Values for X1

Va
lu

es
fo

r
X

2

Something else entirely

Figure 1.1: Some examples of the
realm of X  (X1, X2). In each
case the realm of X1 is the union
of the projection of the points onto
the horizontal axis. Similarly for X2
(vertical axis).

Operationally-defined random quantities always have finite
realms and, from this point of view, there is no obligation to de-
velop a statistical theory of reasoning about uncertainty for the
more general cases. This is an important issue, because theories
of reasoning with non-finite realms are a lot more complicated.
Debabrata Basu summarises a viewpoint held by many statisticians.

The author holds firmly to the view that this contingent and cogni-
tive universe of ours is in reality only finite and, therefore, discrete.
In this essay we steer clear of the logical quick sands of ‘infinity’ and
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the ‘infinitesimal’. Infinite and continuous models will be used in the
sequel, but they are to be looked upon as mere approximations to the
finite realities. (Basu, 1975, footnote, p. 4)

For similar sentiments, see, e.g., Hacking (1965, ch. 5), Berger and
Wolpert (1984, sec. 3.4), Cox (2006, sec. 1.6), or Aitkin (2010, ch. 1).
This is not just statistical parochialism. David Hilbert, one of the
great mathematicians and a huge admirer of Cantor’s work on
non-finite sets, stated

If we pay close attention, we find that the literature of mathematics is
replete with absurdities and inanities, which can usually be blamed
on the infinite.

and later in the same essay,

[T]he infinite is not to be found anywhere in reality, no matter what
experiences and observations or what kind of science we may adduce.
Could it be, then, that thinking about objects is so unlike the events
involving objects and that it proceeds so differently, so apart from
reality? (Hilbert, 1926, p. 370 and p. 376 in the English translation)

The complications and paradoxes of the infinite are well-summarised
in Vilenkin (1995).4 I reckon the task of the statistician is hard 4 Wallace (2003) is also worth a look.

David Foster Wallace was a tremen-
dous writer of fiction and essays, but
this book displays the limitations of
his literary style when writing about
highly technical matters—also one has
to acknowledge that he did not have
sufficient mastery of his material.

enough, without having to grapple with an abstraction which has
so consistently perplexed and bamboozled.

However, as Kadane (2011, ch. 3) discusses, it is convenient to
be able to work with non-finite and unbounded realms, to avoid the
need to make an explicit truncation. Likewise, it is convenient to
work with infinite sequences rather than long but finite sequences.
Finally, for the purposes of statistical modelling we often introduce
auxiliary random variables (e.g. statistical parameters) and these
are conveniently represented with non-finite and unbounded
realms.

So I will presume the following principle:

Definition 1.1 (Principle of Excluding Pathologies, PEP).

Extensions to non-finite realms are made for the convenience of the statisti-
cian; it is the statistician’s responsibility to ensure that such extensions do
not introduce pathologies that are not present in the finite realm.

These notes consider random quantities with finite realms. But
I have taken care to ensure that the results also apply, with minor
amendments, in the more convenient (but less realistic) case of
non-finite and even non-countable realms.

1.2 Introduction to expectation

Let X be a random quantity—under what conditions might I be
said to ‘know’ X? Philosophers have developed a working defini-
tion for knowledge: knowledge is ‘justified true belief’ (Ladyman,
2002, pp. 5–6). So I would know X if I had carried out the instruc-
tions specified by X myself, or if they had been carried out by some-
one I trusted. In other circumstances—for example instructions
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that take place in the future—I have belief, but not knowledge.5 5 I will consistently use ‘belief’ in
favour of the of the more sober-
sounding ‘judgement’, to honour this
working definition of knowledge.

Expectations and the expectations calculus are a way of quantifying
and organising these beliefs, so that they hold together sensibly.

For concreteness, let X be sea-level rise by 2100, suitably opera-
tionalised.6 This is a random quantity about which no one currently 6 Actually, it is an interesting challenge

to operationalise this quantity.has knowledge, and about which beliefs vary widely from person
to person. When I consider my own beliefs about sea-level rise, I
find I do not have a single value in mind. Instead, I have values,
more or less nebulous, for quantities that I consider to be related
to sea-level rise. So I believe, for example, that sea-level rise over
the last century is of the order of 10’s of centimetres. That the
Greenland icesheet and the Western Antarctic icesheet each contain
enough ice to raise sea-level globally by between 6 and 7 metres.
But that simulations suggest that they will not melt substantially by
2100. But I am cautious about the value of simulations of complex
environmental systems. And a lot more things too: about people I
know who work in this field, the degree of group-think in the field
as a whole, the pressures of doing science in a field related to the ef-
fects of climate change, and so on. I do not have well-formed beliefs
about sea-level rise, but it turns out that I have lots of ill-formed
beliefs about things related to sea-level rise.

And if I wanted to I could easily acquire more beliefs: for ex-
ample I could ask a glaciologist for her opinion. But once this was
given, this would simply represent more related beliefs (my beliefs
about her beliefs) to incorporate into my beliefs. And she will be
facing exactly the same challenge as me, albeit with a richer set of
beliefs about things related to sea-level rise.

I do not think there is any formal way to model the mental
processes by which this collection of ill-formed beliefs about things
related to sea-level rise get turned into a quantitative expression
of my beliefs about sea-level rise. Ultimately, though, I can often
come up with some values, even though I cannot describe their
provenence. For sea-level rise by 2100, 80 cm from today seems
about right to me. I could go further, and provide a range: unlikely
to be less than 40 cm, or more than 350 cm, perhaps. These are
unashamedly guesses, representing my ill-defined synthesis of
my beliefs about things related to sea-level rise.7 Were you the 7 And also representing more general

aspects of my personality, such as risk
aversion and optimism.

Mayor of London, you would be well-advised to consult someone
who knows more about sea-level rise than I do. But you should
not think that she has a better method for turning her beliefs into
quantities than I do. Rather, she starts with a richer set of beliefs.

These considerations lead me to my first informal definition of
an expectation.

Definition 1.2 (Expectation, informal).

Let X be a random quantity. My expectation for X, denoted E(X), is a
sensible guess for X which is likely to be wrong.

We will need to define ‘sensible’ in a way that is generally accept-
able, in order for you to understand the conditions under which my
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expectation is formed (Sec. 1.3). I am using ‘guess’ to describe my
ill-defined synthesis of my beliefs related to X. And I am stressing
that it is common knowledge that my guess is likely to be wrong.
I think this last point is important, because experts (e.g. glaciolo-
gists) may be reluctant to provide wrong guesses, preferring to say
nothing at all. So let’s get the wrongness out in the open. As the
Mayor of London, I would much rather have the wrong guess of a
glaciologist than the wrong guess of a statistician.

Now I am able to provide an informal definition of statistical
inference. This definition is in the same vein as L.J. Savage’s def-
inition of ‘statistics’: “quantitative thinking about uncertainty as
it affects scientific and other investigations” (Savage, 1960, p. 541),
although adapted to the use of expectation as primitive, and to the
limitations of our beliefs.

Definition 1.3 (Statistical inference, informal).

Statistical inference is checking that my current set of expectations is
sensible, and extending this set to expectations of other random quantities.

Chapter 2 discusses statistical inference in detail. One point is
worth anticipating here. I may well discover that if X is some ran-
dom quantity for which I cannot provide an expectation directly,
then my E(X) based on my current set of expectations is not con-
strained to a single value, but may be an interval of possible values:
I would say I was ‘undecided’ about E(X). The notable absence of
‘undecided’ in modern statistical inference is intriguing, and will be
investigated further, below (Chapter 4).

There is no mention in Def. 1.3 of data, which is because in-
ference can proceed without data. But, obviously, data are often
available. They require no special treatment, though. The datum
Y ! y is simply a special type of belief: the knowledge (i.e. justified
true belief) that the operation Y was carried out and the vaue y was
the result. This is discussed in Sec. 2.4.

1.3 Definition and simple implications

The axioms given below (in Def. 1.4) are the standard axioms of
expectation. In this respect they are the ‘what’ rather than the ‘why’.
For the ‘why’ I refer back to the previous section, and the informal
definition of expectation in Def. 1.2. I interpret these axioms as a
minimal characterisation of ‘sensible’.

Definition 1.4 (Axioms of expectation).
Let X 2 X and Y 2 Y be random quantities with finite realms. Then the
expectations of X and Y must satisfy the following properties:

0. E(X) 2 R exists and is unique, (existence)

1. E(X) � minX, (lower boundedness)

2. E(X + Y) = E(X) + E(Y). (additivity)
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You can see that this sets the bar on ‘sensible’ quite low—it is
continuing a source of amazement to me that we can do so much
with such simple beginnings. The ‘existence’ axiom does not insist
that I know my expectation for every random quantity, but only
that I acknowedge that it exists as a (real-valued) number and is
unique. I use the word undecided to describe expectations that I am
not currently able to quantify.

‘Lower-boundedness’ is an extremely weak condition, given that
X ought to be inferrable from X itself, and have nothing to do with
my particular beliefs about things related to X. For example, if X
is the weight of this orange, then minX must be 0 g, to represent
the physical impossibility of an orange with negative weight. I
might believe that the weight cannot be less than 50 g, but lower
boundedness only requires that my E(X) is non-negative.

‘Additivity’ is a bit more subtle. I think we would all agree that
if X and Y were the weights of two oranges, then anything other
than E(X + Y) = E(X) + E(Y) would be not-sensible. But there
are more interesting situations. Consider the following example,
following Ellenberg (2014, ch. 11).8 A man has seven children, and 8 This book is highly recommended,

and would make an excellent Christ-
mas present.

is planning to leave his £1m fortune to exactly one, the choice to
be decided by the day of the week on which he dies. Let Xi be the
amount in £m received by the ith child. The most likely outcome
for each child is Xi ! 0. And yet X1 + · · ·+ X7 ! 1 with certainty.
And so to interpret E(Xi) as ‘most likely’ will not satisfy the addi-
tivity axiom. Most people in this case would take E(Xi)  1/7 for
each i, using a symmetry argument, and this would satisfy all three
axioms. Mind you, E(X1)  1 and E(X2)  · · ·  E(X7)  0
would also satisfy all three axioms.

The asymmetric expectations in the seven children example il-
lustrates the point that the bar on ‘sensible’ is quite low. There is
a strong case for introducing another word to mean precisely that
the axioms are satisfied, so that ‘sensible’ does not seem misapplied.
The standard choice among Bayesian statisticians is coherent, fol-
lowing de Finetti (1974/75). From now on I will use ‘coherent’ to
describe a set of expectations satisfying Def. 1.4. In public discourse,
when my expectations matter to people other than myself, I would
use defensible to mean something more than simply coherent, in the
same way that a logician would distinguish a valid argument from
a sound one.

* * *
The axioms in Def. 1.4 have many implications. There are several

reasons for considering these implications explicitly:

1. They give us confidence in the axioms, if they seem consistent
with our interpretation of expectation.

2. They prevent us from making egregious specifications for expec-
tations.

3. They provide a quick source of results when we assume that our
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beliefs are coherent.

Here I will just pick out a few of the basic implications, which are
important enough to have names.

Theorem 1.1 (Implied by additivity alone).

1. E(0) = 0 and E(�X) = �E(X),

2. E(X1 + · · ·+ Xk) = E(X1) + · · ·+ E(Xk). (finite additivity)

3. E(aX) = a E(X). (linearity)

Proof.

1. Since 0 = 0 + 0, we have E(0) = 2 E(0) from which the result
follows. The second result follows from 0 = X + (�X).

2. Follows iteratively from X1 + · · ·+ Xk = X1 + (X2 + · · ·+ Xk).

3. Here is the proof for rational a. If i is a non-negative integer,
then E(iX) = i E(X) by the previous result. And if j is a positive
integer, then E(X) = E(jX/j) = j E(X/j) from which E(X/j) =
E(X)/j. Hence E(aX) = a E(X) whenever a is a non-negative
rational number. Extend to a < 0 using aX = |a|(�X).

The extension of the final part to real numbers is slightly subtle; see
de Finetti (1974, footnote on p. 75).

The linearity property is usually taken to subsume finite additiv-
ity, giving

E(a1X1 + · · ·+ akXk) = a1 E(X1) + · · ·+ ak E(Xk). (linearity)

This is the property that must be strengthened in the case where
there are a non-finite number of random quantities, or, which
comes to the same thing, the realm of a random quantity is non-
finite. The stronger countable additivity axiom extends finite addi-
tivity and (finite) linearity to countably-infinite sequences. This
stronger axiom is almost universally accepted, as it ought to be
according to the PEP (Def. 1.1).9 9 The deep and mysterious book by

Dubins and Savage (1965) is a notable
exception.

Here are some further implications, using both additivity and
lower-boundedness.

Theorem 1.2.

1. E(a) = a, (normalisation)

2. If X  Y, then E(X)  E(Y), (montonicity)

3. minX  E(X)  maxX (convexity)

4. |E(X)|  E(|X|). (triangle inequality)
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Proof.

1. a � a, so E(a) � a. And �a � �a, so E(�a) � �a, and then
E(�a) = �E(a) implies that E(a)  a; hence E(a) = a.

2. The minimum of the realm of Y � X is non-negative, hence
E(Y� X) � 0 which implies that E(X)  E(Y).

3. Same argument as above, as X is never greater than maxX, and
E(maxX) = maxX.

4. Same argument as above, as �|X| is never greater than X,
and X is never greater than |X|. Together these imply that
E(X)  E(|X|) and �E(X)  E(|X|), as required.

Finally in this section, we have Schwarz’s inequality, which is
proved using linearity and monotonicity.

Theorem 1.3 (Schwarz’s inequality).

{E(XY)}2  E(X2)E(Y2).

Proof. For any constant a, E{(aX + Y)2} � 0, by monotonicity.
Expanding out the square and using linearity,

E{(aX + Y)2} = a2 E(X2) + 2a E(XY) + E(Y2).

This quadratic in a cannot have two distinct real roots, because
that would indicate a negative value for the expectation, violating
monotonicity. Then it follows from the standard formula for the
roots of a quadratic10 that 10 If ax2 + bx + c = 0 then

x =
�b ±

p
b2 � 4ac

2a
.{2 E(XY)}2 � 4 E(X2)E(Y2)  0,

or {E(XY)}2  E(X2)E(Y2), as required.11

11 This proof is adapted from Williams
(1991, sec. 6.8).

Another similarly useful result is Jensen’s inequality, which
concerns the expectation of convex functions of random quantities.
This result can also be proved at this stage using linearity and
monotonicity, but only if we accept the Separating Hyperplane
Theorem. Instead, I will defer Jensen’s inequality until Sec. 2.1, at
which point I will be able to give a self-contained proof.

1.3.1* Quantities related to expectation

Here is a brief summary of other quantities that are defined in
terms of expections, and their properties. These properties follow
immediately from the axioms and are not proved.

If X is a random quantity with expectation µ, then the variance of
X is defined as

Var(X) := E{(X� µ)2},
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and often denoted s2; clearly s2 � 0 by monotonicity. Expanding
out shows that

Var(X) = E(X2)� µ2.

The square root of Var(X) is termed the standard deviation; I denote
it as Sd(X). It has the same units as X, and is often denoted as s.
Var(a + bX) = b2 Var(X), and Sd(a + bX) = b Sd(X).

If X and Y are two random quantities with expectations µ and n

then the covariance of X and Y is defined as

Cov(X, Y) := E{(X� µ)(Y� n)}.

Hence Cov(X, Y) = Cov(Y, X) and Var(X) = Cov(X, X). Expand-
ing out shows that

Cov(X, Y) = E(XY)� µn.

Cov(a + bX, c + dY) = bd Cov(X, Y), Cov(X + Y, Z) = Cov(X, Z) +
Cov(Y, Z), Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y), and, by
iteration,

Var(X1 + · · ·+ Xm) = Â
i

Var(Xi) + Â
i 6=j

Cov(Xi, Xj).

If Cov(X, Y) = 0 then X and Y are uncorrelated. If Cov(Xi, Xj) = 0
for all i 6= j then (X1, . . . , Xm) are mutually uncorrelated. In this case

Var(X1 + · · ·+ Xm) = Â
i

Var(Xi).

Hence, unlike expectation, variance is only additive for mutually
uncorrelated random quantities. Schwartz’s inequality implies that

Cov(X, Y)2  Var(X)Var(Y).

When both Sd(X) and Sd(Y) are positive, the correlation between
X and Y is defined as

Corr(X, Y) :=
Cov(X, Y)

Sd(X) Sd(Y)
.

It is unitless, and invariant to linear transformations of X and Y, i.e.

Corr(X, Y) = Corr(a + bX, c + dY),

and is often denoted r. Schwartz’s inequality implies that

�1  Corr(X, Y)  1,

with equality if and only if Y = a + bX.

1.4 Probability

1.4.1 Definitions

If expectation is primitive, then probability is just a special type of
expectation. In a nutshell, a probability is the expectation of the
indicator function of a random proposition.

You may want to consult the material on first order logic in
Sec. 1.A: in particular, the definition of a first order sentence on
p. 24. This is the basis for the following definition.
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Definition 1.5 (Random proposition).

A random proposition is a first order sentence in which one or more
constants have been replaced by random quantities.

In the simplest case, if x and y are constants then x =̇ y is a first
order sentence.12 If X and Y are random quantities, then X =̇ x and 12 The need to distinguish the symbol

‘=̇’ from ‘=’ is explained in Sec. 1.A.X =̇ Y are random propositions. The truth value of a first order
sentence is known, but the truth value of a random proposition
is uncertain, because it contains random quantities instead of
constants.

The indicator function of a first order sentence y is the function 1y

for which

1y :=

8

<

:

0 y is false

1 y is true.

In other words, the indicator function turns false into zero and
true into one. Note that the indicator function of a conjunction of
sentences is the product of the indicator functions:

1y^f = 1y · 1f.

The indicator function is used to define a probability.

Definition 1.6 (Probability).

Let Q be a random proposition. Then Pr(Q) := E(1Q).

So, continuing the example for the simplest case given above,
Pr(X =̇ x) := E(1X=̇x) and Pr(X =̇ Y) := E(1X=̇Y). These probabil-
ities are expectations of specified functions of the random quantities
X and Y.

As a more detailed illustration, if Xi is the time taken for horse i
to complete the course, then the sentence that horse i wins is

q(x) 
^

j 6=i
(xi <̇ xj);

the sentence that horse i is second is

q0(x) 
_

k 6=i

^

j 6=i,k
(xk <̇ xi) ^ (xi <̇ xj);

the sentence that horse i is first or second is

q00(x) q(x) _ q0(x)

and so on. So my probability that horse i wins is Pr{q(X)} := E{1q(X)},
and my probability that horse i is first or second is Pr{q00(X)}, and
so on.

This definition of probability might seem strange to people used
to treating probability as primitive. And so it is worth taking a
moment to check that the usual axioms of probability are satisfied.
Thus, if P and Q are random propositions:

1. Pr(P) � 0, by lower-boundedness.
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2. If P is a tautology, then 1P = 1 and Pr(P) = 1 by normalisation.

3. If P and Q are incompatible, i.e. 1P^Q = 0, then 1P_Q = 1P + 1Q,
and Pr(P _Q) = Pr(P) + Pr(Q), by linearity.

Thus all of the usual probability results apply; I will not give them
here, with the exception of the following basic but important result.

Theorem 1.4. If q(x) and q0(x) are first-order sentences and q(x) =) q0(x)

then Pr(Q)  Pr(Q0), where Q := q(X) and Q0 := q0(X).

Proof. Follows by monotonicity, because q(x) =) q0(x) implies
that 1q(x)  1q0(x).

* * *

Notation. One very useful notation helps us to express probabil-
ities of conjunctions efficiently. If {A1, . . . , Ak} is a collection of
random propositions, then define

Pr(A1, . . . , Ak) := Pr(A1 ^ · · · ^ Ak).

In other words, commas between random propositions represent
conjunctions.

1.4.2 Interpreting probability

The definition of the probability of a random proposition Q is ‘the
expectation of the indicator function of Q’. This is a mouthful, and
it does not lend itself easily to our intuition, even in cases where
we feel we have a grip on what an expectation is, because 1q(x) is
a very non-linear function of x. Therefore it is helpful to have a
more intuitive understanding of probability, which, in due course,
will help us to extend the notion to conditional probability (in
Chapter 3).

The intuition comes from betting, a commonplace activity that
everyone is aware of, even if not everyone does it. Suppose I bet p
on a random proposition Q, in order to win 0 if Q is false and 1 is
Q is true. My expected outcome for this bet is

E(1Q � p).

We say that p is my fair price for the bet exactly when my expected
outcome is 0. From the definition of Pr(Q) it follows that

Pr(Q) is my fair price for a bet that pays 0 if Q is false and 1 if Q is true.

In other words, if someone offered me a bet on Q with p < Pr(Q)

then I would think this a good bet, and if someone offered me
p > Pr(Q) I would think this a poor bet. Of course it is not neces-
sary for me actually to bet: this is just a reflection on my part. It
is like walking past a shop and seeing a washing-machine in the
window with a price displayed, and thinking “that’s cheap for a
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washing-machine”. I do not have to buy the washing-machine just
because I think it is cheap.

Confusingly, actual bets tend not to be expressed in terms of p.
Two conventions are fractional odds and decimal odds. A bookmaker
who offers you fractional odds of ‘n-to-k on’ is indicating that if you
bet n he will contribute k, with the total going to you for a win, and
him for a loss. To find p divide by n + k to reduce the value of a win
to 1, and then

p =
n

n + k
.

When p < 0.5 the offer is expressed as ‘n-to-k against’ or just
‘n-to-k’, for which

1� p =
n

n + k
or p =

k
n + k

.

Odds of 1-to-1 are termed ‘evens’. Fractional odds are used by
bookmakers in the UK and Ireland.

With decimal odds, d � 1 represents the amount you get back for
a win, including your bet, if your bet is 1. Again, dividing by d to
reduce the value of a win to 1 gives

p =
1
d

.

Equating p in the two expressions shows that

d = 1 +
n
k

for fractional odds of n-to-k.13 Decimal odds are used on betting 13 I.e. n-to-k against, also written as n/k
or n : k. My way of turning n-to-k into
p is to take the reciprocal of 1 + n/k.
Thus 6-to-1 becomes 1/7, or 0.14.

exchanges.
This digression into odds is just to make the point that some-

times someone will offer you a p for some Q. You can decide
whether or not it is a good bet, and in doing so you are ascertaining
a lower or an upper bound on your Pr(Q). Generally, however, no
one is offering a bet on the particular Q’s that interest you, and the
betting analogy is just a device to help you to quantify your Pr(Q).
Having said that, climate scientists have offered each other bets in
public as a demonstration of their beliefs about the probability of
climate change.14 In these cases the negotiation of the bet is pre- 14 E.g. Dr James Annan, see http://en.

wikipedia.org/wiki/James_Annan.cisely the process of operationalising the notion of climate change,
and it is interesting that this process can be protracted.

1.4.3 Simple inequalities

There are some simple inequalities linking expectations and proba-
bilities, and these can be useful for providing bounds on probabili-
ties, or for specifying beliefs about a random quantity that includes
both probabilities of propositions about X and expectations of
functions of X. The starting-point for many of these is Markov’s
inequality.

Theorem 1.5 (Markov’s inequality).
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If X is non-negative and a > 0 then

Pr(X �̇ a)  E(X)
a

.

a

a

x

a1x�̇a

Figure 1.2: Markov’s inequality.

Proof. Follows from monotonicity and linearity, because

a1X�̇a  X,

see Figure 1.2. Taking expectations of both sides and rearranging
gives the result.

One immediate generalisation of Markov’s inequality is

Pr(X �̇ a)  E{g(X)}
g(a)

whenever g is a non-negative increasing function: this follows
because g(X) is non-negative and because X �̇ a () g(X) �̇ g(a).
A useful application of this generalisation is

Pr(|X| �̇ a)  min
r>0

E{|X|r}
|a|r

which follows because |x|r is a non-negative increasing function of
|x| for every positive r. A special case is Chebyshev’s inequality. This
is usually expressed in terms of µ := E(X) and s2 := E{(X � µ)2}
(see Sec. 1.3.1). Setting r  2 then gives

Pr(|X� µ| �̇ a)  s2

a2 (1.1)

for a > 0.

1.5 The Fundamental Theorem of Prevision

The Fundamental Theorem of Prevision (FTP) is due to Bruno
de Finetti (see de Finetti, 1974, sec. 3.10).15 Its epithet ‘fundamental’ 15 I am following Lad (1996, ch. 2) in

using this particular name.is well-deserved, because it provides a complete characterisation
of the set of expectations that are consistent with the axioms of
expectation given in Def. 1.4. It features heavily in Sec. 2.1.

The following theorem uses the (s� 1)-dimensional unit simplex,
defined as the set

Ss�1 :=
n

p 2 Rs : pj � 0 and Â j pj = 1
o

. (1.2)

This set occurs repeatly below; Figure 1.3 illustrates S2. Note the
standard mathematical convention that we denote a set by its
dimension and not by the space in which it is embedded; thus S2 is
a 2D-triangle embedded in R3.

Not done yet!

Figure 1.3: The unit simplex S2.

I write the conjunction X1 =̇ x(j)
1 ^ · · · ^ Xm =̇ x(j)

m as X =̇ x

(j), but
there is a better notation for this given below, in Sec. 1.5.1.
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Theorem 1.6 (Fundamental Theorem of Prevision, FTP).

Let X := (X1, . . . , Xm) be any finite collection of random quantities (with
finite realms) and let

X :=
n

x

(1), x

(2), . . . , x

(s)
o

x

(j) 2 Rm,

be their joint realm. Then E is a valid expectation if and only if there is a
p 2 Ss�1 for which

E{g(X)} =
s

Â
j=1

g(x

(j)) · pj (†)

for all g : Rm ! R. In this case, pj = Pr(X =̇ x

(j)).

Proof.
((). This is just a matter of checking that (†) satisfies the ax-

ioms in Def. 1.4. The zeroth axiom is obviously satisfied. Lower-
boundedness follows from

E{g(X)} = Â j g(x

(j)) · pj

� min
p2Ss�1 Â j g(x

(j)) · pj = minj g(x

(j)),

as required. Additivity follows immediately from the linearity of
(†). Let g(x) 1

x=̇x

(i) . Then

Pr(X =̇ x

(i)) := E(1
X=̇x

(i) ) = Â j 1x

(j)=̇x

(i) · pj = pi,

as required.
()). Note that

1 =
s

Â
j=1

1
X=̇x

(j) . (‡)

Hence

E{g(X)} = E
�

g(X) Â j 1X=̇x

(j)
 

= E
�

Â j g(X) · 1
X=̇x

(j)
 

= E
�

Â j g(x

(j)) · 1
X=̇x

(j)
 

= Â j g(x

(j)) · E{1
X=̇x

(j)} by linearity.

The result then follows on setting pj  E{1
X=̇x

(j)}, as pj � 0 by
lower-boundedness, and Â j pj = 1 by linearity and normalisation,
from (‡). Hence p 2 Ss�1.

Eq. (†) is familiar as the definition of an expectation in the case
where probability is taken as primitive. In contrast, the FTP states
that it is an inevitable consequence of the axioms of expectation
that probabilities p 2 Ss�1 must exist, satisfying (†).
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1.5.1 Notation and marginalisation

Expressions such as Pr(X =̇ x) occur frequently in statistics,
because the FTP is such an important result. A standard notation
for such expressions is to write

p(x) := Pr
�

X =̇ x

�

:= Pr
�

^

i
Xi =̇ xi

�

where the random quantities in p(·) are identified by the argument,
using the capital/small letter convention. Ornaments are used
when it is necessary to distinguish two different values for the same
random quantities, so that p(x

0) := Pr(X =̇ x

0).
Combining the comma notation and the p notation,

p(x, y) := Pr
��

^

i
Xi =̇ xi

�

^
�

^

j
Yj =̇ yj

� 

and by comparing the left- and right-hand sides of this expression
it is clear that these two notations are earning their keep.

One helpful convention with the ‘p’ notation is to define p(x, y)

over the whole of the product set X⇥ Y, even though the realm of
(X, Y) may be a subset of this product set. In other words, set

p(x, y) 0

if (x, y) is in X⇥ Y but not in the realm of (X, Y). This simplifies
marginalisation operations, as defined in Sec. 1.5.1. It is common
to go further and take p(x, y)  0 for every possible value of (x, y)

that is not in the realm of (X, Y). This it not necessary in what
follows, but does no harm.

The first outing for this new notation, and also the opportunity
to introduce some other conventions, is in marginalisation, which
is ‘collapsing’ a probability assessment onto a subset of random
quantities. This is a crucial operation in statistical modelling.

Theorem 1.7 (Marginalisation). Let X and Y be two collections of
random quantities. Then

p(x) = Â
y

p(x, y).

Removing Y in this way is termed marginalising out Y . Whenever
the domain of the index of a sum is left undefined it can be taken
to be the realm of the index’s parent random quantities: in the case
above, the ‘y’ under ‘Â’ is to be read as y 2 Y.

Proof. Set g(x, y) 1
x=̇x

0 and then

p(x

0) = E(1
X=̇x

0) by definition

= Â
(x,y)

1
x=̇x

0 · Pr{(X, Y) =̇ (x, y)} by the FTP, Thm 1.6

= Â
x

Â
y

1
x=̇x

0 p(x, y) ‘p’ convention

= Â
y

n

Â
x

1
x=̇x

0 p(x, y)
o

= Â
y

p(x

0, y)



expectation as primitive 23

as required.

A comment about functional relations, of which Thm 1.7 is the
first we have seen in this chapter. A functional relation defines a
relation for every point in the product set of the free arguments
that appear on one or both sides of the relation. So Thm 1.7 is an
equality which holds for every point in X (x being a free argument,
and y being a bound argument). Later on, there will be functional
relations with x and y on both sides of the relation, and these hold
for every point in X ⇥ Y. Wherever this is not true, the relation
will be qualified by an additional condition (see Sec. 3.5.1 for an
example).

1.A Concepts from first order logic

Here is a fairly precise statement about commonly-used mathe-
matical terms in first order logic; this account is a précis of several
sources, including Keisler (2007, ch. 15). First order logic for real
numbers is used to define a random proposition and a probability
(Sec. 1.4), and an unfamiliar notation is used (e.g. ‘=̇’) to disam-
biguate a commonly-used notation in statistics.

The language of first order logic comprises functions and vari-
ables, predicates, connectives, quantifiers, and punctuation (paren-
theses and commas). Functions are n-ary, indicating that they take
n arguments, where n � 0. Functions that are 0-ary are called con-
stants. Variables range over the set of all constants. The meanings of
functions (including constants) and predicates depends on the in-
terpretation of the language, but variables, connectives, quantifiers
and punctuation have a fixed (conventional) meanings. In these
notes, functions, constants, and variables will be real-valued, and
predicates will be binary relations.

A term is a finite sequence of symbols defined inductively accord-
ing to:

1. Every constant and every variable is a term;

2. If t1, . . . , tn are terms and f is an n-ary function with n � 1, then
f (t1, . . . , tn) is a term.

Binary relations have the form s R t, where s and t are terms. The
binary relations comprise

=̇, ˙6=, <̇, ̇, �̇, and >̇.

The dot over each symbol indicates that these are predicates, and so
mean something different from their usual ‘undotted’ usage. This is
explained further after the description of a first order sentence on
p. 24. Connectives comprise

¬ (not), ^ (and), _ (or), =) (implies), and () (if and only if),

each of which is defined in terms of the usual truth tables. Quanti-
fiers comprise

8 (for all), and 9 (there exists).
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There is some redundancy here, since all of these connectives and
quantifiers can be constructed from the smaller set {¬,_, 9}, but it
is much clearer to keep them all.

A formula is a finite sequence of symbols defined inductively
according to:

1. If R is a relation and s and t are terms then s R t is a formula.

2. If y and f are formulae, then

¬y, y ^ f, y _ f, y =) f, and y () f

are formulae.

3. If y(v) is a formula and v is a variable, then

8vy(v) and 9vy(v)

are formulae.

In a formula, a variable can be either a free variable or a bound
variable. It is free if it is not quantified, otherwise it is bound. For
example, in the formula 8v(v R w) the variable v is bound and the
variable w is free. A formula with no free variables is a first order
sentence: these are the formulae with well-defined truth values.
Thus if a and b are constants then a ̇ b is a sentence. If f and g are
1-ary functions, then

8v( f (v) =̇ g(v))

is a sentence, which is true if f and g are the same function, and
false if they are not. If y(v) is a formula with a free variable v and
c is a constant, then y(c) is a sentence. For example, (v ̇ 3) is a
formula with a free variable v, and (2 ̇ 3) is a sentence.

The truth of a sentence is defined inductively according to:

1. If R is a binary relation then the sentence a R b is true exactly
when the constants a and b are defined and (a, b) 2 R.

2. If y and f are sentences and C is a connective then the truth of
y C f is determined according to the usual truth tables.

3. The sentence 8vy(v) is true exactly when y(c) is true for all
constants c.

4. The sentence 9vy(v) is true exactly when y(c) is true for some
constant c.

It should be clear now why it is important to distinguish the
predicate ‘=̇’ from the more usual ‘=’. The first-order sentence
‘y =̇ f’ evaluates to false or true, depending on the values of y

and f, but the expression ‘y = f’ is an assertion that the objects
y and f are equal to each other. In first-order logic, predicates are
written P(x, y, z). But when the predicates are binary predicates it
is much clearer to write P(x, y) as x P y, known as ‘infix’ notation.
Unfortunately for us, this clashes with the more usual uses of
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symbols such as ‘=’ and ‘’, which is why the infix predicates are
ornamented with dots.

The logician Gottlob Frege distinguished between the assertion
y = f and the first-order sentence y =̇ f. He would have treated
‘=’ as a binary predicate and ‘y = f’ as a first-order sentence. He
introduced the ‘turnstile’ symbol ` such that ‘` (y = f)’ read
‘y = f is true’; Paris (1994) provides a modern example of the
turnstile symbol in use. In these notes I do not need it precisely
because I distinguish using a dot between the first-order sentence
‘y =̇ f’ and the assertion ‘y = f’.




