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Chapter 1 introduced the notion of an expectation as my ‘best
guess’ for the value of some operationally-defined random quantity.
In order to qualify as expectations (i.e. to be coherent) my collection
of guesses must have the axiomatic properties of lower bounded-
ness (which applies one random quantity at a time) and additivity
(which applies for collections of random quantities); see Def. 1.4.

Def. 1.3 provided an informal definition of statistical inference,
covering ‘coherence’ and ‘extension’, and appended the comment
that many of my expectations might be ‘undecided’. This short
chapter provides a complete description of statistical inference and
explains how ‘undecided’ expectations arise. The key result is the
Fundamental Theorem of Prevision (FTP, Thm 1.6). Sec. 2.1 presents
the FTP again, but in a different form, establishing the conditions
under which a set of expectations is coherent. Sec. 2.2 shows how a
set of expectations may be extended. Sec. 2.3 discusses the various
ways in which beliefs can be quantified, and Sec. 2.4 provides a
general representation of data.

2.1 The FTP again, coherence

Recall the FTP in Thm 1.6. Here is another statement of it. As
before, denote the joint realm of X := (X1, . . . , Xm) as

X :=
n

x

(1), x

(2), . . . , x

(s)
o

x

(j) 2 Rm.

Now let
�

g1, . . . , gk
 

be a specified set of functions of x, and con-
struct the (k⇥ s) matrix

{G}ij := gi(x

(j)).

Let v := (v1, . . . , vk). According to the FTP,

E{g1(X)} v1

...

E{gk(X)} vk

(2.1)

is a coherent set of expectations if and only if

Gp = v for some p 2 Ss�1. (2.2)
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This matrix equation can be visualised as

x

(1)
x

(2)
x

(3) . . . . . .
x

(s)

G p =
v

illustrating that G is typically ‘short and fat’, i.e. I have fewer beliefs
about X than there are elements in X. So that if there is one p that
satisfies (2.2), then there likely to be an infinity of them.1 1 See, e.g., Strang (2006) to review

basic properties of matrices and matrix
equalities.

Another way to write (2.2) is

G(1) · p1 + · · · G(s) · ps = v

where G(j) is the jth column of G.2 Because p 2 Ss�1, another 2 This matrix notation is from Mardia
et al. (1979, ch. 1).way to state the FTP is that v must lie inside the convex hull of the

columns of G. This convex hull is a subset of Rk; the case where
k 2 is shown in Figure 2.1.
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Figure 2.1: The shaded polygon shows
the convex hull of the columns of G
when k 2. Each point is one column.

As one immediate consequence of this way of stating the FTP, we
have the following very powerful result. Recollect that a function
g : Rm ! R is convex on the set A ⇢ Rm exactly when

ag(x) + (1� a)g(x

0) � g
�

ax + (1� a)x

0�

for all x, x

0 2 A and all 0  a  1.

Theorem 2.1 (Jensen’s inequality).

If g is a convex function, then E{g(X)} � g(E{X}).

Proof. Here is a proof-by-picture in the case where X is a scalar;
the generalisation to a vector X is immediate. The function g is a
particular convex function but it represents an arbitrary convex
function.
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The dots indicate the realm of
�

X, g(X)
�

and the shaded polygon
shows the set of values of

�

E{X}, E{g(X)}
�

which are coherent,
according to the FTP. Because g is convex, no point in the polygon
is below the function g(x).

2.2 Extension

Now suppose I am interested in some new random quantities,
h1(X), . . . , hn(X). I am not been able to specify my expectations of
these random quantities directly, but I can use those expectations
which I am able to specify, see (2.1), to constrain my expectations of
these new random quantities, again using the FTP.

As before, construct the matrix

{H}ij := hi(x

(j)).

According to the FTP, w := (w1, . . . , wn) is a coherent expectation
for these new random quantities if and only if

"

G
H

#

p =

"

v

w

#

for some p 2 Ss�1. (2.3)

Or, visually,

x

(1)
x

(2)
x

(3) . . . . . .
x

(s)

G p =
v

H w

If there are many values of p which satisfy (2.2), then there are
many values of w. Hence a short fat G implies that expectations for
other random quantities such as hi(X) will be undecided.

The extension result can be illustrated using the Jensen’s inequal-
ity picture (from the proof of Thm 2.1).
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Values of x and X
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This is the same picture as before, except now I have marked the
value E(X)  v. This value is coherent because it lies inside the
convex hull of the realm of X. Only the values on the thick black
line are coherent values of E{h(X)} corresponding to this value of
E(X).

Here is one very important property of the set of coherent exten-
sions. Informally, it states that the coherent set for any undecided
expectation is an interval; i.e. completely defined by lower and
upper bounds. Recollect that a set S is convex exactly when s, s0 2 S
implies that as + (1� a)s0 2 S for all 0  a  1. The unit simplex
Ss�1 is convex.

Theorem 2.2. Let H be the set of coherent expectations for h1(X), . . . , hn(X).
The set H is convex.

Proof. Empty sets are convex, so let H be non-empty, and let
w, w

0 2 H. We have w 2 H if and only if there exists a p 2 Ss�1

satisfying (2.3).
Now consider the new point

w

00 := aw + (1� a)w0

for some a 2 [0, 1]. Then
"

v

w

00

#

= a

"

v

w

#

+ (1� a)

"

v

w

0

#

= a

"

G
H

#

p + (1� a)

"

G
H

#

p

0 for some p, p

0 2 S(s�1)

=

"

G
H

#

�

ap + (1� a)p

0�

=

"

G
H

#

p

00 for some p

00 2 Ss�1, because Ss�1 is convex

showing that w

00 2 H.

Thus for any specified set of expectations, I can bound any other
expectation E{h(X)} with lower and upper values. These bounds
describe the amount of ‘undecided’ in my inference about h(X).
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Now consider the case of finding the lower bound on E{h(X)}
for some specified function h, based on beliefs [G, v]. We must solve

min
p2Rs

h

T
p subject to

8

>

>

<

>

>

:

Gp = v

Â j pj = 1

pj � 0 j = 1, . . . , s

where h := (h(1), . . . , h(s)) and h(j) := h(x

(j)). This is a linear
programming (LP) problem. LP represents one of the pinnacles of
computer-based optimisation, discussed in Nocedal and Wright
(2006, chs 13 and 14). As Nocedal and Wright explain, linear pro-
gramming has been revolutionised by the recent development of
interior point methods, which are replacing the simplex methods
that were originally developed in the 1940s.

* * *
Unfortunately, however, even modern linear programming

methods will grind to a halt if s, the size of the joint realm of X, is
too large. And because s is exponential in the number of random
quantities, it only takes a few tens of random quantities before
this happens. This is a tragedy for statistical inference as I have
presented it here, because our inability to do the computations
forces us down another route which provides a very different
framework for specifying beliefs, one in which almost all of our
limitations as uncertainty assessors is suppressed. This alternative
framework is discussed in detail in Chapter 4.

But I believe it is valuable to explore how we ought to do sta-
tistical inference, and then to encounter the practical difficulties,
in order to understand better why in practice we do statistical in-
ference the way we do. I hazard that most people who work with
uncertainty are not aware that there is a rich calculus of expectation
that allows me to specify just as many beliefs as I feel able, and
represents the results in terms of ‘undecided’ intervals for those
expectations that I am unable to specify. It is true that in many ap-
plications these unaware people are not disadvantaged, because the
implementation of such a calculus is computationally impractical.
But even then it is important to know that there is a substantial gulf
between what one ought to do, and what one ends up doing.

Therefore I will continue to explore what we ought to do: which
is what we can do in some situations, and what we can expect to do
as computing power continues to grow.

2.3 Representing beliefs

Suppose I am satisfied that my beliefs [G, v] are coherent, and I
am now considering their extension to some new random quantity
h(X). The best possible outcome is to find that my set of coherent
values for E{h(X)} is constrained to a single point; in other words,
my expectation of h(X) is completely constrained by my expecta-
tions for g1(X), . . . , gk(X). This can arise in the obvious way: for
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example, where g1(x)  x1, g2(x)  x2, and h(x)  x1 + x2. But
it can also arise in much less obvious ways, involving the interplay
of the more subtle constraints that are represented by the theorems
of the expectations calculus. Because these theorems follow directly
from the axioms, they are automatically enacted in the FTP. Thus H

in Thm 2.2 must respect Schwartz’s inequality, Jensen’s inequality,
Markov’s inequality, and so on. Expectations for a rich set of gi’s
will have many more implications for the nature of H than I can
easily envisage, and computation is the only method I have to infer
them all. Computation was briefly discussed at the end of Sec. 2.2.

In general, however, we must accept that many of my expecta-
tions will not be constrained to a point, i.e. I will remain undecided
about my E{h(X)}. Thm 2.2 states that my set of coherent expec-
tations for E{h(X)} can be represented by an interval, and defined
in terms of lower and upper bounds. It is important to present this
clearly. For example, to state “My expectation for X1 + 2 log X2 is
undecided but lies in the interval [3.2, 5.5].” This is because there are
advocates of a more general calculus of expection, who propose
that my beliefs about the gi(X)’s may themselves be expressed in
terms of intervals (see, e.g., Walley, 1991; Troffaes and de Cooman,
2014). So I would like the word ‘undecided’ to indicate a technical
meaning associated with a purely mechanical derivation from a
coherent set of specified expectations.

A wide range of beliefs can be encoded as expectations, and
we should look beyond obvious beliefs such as E(X1)  v1. As
discussed in Sec. 1.4, probabilities are also expectations, so each
probability I specify constitutes a row of [G, v]. For example, sup-
pose that q(x) is a first-order sentence, so that Q := q(X) is a
random proposition. If I think that Q has probability pq then this is
represented by a row of [G, v] with

Gij  1q(x

(j)) and vi  pq.

Certainty is a special case: a random proposition to which I assign
probability 1. If I am certain that Q is true, i.e. pq  1, then this has
the effect of zeroing those pj for which q(x

(j)) is false:

row i:
⇣

1 0 0 1 1 0 · · · 0
⌘

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p1
p2

p3

p4
p5

p6
...

ps

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= 1

and since pj � 0 and Âj pj = 1, q(x

(j)) false implies that pj = 0. So
the same effect could be achieved by removing from X all of the
elements for which q(x

(j)) is false.
Sec. 2.4 will discuss data (there is nothing special about data!).

But it is worth mentioning measurement error separately. Measure-
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ment error typically involves two random quantities: the underly-
ing quantity of interest, and the measurement of it, which may not
be the same. Let X be the underlying quantity of interest, and Y be
the measurement. Then the measurement Y ! y will be included
as a row in G stating that Pr(Y =̇ y) = 1. Other rows in G record
my beliefs about the accuracy of the measurement. For example, if I
believe that the measurement error Y� X has an expectation of zero
and a variance of s2, then I include rows for E{(Y � X)}  0 and
E{(X�Y)2} s2.

I can extend this approach to include my uncertainty about the
size of the measurement error. Let V be my variance for measure-
ment error, which I could operationalise in terms of the perfor-
mance of the instrument over a large number of uses. So this is
another random quantity. I include in my beliefs with a row for
my expectation, E{V}  s2, where I specify s2, and a row for its
interpretation, E{(X�Y)2 �V} 0. If the same instrument were
used in many measurements then V would appear in many rows of
G. In this way, these measurements enable me to make inferences
about V, as well as about the underlying quantities of interest.

Suppose I wanted to go further, and make the measurement
error Normally distributed. I could do this by specifying a large
number of moments of Y � X, where the kth moment is defined
as E{(Y � X)k} for k = 1, 2, . . . .3 But a small number of mo- 3 It is a theorem that a distribution

can be specified by its moments; see
Grimmett and Stirzaker (2001, ch. 5).

ments would be a better reflection of my limited beliefs. So I
might also include rows for the third and fourth moments, namely
E{(Y� X)3} 0 and E{(Y� X)4 � 3V2} 0. (These are the par-
ticular values for the Normal distribution, computed from the
Normal moment generating function.) If my beliefs in the ‘Nor-
mality’ of the measurement error were stronger I could add more
moments, the fifth, the sixth, and so on.

This gives a hint of something that will be discussed further in
Chapter 4: a belief about the distribution of a random quantity is a
very strong belief, involving a potentially huge number of rows of
G.

2.4 Data

Statisticians seem to fetishize data; undoubtedly this is because
data seem far more secure than beliefs.4 This security is only partly 4 I have a mild preference for ‘data’ as

a plural noun.reassuring. Unless we are lucky enough to measure exactly what
we need to infer, we will always need beliefs to link our data with
our inference. In the simplest case, these would be beliefs about
measurement error, but it is usually more complicated than this.
Usually, there is a large gap between the data we actually have, and
the inference we need to do. Almost always, we can identify data
that we would like to have, but do not: because it is too expensive,
or unethical, or unobtainable (data from the past or the future, for
example). Sometimes it is helpful to reflect on what data we would
really like; othertimes it is just frustrating! But we always have to



34

return to reality, to the data we actually have, and the beliefs we
need to link them to our inference.

There is—in principle—nothing special about the treatment
of data in statistical inference. A datum Y ! y is simply the
probability assignment Pr(Y =̇ y)  1. However, it is helpful to
have a slightly expanded notion of data, to reflect the kinds of data
typically encountered. Here is a general representation for data. We
start, as usual, with a set of random quantities, X := (X1, . . . , Xm).
Every datum is a value for a specified function of X, so I write

Yi = gi(X) i = 1, . . . , n

to represent the observables, where the gi are specified. These observ-
ables are the random quantities which are measured. The actual
measurements are the observations

y

obs := (yobs
1 , . . . , yobs

n ).

The n observations are represented in my beliefs as the truth of the
random proposition

q(X) :=
n̂

i=1
qi(X) where qi(x) :=

�

gi(x) =̇ yobs
i

�

.

In other word, q is the conjunction of n random propositions, where
each random proposition represents one datum. As described in
Sec. 2.3, including the row Pr{q(X)}  1 in my beliefs is equiv-
alent to removing all of the elements of the realm of X for which
1q(x

(j)) = 0. That is, all the elements of X that are not consistent
with the observations.

Here are some common situations; I will ignore measurement
error, for simplicity (see Sec. 2.3). The simplest situation is where
each observable corresponds to a specific component of X. We can
reorder X so that the observables are the first n components, i.e.
gi(x)  xi. I term this the simple observational model (SOM). It often
applies when the observables are a sample from a population.

Another very common situation is where the observables are
linear combinations of X, often averages or sums. For example, a
satellite instrument might have a spatial footprint of hundreds of
kilometres. If each Xi represents a ten-kilometre pixel it is common
to represent the observable as measuring the average value of all of
the pixels in the footprint (see Zammit-Mangion et al., 2014, for lots
of modelling of this type).

Observables which are nonlinear functions are also possible.
Sometimes measurements are truncated: the instrument is only ca-
pable of measuring a quantity up to a specified threshold value. In
this case Yi = gi(X) = min{Xi, u}, where u is the upper threshold.
Truncation also happens in studies which run for a fixed duration.
In a medical trial, for example, some people will survive until the
end of the trial: their age at death is not known (unlike those who
died), although it is bounded below by their age at the end of the
trial. Such measurements are known as ‘right censored’.
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In other cases the instrument may have a bias which depends on
the value of the quantity being measured. Consider, for example,
the difficulty of measuring wind speed with a mechanical anenome-
ter (there are about ten different types), or precipitation with a
gauge that has to work for snow, rain, and drizzle.

In all of these situations, the function gi is specified. In a more
complicated analysis gi can itself be made uncertain, by includ-
ing additional random quantities which represent arguments to
gi; e.g. Yi = gi(X, U) = min{Xi, U} for an instrument with an
uncertain upper threshold U. As with an uncertain measurement
error variance, the value of U can be accurately inferred if the same
instrument is used to make many measurements.




