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The notion of an expectation presented in the previous two chapters
does not tap all of my ability to quantify my beliefs about random
quantities. Often I will find myself thinking about ‘hypothetical’
expectations of the form ‘my expectation of X supposing that Q
is true’, where Q is a random proposition. If I am to exploit this
type of belief then I need to understand it better (i.e. to give it
meaning), and also to integrate it into my inference, in order to
better constrain other expectations that I cannot specify directly.
This requires me to be more precise about ‘supposing’.

This chapter will strike many readers as rather ‘philosophical’.
But it is no more philosophical than Chapter 1. That chapter dis-
cussed the meaning of an expectation, and this one discusses the
meaning of a hypothetical expectation (also termed a conditional
expectation, see Sec. 3.1). My approach in this chapter is more id-
iosynchratic than in Chapter 1, and it has taken me longer to come
to the viewpoint that I now describe. Rest assured, though, that
all of the usual results still hold; it is only the interpretation that
differs. These usual results can be found in Sec. 3.3 and Sec. 3.5.
Sec. 3.1, Sec. 3.2, and Sec. 3.4 are mainly concerned with meaning.
You may or may not agree with my construction of meaning, but I
hope at least you appreciate the importance of the struggle.

3.1 What do we mean by ‘supposing’?

I start with a trap.
Consider my expectation of sea-level rise in 2100 supposing that

the Greenland ice-sheet melts before then. A simplistic treatment
would be for me to add about 6 m to my expectation supposing
the ice-sheet didn’t melt, this being my belief about the amount of
sea-level rise contained in the Greenland ice. But maybe that’s the
wrong supposition. There is a basic difference between supposing
that the Greenland ice-sheet melts, and supposing that the only
thing that happens is that the Greenland ice-sheet melts; the +6 m
is the latter. But if the Greenland ice-sheet melts, it would be part
of a much larger scenario, in which those factors which caused the
ice-sheet to melt (changes in air and ocean temperature, changes in
precipitation patterns) also affected other ice-sheets, which in turn
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affected sea-level rise. So both are valid suppositions, but they are
not the same.

Therefore, when ‘supposing’ I must be wary of not confusing
‘interventions’ with ‘scenarios’. An intervention would be where I
imagine doing something to melt the Greenland ice-sheet. A sce-
nario would be a situation in which the Greenland ice-sheet melted.
Pearl (2000) contains a detailed assessment of these different ways
of supposing. We will simply accept the caution that Q should,
where possible, be at or near the root of a causal tree.

I will denote the value I give to my belief about X supposing Q
to be true as ‘E(X | Q)’. Generally, I will refer to this as a hypothet-
ical expectation. In textbooks this might be termed a ‘conditional
expectation’, but this is an oversimplification. In the proper theory
of expectation, a conditional expectation is a random quantity.1 But 1 See Grimmett and Stirzaker (2001,

sec. 3.7, sec. 7.7), or the books cited at
the start of Chapter 1.

E(X | Q) is not a random quantity: it is a value. This issue could be
finessed with a clever notation. Hence, E(X | Y) is a conditional ex-
pectation (random quantity) because the symbol to the right of the
bar is a random quantity, while E(X | Q) is a value because the sym-
bol to the right of the bar is a random proposition. But I prefer to
sidestep this issue, and I will not use E(X | Y) at all. Just to be clear,
though, I will refer to E(X | Q) as a ‘hypothetical expectation’ rather
than a ‘conditional expectation’. This also serves to emphasise, for
me, that when I specify a value for E(X | Q) I am ‘supposing’.

Are there any intuitions about ‘supposing’? I submit that there
is one crucial property that any rational notion of supposing ought
to satisfy, if it is to be consistent with how we would like to use
supposing in practice.

Definition 3.1 (Recursive property). E(· | Q) should satisfy the axioms
of expectation, and the same relation between E(·) and E(· | Q) should hold
as between E(· | R) and E(· | Q ^ R).

Effectively, hypothetical expectations ought to have a ‘narrative’
contiguity: they put me into a world which is like my world, except
for the truth of Q. I write ‘narrative’ here, to suggest that my be-
liefs are telling a story about my world, and that the truth of Q is
something I incorporate into this story, with the smallest possible
perturbation. So there is still a theory of expectation in this hypo-
thetical world. And there is the opportunity for me to go deeper,
and consider a hypothetical expectation within my hypothetical
world, and so on. This seems unexceptionable to me—the idea that
many features of my world carry over into my hypothetical world,
and that coherence of expectations is one of them, and that this
property is recursive.

How will this property be used? In the next section I will pro-
pose a relation between ‘original’ and hypothetical expectation,
based on an analogy. If this relation implies that hypothetical expec-
tations have the recursive property then we can accept it, tentatively,
as a defining relation. We can go on to investigate other properties
of hypothetical expectation that follow from this definition. If, on
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reflection, we find that these additional properties also concur with
our intuition about supposing, then that is very encouraging. But
if we find a property which seems quite contrary to our intuition
about supposing then we might have to think again.

3.2 Definition through analogy

Recall the betting interpretation of Pr(Q), given in Sec. 1.4. Pr(Q)

is my ‘fair price’ for a bet that pays 0 if Q is false, and 1 if Q is true.
Hence it satisfies the equality

E{1Q � Pr(Q)} = 0. (3.1)

Now turn this interpretation around to provide a working defini-
tion of hypothetical probability:

The hypothetical probability Pr(A | Q) is my fair price for a bet on A which
only goes ahead if Q is true.

This definition implies the following result. (This result also follows
directly from Def. 3.2, below.)

Theorem 3.1 (Called Off Bet theorem).

Let A and Q be random propositions. Then, under the definition immedi-
ately above,

Pr(A, Q) = Pr(A | Q)Pr(Q). (3.2)

Proof. By the same reason that lead to (3.1),

E
n

1¬Q · 0 + 1Q
�

1A � Pr(A | Q)
�

o

= 0

and the result follows immediately.

Note that Thm 3.1 defines a unique value of Pr(A | Q) when
Pr(Q) > 0; but an arbitrary value when Pr(Q) = 0, which
implies that Pr(A, Q) = 0, and that the equality has the form
0 = Pr(A | Q) · 0.

Now we take the next step. The recursive property requires that
a hypothetical probability is just the hypothetical expectation of the
indicator function of a random proposition. If this were not true,
my hypothetical world would not be contiguous with my actual
world, since a basic property of expectations would have changed.
And this strongly suggests that E(X1Q) = E(X | Q)Pr(Q) ought
to be the right generalisation of Thm 3.1. So I will take this as the
definition of conditional expectation, subject to checking that it
satisfies the recursive property (which is does, as shown below).

Definition 3.2 (Hypothetical expectation and probability).

Let X be any scalar random quantity and Q be any random proposition.
E(X | Q) is the hypothetical expectation of X given Q exactly when it
satisfies

E(X1Q) = E(X | Q) Pr(Q). (3.3)

Hypothetical probability is defined as Pr(A | Q) := E(1A | Q).
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Note that Def. 3.2 defines a unique value of E(X | Q) when
Pr(Q) > 0, but an arbitrary value when Pr(Q) = 0, because in this
case Schwarz’s inequality (Thm 1.3) implies that

E(X1Q)
2  E(X2)E(12

Q) = E(X2)Pr(Q) = 0

which implies that E(X1Q)
2 = 0 and the definition has the form

0 = E(X | Q) · 0. Def. 3.2 implies that Pr(A | Q) can indeed be
interpreted as a called off bet, since it implies Thm 3.1.

Now we have to check Def. 3.2 satisfies the recursive property.
First, we must check to see whether E(· | Q) satisfies the axioms

of expectation. The FTP (Thm 1.6) is useful here. If we can show
that there is a hypothetical version of the FTP, then we know, using
the same argument as in the FTP proof, that E(· | Q) satisfies the
axioms, and all of the results we have proved for expectation and
probability also hold for hypothetical expectation and probability.
So the following result is exactly what we need.

Theorem 3.2 (Hypothetical FTP, HFTP).

If Pr(Q) > 0, then

E{g(X) | Q} = Â
x

g(x) · Pr(X =̇ x | Q)

for any g.

Note the restriction to Pr(Q) > 0. This restriction will occur
frequently in equalities involving hypothetical expectations or
probabilities. These equalities cannot hold if E(X | Q) or Pr(X | Q)

are arbitrary, and hence Pr(Q) = 0 must always be excluded.
Before proving this result, the following result is of independent

interest.

Theorem 3.3 (Muddy Table theorem).

Let Q := q(X) where q(x) is a first-order sentence. If Pr(Q) > 0 then

Pr(X =̇ x | Q) =
1q(x) p(x)

Pr(Q)
.

This result uses the ‘p’ notation from Sec. 1.5.1; note also that
this is an example of a functional relation which holds for all x 2 X.
I have taken the name from a description of a similar result in van
Fraassen (1989, ch. 7).

Proof. As Pr(Q) > 0,

Pr(X =̇ x | Q) =
Pr{(X =̇ x) ^ q(X)}

Pr(Q)
=

E(1
X=̇x

· 1q(X))

Pr(Q)

from Thm 3.1. Applying the FTP to the numerator gives

E(1
X=̇x

· 1q(X)) = Â
x

0
1

x

0=̇x

· 1q(x

0) · p(x

0) = 1q(x) p(x),

as required.
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Proof of Thm 3.2, the HFTP.

E{g(X)1q(X)} = Â
x

g(x)1q(x) · p(x) FTP

= Â
x

g(x) ·
1q(x) p(x)

Pr(Q)
· Pr(Q) as Pr(Q) > 0

= Â
x

g(x) · Pr(X =̇ x | Q) · Pr(Q) Muddy Table theorem

and the result follows on dividing through by Pr(Q), according to
(3.3).

So the first part of the recursive property is satisfied: a hypothet-
ical expectation as defined in (3.2) does indeed satisfy the axioms
of expectation, provided that Pr(Q) > 0. Of course this restriction
on Pr(Q) also has a very intuitive justification: I doubt there is any
narrative contiguity between my world and a hypothetical world in
which I suppose that something I believe is impossible is actually
true.2 2 Lewis (1973) provides a well-known

analysis of such worlds: they are
fascinating but not germane.

Now for the second part. We need to establish that E(·) and
E(· | Q) stand in the same relation to each other as E(· | R) and
E(· | Q ^ R). In other words, does everything still work if I am
already in hypothetical world R? The definition states that

E(X1Q) = E(X | Q)Pr(Q).

Now if the recursive property holds then we should just be able to
drop a ‘|R’ into each of the three expressions. So we need to show
that

E(X1Q | R) = E(X | Q, R)Pr(Q | R).

And, indeed, this follows if Pr(R) > 0:

E(X1Q | R) =
E(1R · X1Q)

Pr(R)
by (3.3) with Pr(R) > 0

=
E(1Q1R · X)

Pr(R)

=
E(1Q^R · X)

Pr(R)

=
E(X | Q, R)Pr(Q, R)

Pr(R)
(3.3) again

= E(X | Q, R)
Pr(Q, R)

Pr(R)

= E(X | Q, R)Pr(Q | R) and again

as required.

3.3 Further properties of hypothetical expectation

The previous section established that hypothetical expectations as
defined in Def. 3.2 satisfy the recursive property given in Def. 3.1.
This section demonstrates some additional properties that hypothet-
ical expectations have. In all cases, these properties seem intuitive
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for ‘supposing’, giving us confidence that we can incorporate the
beliefs we specify when supposing Q to be true with other expecta-
tions and probabilities. This incorporation will be discussed further
in Sec. 3.4.

One of the key results for conditional expectations is the ‘tower
property’. This provides another link between my original expecta-
tion and a set of hypothetical expectations. It depends on the notion
of a belief partition.

Definition 3.3 (Belief partition).

Let Q :=
�

Q1, . . . , Qk
 

be a finite set of random propositions. Then Q is a
belief partition exactly when

k

Â
j=1

1Qj = 1.

Asserting that Q is a belief partition is asserting an equality
which holds for random quantities. It must be interpreted as a
statement of my beliefs, which implies that Âj Pr(Qj) = 1 and that
Pr(Qi, Qj) = 0 for i 6= j. A stronger definition of ‘partition’ insists
that each Qj := qj(X) for which

k

Â
j=1

1qj(x) = 1 for all x 2 X. (†)

In other words, the q’s partition the realm of X into a set of mutu-
ally exclusive tiles. This definition of a partition has nothing to do
with beliefs. But only the weaker property in Def. 3.3 is required
below, in which the q’s are not necessarily mutually exclusive, but
where I do not believe that Qi and Qj can both be true.3 3 I doubt this makes much difference

in practice, but it is always interesting
to note where weaker conditions will
suffice.

Here is a very intuitive and useful result. It implies the ‘obvious’
property that if Pr(Q) 1, then E{g(X) | Q} = E{g(X)}.

Theorem 3.4 (Conglomerability).

Let Q :=
�

Q1, . . . , Qk
 

be a belief partition. Then

E{g(X)} =
k

Â
j=1

E{g(X) | Qj} Pr(Qj)

for any g.

Proof. Because Q satisfies (†),

E{g(X)} = E{g(X) · 1}

= E
n

g(X) · Â j 1Qj

o

= Â j E
�

g(X)1Qj

 

= Â j E{g(X) | Qj} Pr(Qj) by (3.3)

as required.
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Bruno de Finetti (1974) used a slightly different definition of
conglomerability, which is that

min
j

E{g(X) | Qj}  E{g(X)}  max
j

E{g(X) | Qj},

i.e. the expectation of any random quantity is bounded below and
above by the smallest and largest values that the conditional ex-
pectation can take on a belief partition. This is implied by Thm 3.4.
Practically speaking, this bounding property is very powerful,
being not obvious, a priori, but acceptable a posteriori. It is also very
useful. It justifies, for supposing, the same kind of tactic we often
use for other reasoning, which is to imagine the worst and the best
possible outcomes.

A special case of Q gives the celebrated Law of Iterated Expecta-
tion, also known as the ‘tower property’ of expectation.

Theorem 3.5 (Law of Iterated Expectation, LIE).

E{g(X)} = Â
y

E{g(X) | Y =̇ y}p(y).

Proof. Follows immediately from Thm 3.4 on setting

Q 
[

y

{Y =̇ y}.

Conglomerability can be extended in a useful way, into a general
procedure I will call drilling down. Let Q be a belief partition for Q
exactly when

k

Â
j=1

1Qj = 1Q.

Note that Qj implies Q, so that Pr(Qj, Q) = Pr(Qj). By the same
reasoning as above, Âj Pr(Qj | Q) = 1 and Pr(Qi, Qj) = 0 for i 6= j.

Theorem 3.6 (Drilling down).

Let Q be a belief partition for Q. If Pr(Q) > 0, then

E{g(X) | Q} =
k

Â
j=1

E{g(X) | Qj}Pr(Qj | Q).

Proof. This almost follows directly from the recursive property,
which suggests we can drop a ‘|Q’ into Thm 3.4. But it is safer to
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prove it directly:

E{g(X) | Q} =
E{g(X)1Q}

Pr(Q)
by (3.3) as Pr(Q) > 0

=
E{g(X)Âj 1Qj}

Pr(Q)

=
Âj E{g(X)1Qj}

Pr(Q)

=
Âj E{g(X) | Qj}Pr(Qj)

Pr(Q)
(3.3) again

= Â j E{g(X) | Qj}
Pr(Qj, Q)

Pr(Q)
as Qj implies Q

= Â j E{g(X) | Qj}Pr(Qj | Q) (3.3) again

as required.

As an illustration, suppose that X was some aspect of tomor-
row’s weather, perhaps the amount of rain. I can simplify the task
of specifying my beliefs about X by dividing the weather into
weather types, for example ‘anti-cyclonic’ (high pressure in the UK),
‘neutral’, or ‘cyclonic’ (low pressure).4 Then Qj would be the propo- 4 See Jones et al. (2013) and http:

//www.cru.uea.ac.uk/cru/data/lwt/.sition that the weather was of type j, and Q  {Q1, Q2, Q3}. If I
was in a hurry I could assess E(X) by using my beliefs E(X | Qj) and
my probabilities Pr(Qj). My beliefs E(X | Qj) would be fairly stan-
dard, but Pr(Qj) could change from day to day. If I had more time,
then I could take the most probable type, say Q1, and then partition
it further, perhaps by the direction of the wind in my neighbour-
hood, to give me a belief partition for Q1, say Qj  {Q11, . . . , Q18},
corresponding to the cardinal and ordinal directions. Then I could
refine my assessment of E(X | Q1) by using my beliefs E(X | Q1k)

and my probabilities Pr(Q1k | Q1). In other words, I could ‘drill
down’ into Q1.

Weather forecasting is an application where the hypothetical
expectations E(X | Qj) and E(X | Qjk) are fairly standard, but the
probabilities Pr(Qj) and Pr(Qjk | Qj) are changing from day to day
(in the UK).

* * *

Here is another useful result although it does not have a name,
as far as I know. I have borrowed a nearby one from Williams (1991,
sec. 9.7).

Theorem 3.7 (Taking out what is known).

Let X := (Y , Z) and suppose the truth of Q implies that Y = y. If
Pr(Q) > 0 then

E{h(Y , Z) | Q} = E{h(y, Z) | Q}.
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Proof. The crucial step below is

E{h(Y , Z)1Q} = Â
x

0
h(y0, z

0)1q(x

0) · p(x

0)

= Â
x

0
h(y, z

0)1q(x

0) · p(x

0)

= E{h(y, Z)1Q}

by the FTP, the second equality following because y

0 6= y implies
that 1q(x

0) = 0. Then

E{h(X) | Q} = E{h(Y , Z) | Q}

=
E{h(Y , Z)1Q}

Pr(Q)
by (3.3) with Pr(Q) > 0

=
E{h(y, Z)1Q}

Pr(Q)
see above

= E{h(y, Z) | Q} (3.3) again

as required.

One immediate corollary is that

E{g(Y) h(Z) | Q} = g(y)E{h(Z) | Q}

under the same conditions as Thm 3.7. This is how Thm 3.7 gets its
name.

3.4 Hypothetical expectations in inference

First, I deal with the practical issue of incorporating hypothetical
expectations into my beliefs and my inferences. A quick review of
Sec. 2.1 might be helpful; I will use the same notation here.

Imagine I have assigned the value w to my hypothetical expec-
tation E{g(X) | Q}, where Q := q(X) for some first-order sentence
q(x). How does this become a line in the matrix G in (2.2)? Use
the FTP to write out the expectation on the left of (3.3) and the
probability on the right, to give

Â j g(x

(j))1q(x

(j)) · pj = w Â j 1q(x

(j)) · pj.

Then rearrange to give

Â j
�

g(x

(j))� w
�

1q(x

(j)) · pj = 0

which is a row of [G, v] with

Gij  (g(x

(j))� w)1q(x

(j)) and vi  0.

This is the key thing to appreciate: hypothetical expectations (and
hypothetical probabilities of course) allows me to make another
type of belief assessment, which can be used to constrain my ex-
pectations of other random quantities, exactly as expressed in
Chapter 2.
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It is for this reason that a hypothetical expectation has to be
meaningful to me directly. It has to bring something new to my
inference. In many textbooks, the hypothetical probability is simply
defined as

Pr(A | Q) =
Pr(A, Q)

Pr(Q)
Pr(Q) > 0

and undefined otherwise. This does not create a new type of belief,
it simply relabels a function of my ordinary beliefs. It does not
enable me to specify, say, Pr(A | Q) directly, and then infer my
value for Pr(A, Q) on the basis of my Pr(Q). To specify Pr(A | Q)

directly it would have to be meaningful to me. If it was simply
some function of Pr(A, Q) and Pr(Q) then there is no way that I
could infer Pr(A, Q) from Pr(Q), because of circularity. To claim
otherwise would be mystical.

That is why I have tried to motivate E(X | Q) and Pr(A | Q)

in terms of a practice—‘supposing’—that we recognise and find
meaningful. Without this step, I have no grounds for thinking I can
incorporate new beliefs to my inference. Then it turns out that the
definition in Def. 3.2 is consistent with the basic recursive property
I ascribe to ‘supposing’, and all of the usual results follow.

3.5 Hypothetical probabilities

There is nothing new to say here! Hypothetical probabilities are
just hypothetical expectations. This section presents some of the
standard results from the definition of hypothetical probability in
Def. 3.2 and its implication in (3.2).

The following two results may be generalised in the obvious way
to any finite number of random propositions.

Theorem 3.8 (Factorisation theorem).

Let P, Q, and R be random propositions. Then

Pr(P, Q, R) = Pr(P | Q, R)Pr(Q | R)Pr(R).

Proof. Follows immediately from two applications of (3.2):

Pr(P, Q, R) = Pr(P | Q, R)Pr(Q, R)

= Pr(P | Q, R)Pr(Q | R)Pr(R), (†)

because 1P,Q,R = 1P 1Q,R and 1Q,R = 1Q 1R.

This result leads immediately to the following.

Theorem 3.9 (Sequential conditioning).

Let P, Q, and R be random propositions. If Pr(R) > 0 then

Pr(P, Q | R) = Pr(P | Q, R)Pr(Q | R).

Proof. Divide (†) through by Pr(R) and use (3.2) on the lefthand
side.
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Then there is the very useful Law of Total Probability (LTP), also
known as the Partition Theorem. This is the probability version of
conglomerability and the LIE (Thm 3.4).

Theorem 3.10 (Law of Total Probability, LTP).

Let P be a random proposition and Q :=
�

Q1, . . . , Qk
 

be a belief parti-
tion. Then

Pr(P) =
k

Â
i=1

Pr(P | Qi)Pr(Qi).

Proof. Just use g(X) 1P in Thm 3.4.

Finally, there is the celebrated Bayes’s theorem.

Theorem 3.11 (Bayes’s theorem). If Pr(Q) > 0 then

Pr(P | Q) =
Pr(Q | P)Pr(P)

Pr(Q)
.

Proof. Follows immediately from (3.2),

Pr(P, Q) = Pr(P | Q)Pr(Q) = Pr(Q | P)Pr(P),

and then rearranging the second equality.

There are several other versions of Bayes’s theorem. For example,
there is a sequential Bayes’s theorem:

Pr(P | Q2, Q1) =
Pr(Q2 | P, Q1)

Pr(Q2 | Q1)
Pr(P | Q1)

if Pr(Q2, Q1) > 0. And there is Bayes’s theorem for a belief parti-
tion, P :=

�

P1, . . . , Pk
 

:

Pr(Pi | Q) =
Pr(Q | Pi)Pr(Pi)

Âj Pr(Q | Pj)Pr(Pj)
i = 1, . . . , k

if Pr(Q) > 0, which uses the LTP in the denominator. And there is a
Bayes’s theorem in odds form,

Pr(Pi | Q)
Pr(Pj | Q)

=
Pr(Q | Pi)
Pr(Q | Pj)

Pr(Pi)
Pr(Pj)

i, j = 1, . . . , k

if Pr(Pj, Q) > 0.

3.5.1 Probability Mass Functions

I extend the ‘p’ notation of Sec. 1.5.1 to include hypothetical proba-
bilities, writing

p(x | y) := Pr(X =̇ x | Y =̇ y),

remembering that p(x | y) is arbitrary if p(y) = 0. As is standard, I
will continue to refer to p(· | ·) as a probability mass function (PMF).

All of the standard results from Sec. 3.5 can now be expressed
in terms of PMFs, remembering the conventions from Sec. 1.5.1
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that functional equalities are taken to hold for all points in the
product space of the free arguments. This requires some restrictions
when conditioning. These restrictions are expressed in terms of the
‘support’ of the conditioning random quantities,

supp X :=
�

x : p(x) > 0
 

.

Note that if X := (X1, . . . , Xm) then

supp X ⇢
m

’
i=1

supp Xi.

Here are the standard results in terms of PMFs:

• Factorisation theorem:

p(x, y, z) = p(x | y, z)p(y | z)p(z).

• Sequential conditioning:

p(x, y | z) = p(x | y, z)p(y | z) z 2 supp Z.

• Law of total probability:

p(x) = Â y p(x | y)p(y).

• Bayes’s theorem:

p(x | y) =
p(y | x)p(x)

p(y)
y 2 supp Y.

All of these results can be extended to vectors of random quantities
in the obvious way.


