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The central part of this chapter describes modern statistical practice
as a sequence of developments. This is not a history of statistics.
Rather, it is a ‘model’ of statistics, where I understand a ‘model’ to
be an artefact used to organise our knowledge and beliefs.1 I stand by my 1 My favourite example of a model

in the natural sciences is the ‘ocean
conveyor belt’; see Lozier (2010).

definition of statistical inference in Chapter 1, and its recognition of
our limitations when quantifying uncertainty. And yet we find very
little trace of these limitations in modern statistical practice. Sec. 4.2
to Sec. 4.5 is my model of this anomaly; its sequential structure is
an organisational device.

Before these middle sections, the next section does some prelim-
inary spade-work, dispelling a naive interpretation of statistical
practice (‘learning’) and replacing it with a naturalistic one, which
I hope will be recognisable to any applied statistician, despite my
need to describe it in rather abstract terms. And then after the
middle sections there are two additional starred sections that cover
two abiding issues in statistical practice. Sec. 4.6 considers when a
Bayesian statistician can downplay his choice of prior distribution,
based on a general result by L.J. Savage that has a wide range of
applications. Sec. 4.7 considers invariance to the family of distribu-
tions specified by a family of statistical models.

4.1 Some preliminary spadework

This is a brief discussion about what statistics is not, and what it is
(as actually practiced, not as theorised about).

4.1.1 Statistical inference is not ‘learning’

Recall my definition of ‘model’ at the start of this chapter. There
is a model of idealised learning, which runs as follows. There is
a collection of random quantities, say X := (X1, . . . , Xm), about
which an agent has beliefs. These beliefs are represented as a
conjunction of first-order sentences about X which he believes to
be true, denoted by the proposition Y. The agent’s complete set of
beliefs is written as BelY, where BelY(P) is his strength of belief in
the proposition P. ‘Learning’ consists of adding new sentences to Y,



50

and is represented formally as the arrow in

BelY(P) �! BelQ^Y(P),

where Q is a sentence now believed by the agent to be true, and for
which Q ^ Y is not a contradiction. BelQ^Y might be termed the
agent’s updated beliefs.

Now we could choose to represent the belief function BelY(·) by
the conditional probability Pr(· | Y), and hence we could represent
learning Q as

Pr(P | Y) �! Pr(P | Q, Y).

This is known as Bayesian conditionalisation. Paris (1994) provides a
very clear description of this model for learning from the point of
view of computer science, and it has been popular with physicists
such as R.T. Cox and Edwin Jaynes (Jaynes, 2003) and Harold Jef-
freys (Jeffreys, 1961), and also philosophers (Jeffrey, 2004; Howson
and Urbach, 2006).2 Note that all parties see conditionalisation as 2 Sec. 4.6.1 presents a probabilistic re-

sult used as a model in the philosophy
of science, but only as a bit of fun.

a model for learning, and not a description for how we learn. As
Jaynes expresses it, this model describes how we might program an
agent such as a robot to operate on our behalf.

The learning rule in Bayesian conditionalisation has an interest-
ing and attractive form, summarised in the following result.3 3 Recall the comment on functional

equalities in Sec. 1.5.1. The equality in
Thm 4.1 holds for all x in the realm of
X.

Theorem 4.1 (Muddy table theorem, again). Let X := (X1, . . . , Xm),
Y be a random proposition, and q(x) be a first-order sentence with
Q := q(X) and Pr(Q, Y) > 0. Then

Pr(X =̇ x | Q, Y) µ 1q(x) Pr(X =̇ x | Y)

where the constant of proportionality is Pr(Q | Y)�1.

Proof. Follows from the original Muddy Table table theorem
(Thm 3.3) and the recursive property of hypothetical expectation
(Sec. 3.2), which together imply that

Pr(X =̇ x | Q, Y)Pr(Q | Y) = 1q(x) Pr(X =̇ x | Y)

provided that Pr(Y) > 0. Then if Pr(Q, Y) > 0 this can be rear-
ranged, as required.

Bas van Fraassen (1989, ch. 7) describes this learning rule in the
following terms. We start with X represented as tiles on a tabletop
(he suggested a Venn diagram). Each tile contains a heap of mud
whose proportion in the total represents the agent’s Pr(X =̇ x

(j) | Y),
for tile j. When the agent learns that Q is true, he sweeps the mud
off all the tiles for which q(x

(j)) is false; i.e. all the tiles that are
ruled out by the truth of Q. So Thm 3.3 is the Muddy table theorem.

Bayesian conditionalisation has three very attractive properties.
First, it is consistent, so that if Y =) P then BelY(P) = 1. Second,
it is property-preserving. If BelY satisfies the three axioms of proba-
bility, then so will BelQ^Y; this follows from the recursive property
(??). Third, it is order-invariant. If q(x) = q1(x) ^ q2(x), then BelQ^Y
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will be the same whether the update is Q1 then Q2, or Q2 then Q1,
or both together. These properties are so attractive that we should
not be surprised to find that conditionalisation is also the basis of
statistical practice.

Attractive as the learning model is, inference as practised by
statisticians is not learning as described here. As described in
Sec. 4.1.2, statistical practice tends to involve working backwards
from the dataset (represented as the truth of Q above): this reverse
direction is the antithesis of learning. But anything else would
be completely impractical, because there is no end to the list of
relevant things that might be learnt between two time-points, even
in a highly controlled experiment. To have to anticipate all of these
would unworkable, and even accounting for just a fraction of them
would require a really massive X: far larger than we could compute
with, and most of which would then be ruled out by the dataset.

One might think that this was too obvious to mention, but for
the fact that statistical inference is constantly being confused with
learning, a confusion that is even enshrined in our vocabulary—
‘prior’ and ‘posterior’ distributions, for example: see Sec. 4.5. This
confusion is also represented in the inane advice ‘not to use the
dataset more than once’. And in the practice of setting the char-
acteristics of an inference ahead of analysing the dataset (as in
hypothesis tests with prescribed error rates, or fixed thresholds for
significance levels). Interestingly, it has affected some of the deepest
thinkers in our profession:

We are sometimes asked “If all rests ultimately on personal opinion,
why should a person confronted with data not simply decide intu-
itively what opinions he finds himself with, having seen the data,
rather than trouble to calculate these opinions from initial opinions
and opinions about the mechanism of the experiment by means of
Bayes’ theorem?” The question has the merit of pointing out a false
asymmetry between initial and final opinions. For it is only chrono-
logically, not logically, that one has priority over the other.4 (from the 4 The quote continues: “The reason to

make Bayesian and other probability
calculations is to allow a person to
confront his various opinions with
one another to see if they are coherent.
If they are not, he will generally be
able so to modify his opinions as to
be satisfied that he has improved
them. Often, but not always, it is the
conclusions intuitively suggested
by the experiment that will be so
modified.”

English summary of de Finetti and Savage, 1962)

The use of ‘initially’, ‘final’, and ‘chronologically’ all point to a
learning interpretation, although the continuation of the quote (in
the footnote) suggests a more iterative process.

4.1.2 A more naturalistic description

Sec. 4.1.1 made the point that statistics is not ‘learning’, in the sense
of progressing from initial beliefs to updated beliefs through the
application of an algorithm. What happens in practice? Statisticians
do not work in a vacuum, so I will presume throughout these notes
that the inference originates with a client.

Here are the steps in an actual statistical inference, from the
point-of-view of the statistician:

1. Meet the client, take delivery of a datapool, a research objective,
and some beliefs.
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2. Sanity-check the datapool, and push errors back to the client.
Keep doing this throughout the inference.

3. Meet the client again, refine the research objective and collect
additional beliefs.

4. Specify a set of random quantities X which encompass some of
the datapool (see Sec. 2.4), some of the client’s beliefs, and her
research objective, h.

5. Have a go at constructing E⇤. Be prepared to return to any of the
previous steps.

I write ‘datapool’ to emphasise that the dataset used in the infer-
ence is typically abstracted from a larger set of possible data. E⇤ is
the resulting inference, suitable for all functions of X, including h.
This process is represented in the following Figure; as in Sec. 2.4,
write the dataset as the truth of the random proposition Q.

Client Statistician E⇤
Q

Datapool

Dataset

X X?

Figure 4.1: The steps in an actual infer-
ence. The statistician is responsible for
synthesising the client’s beliefs and as
much of the datapool as is practical.

What makes this inferential process different from ‘learning’ are
the extra arrows, from the statistician back to the client, and from
the statistician back to the datapool. This backwards-and-forwards
process subverts the simplistic view that there can be a separation
between beliefs and data, and denies the notion that statistics is
about proceeding from ‘prior’ beliefs E to ‘posterior’ beliefs E⇤

through conditioning on data. Instead, E⇤ should be thought of as
an inference that satisfies two properties:

1. Pr⇤(Q) = 1, and

2. E⇤ reflects the beliefs of the client.

The desirability of these two properties is self-evident, although the
ways in which they are achieved are different. The first property is
built-in to the way in which E⇤ is constructed. The second involves
diagnostic assessment by the statistician and the client (see Sec. 8.1).

* * *
The next four sections all present ways of constructing an E⇤

with property 1. I will conflate the roles of client and statistician,
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for simplicity, and focus on the latter. For convenience I will tend
to refer to ‘Bayesians’ and ‘Frequentists’ as though they were two
different tribes of statisticians, like the Houyhnhnms and Yahoos of
Gulliver’s Travels. But although many statisticians will self-identify
as one or the other, generally a more pragmatic attitude prevails,
and where I write, e.g., ‘Bayesians’ one ought to read this as ‘statis-
ticians operating in a Bayesian mode’.

4.2 Brief review of Chapter 2

The portrait of statistical inference given in Chapter 1 and Chap-
ter 2 acknowledged from the outset our limitations as assessors of
uncertainty. Hence the need for a calculus that imposes simple and
intuitive rules. In the calculus of expectations, I specify my beliefs
about X as expectations of a set of random quantities, including
probabilities as a special case. Expectation is characterised, infor-
mally, in Def. 1.2, and defined by the properties given in Def. 1.4.

The approach of hypothetical expectations (and hypothetical
probabilities) introduced in Chapter 3 provides a powerful ap-
proach to extending the set of expectations I can specify, for exam-
ple by allowing me to reason causally within scenarios that I can
construct, which may or may not happen.

Among my beliefs, represented as expectations and hypothetical
expectations, I also include the dataset, represented as the truth of
the random proposition Q. Formally I specify the belief Pr(Q) 1,
but this is equivalent to thinning the joint realm X, removing all of
the x

(j) elements for which q(x

(j)) is false. The mechanics of statisti-
cal inference were described in Chapter 2. My expectations can be
checked for coherence, and they can be extended to expectations
of those random quantities which are the objective of the inference.
There is no need to distinguish between E and E⇤.

Typically I will find that my expectations of many random
quantities are not single values, but intervals. This ‘undecided’
aspect of my beliefs is a consequence of the limitations of my
beliefs. The width of the interval can be reduced in a number of
ways, all of which cost resources, but which might be justified
by the need I have for tightly-constrained beliefs. For example, I
might spend more time thinking about those beliefs which I have
quantified. Or I might go out and extend my beliefs by polling
experts. Or I might augment the dataset.

The computational tool is Linear Programming, see Sec. 2.2. But,
as that section discussed, this tool does not scale well with large
numbers of random quantities, because the size of the realm X is
exponential in the number of random quantities: that is why this
chapter does not stop right here. The calculation we ought to do is
often not practical, and an approximation must be found. As will
be seen in the next three sections, the approximation is to adopt a
level of personal omniscience which belies our limitations.
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4.3 Bayesian statistical inference

Bayesians are bold. They laugh in the face of ‘undecided’, assert-
ing that every expectation is specified. According to the FTP
(Thm 1.6), this is equivalent to specifying a p 2 Ss�1, where
pj = Pr(X =̇ x

(j)).5 Were I being a Bayesian, I would have such 5 As usual, Ss�1 is the (s � 1)-
dimensional simplex, defined in
(1.2), and s is the size of X, the realm
of X.

a p, and my expectation for any random quantity h(X) would be
computable using the FTP,

E{h(X)} = Â j h(x

(j)) · pj.

As explained in the previous chapters, this expression also covers
probabilities, hypothetical expectations, and hypothetical probabili-
ties.

Now X might be huge, comprising thousands if not millions of
elements. Clearly our Bayesian cannot think about each x

(j) 2 X

and specify each pj. Instead, he specifies a formula ‘p’ for which

pj  p(x

(j)) j = 1, . . . , s.

Here p is a PMF, as described in Sec. 1.5.1. In that section p(x)

represented the single value Pr(X =̇ x). But this is different. Now
‘p’ represents a function which returns a value for every x 2 X.
So were we to ask our Bayesian what his probability was for the
random proposition X =̇ x he would say “Hang on while I plug
x into my function p . . . Ah ha! It’s 0.002347843.” Now is this
really his probability? Well, it is now! This is the basic challenge
of the Bayesian framework, to propose a defensible function for
specifying a probability for every element of X. I come back to this
in Sec. 4.5.6 6 An alternative notation to the func-

tion p is the function f
X

. I would
prefer this alternative, but for the
fact that it is often useful to keep the
subscript slot that is filled by X free, to
allow for a more extensible notation.

Having surmounted this challenge, the Bayesian is then in good
shape. The dataset, represented as the truth of data proposition Q,
is incorporated into his beliefs by conditioning,

p⇤(x) := Pr(X =̇ x | Q) µ 1q(x) p(x) (4.1a)

by the Muddy table theorem (Thm 3.3). Summing over the whole
of X supplies the missing constant of proportionality, which is
Pr(Q)�1, presuming that this is positive. Finally, expectations of
interest are computed as

E⇤{h(X)} := E{h(X) | Q} = Â j h(x

(j)) · p⇤(x

(j)), (4.1b)

according to the CFTP (Thm 3.2).
Bayesians tend to take it for granted that the truth of Q is incor-

porated into beliefs by conditioning. The attractive features of this
method were described in Sec. 4.1.1.

The last two decades have seen a statistical computing revolution
in which this inferential calculation can be extended to joint realms
which are non-finite and non-countable, using Markov chain Monte
Carlo (MCMC) sampling techniques; see Besag et al. (1995) and Be-
sag (2004) for summaries, and Robert and Casella (2004) for details.
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With these techniques it is not necessary to enumerate X, and so the
size of X is not, in itself, an impediment to inference, as it would be
for the Linear Programming calculations described in Sec. 2.2. Also
it is not necessary to know Pr(Q). It is hard to overstate the way
in which the simultaneous development of MCMC sampling algo-
rithms and computing power has revolutionised Bayesian statistical
inference. There are now tools in which one supplies a p and a q,
and everything else is automated; see, e.g., Lunn et al. (2013) for a
description of BUGS.7 7 And I should mention JAGS, http:

//mcmc-jags.sourceforge.net/ and
the new kid on the block, STAN,
http://mc-stan.org/.4.4 Frequentist statistical inference

Frequentists are ostensibly more cautious than Bayesians. Unlike
Bayesians, they are unwilling to commit up-front to a single vector
p 2 Sm�1, preserving some ‘undecided’ in all of their expectations.
They do this by proposing a statistical model, which is a family of
PMFs indexed by a parameter q 2 W, where W is the parameter
space. This family is represented by the function ‘p’ where, for any
particular choice of q,

pj  p(x

(j); q) j = 1, . . . , s.

In other words, the Frequentist’s ‘p’ is a function with domain
X⇥W, where p(·; q) is a PMF for X, for any q 2 W. There is no risk
of confusing the Bayesian’s ‘p’ with the Frequentist’s ‘p’ because the
latter has a second argument.

With this statistical model, any expectation or probability is a
function of q:

E{h(X); q} = Â j h(x

(j)) · p(x

(j); q),

by the FTP. There is more discussion about families of distributions
in Sec. 4.7, but the material in this section should be read first.

In fact, this notion of a statistical model is completely general.
The vector p lives in Ss�1, which has the cardinality of the contin-
uum. Thus if W also has the cardinality of the continuum, e.g. the
convex interval [0, 1], then we can arrange a bijective relationship
between Ss�1 and W, and every possible p can be represented by a
q 2 W. But what actually happens, of course, is that the Frequentist
chooses the statistical model and W to severely restrict the set of
possible p.

A simple definition of the effective dimension of the statistical
model is the minimum number of expectations it takes to com-
pletely specify p. In standard statistical models this equates to
the dimension of W, which is usually treated as a product space
(see Sec. 4.7). For example, q = (l) for a Poisson model for X,
or q = (µ, s2) for a Normal model for X. In the Poisson model,
E(X; l)  v is sufficient to specify (l) and thus p, while in the
Normal model E(X; µ, s2) v1 and E(X2; µ, s2) v2 are sufficient
to specify (µ, s2) and thus p. So we should not get carried away by



56

the potential generality of the Frequentist approach: if the Bayesian
approach has effective dimension zero (p specified directly), then
typical Frequentist models might have effective dimension of ‘few’.
These are both a long way from the cardinality of the continuum!

Now to incorporate the belief that Q is true. The natural ap-
proach is for the Frequentist to consider each element of W. First,

p⇤(x; q) := Pr(X =̇ x | Q; q) µ 1q(x) p(x; q) (4.2a)

by the Muddy table theorem (Thm 3.3), where the missing constant
of proportionality is Pr(Q; q)�1, presuming that this is positive.
Then

E⇤{h(X); q} := E{h(X) | Q; q} = Â j h(x

(j)) · p⇤(x

(j); q) (4.2b)

by the conditional FTP. So far, this is a direct analogue of the
Bayesian approach, except with an added ‘; q’. What to do, though,
about the ‘width’ of W, represented by the unspecified value
q? Our Frequentist could report the union of the set of values
for E⇤{h(X); q} that is generated over those q 2 W for which
Pr(Q; q) > 0. Thus he remains ‘undecided’ because these expecta-
tions will not all coincide.8 8 There is no guarantee that the set of

expectations will be convex, though,
so it would not be correct to call it an
interval.

Unfortunately, the resulting union is typically far too wide to be
useful (or believable). The Frequentist solution is to constrain the
domain of q according to the truth of Q. By far the most popular
approach is to use the Maximum Likelihood (ML) estimate

q̂(q) := argmax
q2W

Pr(Q; q).

If this estimate is plugged-in for q, then we have the resulting
inference

Ê⇤
�

h(X)
 

:= E⇤
�

h(X); q̂(q)
 

, (4.3)

which is a point value with no ‘undecided’.
Sec. 4.7 provides a justification for using the ML estimate as the

‘plug-in’ value for q. Another reason for favouring the ML estimate
is that it gives sensible answers in some simple situations (IID
observations from the Exponential family, for example). Typically
the ML estimate has to be computed numerically. In this case, the
cost of evaluating Pr(Q; ·) is a major factor, where

Pr(Q; q) = Â j 1q(x

(j)) · p(x

(j); q).

This is a sum over X, which might be massive; finding the max-
imum over W will require many (thousands, if W has more than
one or two dimensions) of repetitions of this calculation. The one
tractable situation is the simple observation model (SOM, see
Sec. 2.4) combined with a statistical model with the product form

p(x; q) =
m

’
i=1

p(xi; q),
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because then

Pr(Q; q) =
n

’
i=1

p(yobs
i ; q).

It is no coincidence that this is the typical example in textbooks.
The more general situations are gruelling. The Expectation Maximisa-
tion (EM) algorithm has stood the test of time; see Hastie et al. (2009,
sec. 8.5).9 9 And also the excellent Wikipedia

page at https://en.wikipedia.org/
wiki/Expectation-maximization_

algorithm4.5 Bayesian/Frequentist synthesis

In Sec. 4.3, where did the Bayesian’s p come from? In the synthesis
of the two approaches to statistical inference it comes from accept-
ing the notion of a statistical model p and a parameter q 2 W, but
choosing to treat q itself as uncertain.10 I hesitate to call q a ‘ran- 10 This synthesis position is somewhat

conciliatory. A more general treatment
of statistical modelling is given in
Chapter 7.

dom quantity’, because typically it does not have an operational
definition. Instead I will call it a random variable. The Bayesian
treats the statistical model as a conditional distribution, which is
formally valid because p(x; t) behaves exactly like the hypothetical
probability Pr(X =̇ x | q =̇ t).

One difficulty immediately presents itself. I have argued that
operationally-defined random quantities must have finite realms.
But there is no such restriction on random variables,11 and in fact in 11 But we must be mindful of the PEP

(Def. 1.1): whenever we use such
random variables, they must not create
pathologies in the distribution of the
random quantities.

most cases random variables are constructed to have uncountably
infinite realms. In this chapter I will treat q as an absolutely continu-
ous random variable, with a probability distribution represented as
the probability density function (PDF) pq , for which

pq(t)dt = Pr(t <̇ q ̇ t + dt).

This implies

pq(t) � 0 and
Z

W
pq(t)dt = 1.

Treating q as continuous provides some notational variety. All of
the results presented so far generalise to such random variables,
under a stronger countable additivity axiom for expectation (see
Sec. 1.3).

Armed with a PDF for q, the Bayesian constructs the joint distri-
bution

Pr(X =̇ x, q =̇ t) p(x; t)pq(t)dt, (4.4)

following the template in (3.2).12 The PDF pq is termed the prior 12 For simplicity, I write q =̇ t rather
than t <̇ q ̇ t + dt.distribution—a label I do not like for reasons given in Sec. 4.1.1, but

we are stuck with it. The choice of p and pq induce a prior expecta-
tion E over functions of X. However, this may not be a meaningful
representation of anyone’s beliefs. First, as noted in Sec. 4.1.2, the
statistician’s objective is to construct a meaningful E⇤, and p and pq

(and the E they imply) are just ingredients in this process. Second,
Sec. 4.6 will explain why the Bayesian is sometimes able to replace
a considered pq with something flatter and more tractable. This is
not to downplay the difficulty of specifying pq , but to only to note
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that we should be careful not to misjudge ‘ostentatiously wrong’
choices of pq .

With pq specified, the Bayesian is back on-track, except now the
uncertain quantities are (X, q) rather than just X. Hence, provided
that Pr(Q) > 0,

Pr(X =̇ x, q =̇ t | Q)

= Pr(X =̇ x | q =̇ t, Q)Pr(q =̇ t | Q) by seq. cond. (Thm 3.9)

= p⇤(X =̇ x; t)p⇤q (t)dt (4.5a)

where the first term was defined in (4.2a), and

p⇤q (t)dt := Pr(q =̇ t | Q) =
Pr(Q; t)pq(t)dt

Pr(Q)
(4.5b)

by Bayes’s theorem (Thm 3.11); termed the posterior distribution.
Treated as a function of t 2 W, Pr(Q; t) is termed the likelihood
function. Hence the Bayesian mantra:

posterior µ likelihood⇥ prior.

Finally,

E⇤{h(X)} := E{h(X) | Q}

=
Z

Â j h(x

(j)) · p⇤(X =̇ x

(j); t)p⇤q (t)dt CFTP (Thm 3.2) and (4.5a)

=
Z

E⇤
�

h(X); t
 

p⇤q (t)dt, (4.5c)

where the first term in the integrand previously occurred in (4.2b).
In other words, the Bayesian knows precisely how to handle the
‘width’ of W: he averages E⇤{h(X); q} over the posterior distribu-
tion p⇤q . This result is important enough to have its own number.

Theorem 4.2. In order to incorporate probabilistic parametric uncertainty
into an inference, do the inference for each t 2 W and then average the
result over the posterior distribution p⇤q .

* * *
This, then, is the key difference between the Frequentist ap-

proach and the Bayesian approach. Let us suppose that all agree on
the statistical model p(·; q) with its parameter q 2 W (but see the
discussion at the end of Sec. 4.6). The Frequentist approach eschews
the specification of a prior distribution pq but must then adduce
an ‘extra-probabilistic’ principle for handling the width of W in the
inference.13 The difficulty for the Frequentist is that no compelling 13 ‘Extra’ as in ‘outside’ or ‘beyond’.

principle has been found. Although maximum likelihood is the
most popular, collapsing W to a single point q̂(q) is a drastic step.

In contrast, the Bayesian approach specifies a prior distribution
pq and is then able to handle the width of W within the standard
rules of probability. The difficulty for the Bayesian approach is
that q is not operationally-defined, and so pq is not a very natural
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PMF to specify. And so, in this case also, ‘extra-probabilistic’ prin-
ciples are often adduced to handle the choice of pq ; see Kass and
Wasserman (1996) or Robert (2007) for reviews. The next section
tackles the tricky question of when it is relatively harmless for a
Bayesian to replace a carefully considered prior distribution with a
rule-based one.

4.6 Stable estimation

As already discussed, the course of an inference involves model
development, in which the statistician and the client iterate through
a sequence of models, possibly varying the subset of the datapool
which is modelled directly. Each model might have a different
parameter space, which is bad news for the Bayesian, who has
to specify a prior distribution for the parameters of each model.
Early on, he may well prefer to use a rather simple rule-based prior
distribution, and focus his efforts, as the Frequentist would, on the
development of the model. But he may find, as his choice for the
model settles down, that the effect on his inference of changing the
prior distribution is rather small. This insentitivity to the choice of
prior distribution can be formally analysed, and the result is a set
of qualitative guidelines under which the Bayesian can replace a
carefully considered prior distribution with a rule-based one, at no
serious detriment to his inference.

The analysis was presented in a classic paper, Edwards et al.
(1963), but was almost certainly the work of the third author,
L.J. Savage (see Lindley, 1980). I will adapt Savage’s analysis
to my own notation. Let W := {t(1), . . . , t(k)} be the parameter
space, which I take to be finite but otherwise unstructured.14 Let 14 Finiteness is not important: I impose

it for simplicity and because two
applications of this result below
(Sec. 6.6 and Sec. 8.2.1) are naturally
expressed in terms of a finite set.

u := (u1, . . . , uk) be proportional to the prior probabilities, and
v := (v1, . . . , vk) be proportional to the likelihoods, i.e.

ui µ pq(t(i)) and vi µ Pr(Q; t(i)) i = 1, . . . , k.

The vectors u and v are the primitive quantities; everything below
is derived from these. Define

pi :=
vi

Â j vj
and qi := p⇤q (t

(i)) =
vi ui

Â j vj uj
i = 1, . . . , k.

Thus q := (q1, . . . , qk) are the posterior probabilities, and p := (p1, . . . , pk)

are the normalised likelihoods. In these terms our interest is in
when we can approximate an inference based on q with one based
on p, for which we do not have to specify a prior distribution.

Savage provided three stability conditions that are sufficient to
provide a small upper bound on the error of such an approxima-
tion, based around a subset B ⇢ W. In each case I give the formal
condition and its interpretation.

1. There is an a⌧ 1 for which

Â
i 62B

pi  a Â
i2B

pi.
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I The subset B contains almost all of the relative likelihood.

2. There is a b⌧ 1 for which

y  ui  y(1 + b) for all i 2 B

(the value of y is unimportant).

I The prior probabilities change very little in B.

3. There is some q for which

ui  qy for all i,

where g := aq ⌧ 1.

I The prior probabilities are nowhere very large compared to
their (nearly constant) values in B.

Savage proved the following result (Implication 5, p. 203).15

15 For those referring to the original
paper, I have simplified the expression
by approximating d and e in terms
of a, b, and g, using d ⇡ b + g and
e ⇡ a + b. So technically the result as
stated is not quite true.

Theorem 4.3 (Stable estimation theorem).

Let g : W! R have upper bound G. Then
���Â t g(t(i)) pi � Â t g(t(i)) qi

���  G ·
�
a + b + g + max{a, g}

�
.

As an immediate corollary, set g(t)  1t2C for any C ⇢ W, and
then Thm 4.3 implies that the total variation distance between the
normalised likelihood and the posterior distribution is bounded
above by a + b + g + max{a, g}.

Referring back to Sec. 4.5, we are interested in the inference

E⇤{h(X)} =
Z

E⇤{h(X); t}p⇤q (t)dt =
Z

g(t) q(t)dt

taking g(t)  E⇤{h(X); t}, and switching to an absolutely continu-
ous q, with q p⇤q . We might consider instead the approximation

Ẽ⇤{h(X)} :=
Z

g(t) p(t)dt

replacing the posterior distribution q with the normalised likeli-
hood p. Thm 4.3 asserts that the relative absolute error in replacing
E⇤ with Ẽ⇤ is bounded above by a + b + g + max{a, g}. If the three
stability conditions hold, then this value is close to zero, and

(i) the normalised likelihood is close to the posterior distribution
in total variation distance, and

(ii) the approximate inference Ẽ⇤{h(X)} is close to the actual
inference E⇤{h(X)} in relative absolute error.

In principle the crucial set B can be any subset of W. Usually,
however, W has a topology. In this case there is a compelling reason
to restrict B to a contiguous subset of W, because smoothness in the
prior distribution will then imply a smaller b in condition 2 than
would otherwise be the case. Suppose that q := (q1, . . . , qp) with
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W ⇢ Rp. In this case a simple and effective strategy for identifying
a B which respects the topology of W is to define it as a level set for
the likelihood, i.e.

B :=
�

i : vi � c
 

,

and adjust c from the maximum likelihood value downwards until
a sufficiently small a is reached. This tends to generate connected
B’s because small perturbations in the parameter value tend to
cause only small perturbations in the likelihood. Helpfully, the level
sets of the likelihood are transformation-invariant, so it would not
matter whether the parameter was q or some bijection (see Sec. 4.7).

Once a B with a small a has been found, the statistician must
decide whether b and g are sufficiently small, to satisfy stability
conditions 2 and 3. Of course he could do this explicitly if he has
specified a prior distribution. But the attraction of Savage’s stability
conditions is that he may be able to do this qualitatively, without
specifying a prior distribution. Edwards et al. (1963) provide a de-
tailed illustration. This is not a trivial exercise, even in the simple
models that were ubiquitous thirty years ago. Now, however, we
can compute with a very diverse set of models, and there has also
been a widening of the kinds of applications that statisticians con-
sider. So it is really quite hard to know whether, for one particular
model, stability conditions 2 and 3 apply.16

16 Lindley (1980) alluded to this issue
in his review of Savage’s work.There are two guidelines that can help. First, to construct models

in which the parameters are meaningful. For example, to map
individual parameters to distinct beliefs about X. It is tempting to
treat the parameters in a purist manner, devoid of meaning except
as an index into a family of distributions (Sec. 4.7). But in this
case it is impossible to have well-formed beliefs about the prior
probabilities, and in particular beliefs about whether these prior
probabilities might be much larger in the complement of B than in
B, violating stability condition 3. Hierarchical models (Sec. 7.4) are
a powerful framework for constructing models with meaningful
parameters.

The second guideline is to favour models with fewer parameters.
This limits the opportunity for one parameter to offset another
in the likelihood, and should result in a more compact B with a
smaller b in stability condition 2. Also, of course, the more param-
eters there are, the harder it is to ascribe a distinct meaning to each
parameter.

Both of these guidelines are basic tenets of statistical modelling,
followed by experienced statisticians of all tribes; see, e.g., Lehmann
(1990) and Cox (1990), in the same volume of Statistical Science
(vol. 5, num. 2). For the Bayesian, though, they have the benefi-
cial side-effect of enabling an assessment of whether the stability
conditions hold. If so, the Bayesian can simplify his inference by
replacing a carefully-specified prior distribution with a flat and
tractable one, confident in the knowledge that the relative absolute
error in his inference will be small.

When we inspect a published Bayesian inference, we often find
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such flat and tractable prior distributions, such as pq1(t1) µ 1 or
pq2(t2) µ 1/t2. It is vey important to appreciate that in this case the
X-margin of the joint distribution (X, q) is not a representation of
the Bayesian’s beliefs about X. Instead, the Bayesian has replaced
his actual joint distribution for (X, q) with another distribution
which does not have the right X-margin, but which still gives
approximately the right posterior distribution and inference about
h(X) after conditioning on the dataset. This issue will resurface in
Chapter 8.

4.6.1 A model for scientific induction

I deliberately refrained from framing the previous material in
terms of the question “When might two statisticians agree in their
inference?” This has been a traditional concern, and is a major
preoccupation of ‘learning’ theories. The challenge for such theories
is to explain why, if beliefs are subjective, we often come to hold
many beliefs in common. A superficially attractive answer is to
point to the Stable estimation theorem, or something like it, which
indicates that agreement on the model and a sufficiently large
dataset might do the trick, for Frequentists and Bayesians alike.

However, this answer fails, from a statistical point of view,
because there is no reason for two statisticians to have the same
model, or to make the same choice about which portion of the
dataset to condition on. Hence the likelihood is just as subjective
as the prior distribution.17 This is not to say that the choices are 17 In fact I would go further, based on

my own experience, which I doubt is
unusual. I would be unlikely to choose
the same model and dataset from
one year to the next. New modelling
frameworks are appearing all the time;
often these were previously ruled out
for computational reasons that are
being eroded by faster CPUs, more
memory, and parallel computation.
Also, I am getting more experienced.

not similar enough to lead to the same inferences. But we cannot
prove similarity of beliefs in a formal sense unless there are strict
conditions on the model.

But, just for fun, here is a probabilistic model for why scientists
might come to agree on the predictions of a scientific theory. Sup-
pose there is a sequence of experimental outcomes, E1, E2, . . . , all of
which are implied by a scientific theory M. Represent this as

Pr(EA | M) = 1 for all A, (†)

where EA denotes the conjunction of any subset A of the experi-
mental outcomes. Then we have the following remarkable result,
termed the First Induction Theorem by Good (1975), and originally
proved by Wrinch and Jeffreys (1921).

Theorem 4.4 (First Induction Theorem).

Let Pr(EA | M) = 1 for all A. If Pr(M) > 0 then

lim
n!•

Pr(En+1 | E1, . . . , En) = 1.

Proof. Under the conditions of the theorem,

Pr(EA) = Pr(EA | M)Pr(M) + Pr(EA | ¬M)Pr(¬M) by the LTP, Thm 3.10

� Pr(EA | M)Pr(M)

= 1 · Pr(M).
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Now let A {1, . . . , n} and write the lefthand side as

pn := Pr(E1, . . . , En) = Pr(E1)
n

’
i=2

Pr(Ei | E1, . . . , Ei�1)

using the Factorisation theorem (Thm 3.8). {pn} is a monotone
decreasing sequence bounded below by Pr(M). Since Pr(M) > 0
it converges to a positive limit, in which case Pr(En | E1, . . . , En�1)

converges to 1.

The remarkable thing about this result is that the displayed
equation in Thm 4.4 makes no reference to the theory M at all. It
indicates that anyone who believes that M implies the E’s and that
M is not utterly false is bound, sooner or later, on the accumulation
of enough evidence, to act as though M is true, in terms of their
expectations for other implications of M. I think we could criticise
the condition Pr(M) > 0, on the basis that scientific theories are
always abstractions, and that no theory works alone in implying an
experimental result (see, e.g., Cartwright, 1983). But it is a very cute
proof.

A feature of the First Induction Theorem is that its conditions
are not sufficient to imply that limn Pr(M | E1, . . . , En) = 1. But the
reason is straightforward: there may be another model which is
equivalent to M. If this is ruled out then the result follows. Good
(1975) calls this the Second Induction Theorem; it was first proved by
Keynes (1921, ch. XX). I’m not sure it means anything—I am just
including it for completeness.

Theorem 4.5 (Second Induction Theorem). Under the same conditions
as Thm 4.4, and the additional condition limn Pr(E1, . . . , En | ¬M) = 0
where ¬M is the complement of M,

lim
n!•

Pr(M | E1, . . . , En) = 1.

Proof. Using Bayes’s Theorem in odds form (see after Thm 3.11),

Pr(M | E1, . . . , En)
Pr(¬M | E1, . . . , En)

=
Pr(E1, . . . , En | M)

Pr(E1, . . . , En | ¬M)
· Pr(M)

Pr(¬M)

=
1

Pr(E1, . . . , En | ¬M)
· Pr(M)

Pr(¬M)

which tends to • under the conditions of the Theorem, so that
Pr(M | E1, . . . , En) tends to 1.

4.7 Models and invariance

A family of models is simply a set F, where each p 2 F is a PMF for
X. The Frequentist in Sec. 4.4 must specify F, likewise the Bayesian
in Sec. 4.5. The crucial point, which can easily be obscured in
textbook descriptions, is that the set F is the basis for any inference.
In particular, inferences should be invariant to the way in which
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we label the elements of F, because labels are ephemeral. In this
sense, {p, W} is just a way of labelling F, and so there should be a
property of invariance with respect to parameteric models. So first,
a statement about when two apparently different models index the
same F.18

18 In this definition and this section
I suppress the X subscript to make
space for the model label.Definition 4.1 (Equivalent parametric models). The parametric models

�
pq(x; t), t 2 W

 
and

�
pf(x; s), s 2 F

 

are equivalent exactly when there is a bijection g : W! F such that

pq(x; t) = pf(x; s) for s = g(t).

For example, the Poisson model

pq(x; t) = e�t tx

x!
t 2 R++

is equivalent to the model

pf(x; s) = e�es esx

x!
s 2 R

because the two are linked by the bijection g = log. This definition
can now be used to state a principle of invariance.

Definition 4.2 (Model invariance). An inference about random quan-
tities is model-invariant exactly when it is the same under equivalent
parametric models.

Now we can prove that the plug-in inference Ê⇤{h(X)} is model-
invariant. But first we have to prove the extremely important result
that the maximum likelihood (ML) estimate is invariant, although
this has to be interpreted slightly differently from ‘model-invariant’,
being a statement about parameters rather than about random
quantities.

Theorem 4.6 (Invariance of maximum likelihood).

The ML estimate is invariant, in the sense that if q̂(q) and f̂(q) are
the ML estimates of two equivalent parametric models for the dataset
Q := q(X), then f̂(q) = g(q̂(q)).

Proof. The ML estimate of q̂(q) satisfies

Prq{Q; q̂(q)} � Prq{Q; t} for all t 2 W.

As pq and pf are equivalent parametric models, substitute from
(4.1) to give

Prf{Q; g(q̂(q))} � Prf{Q; g(t)} for all t 2 W.

But the two sets
�

g(t) : t 2 W
 

and F are equal because g is a
bijection, and hence

Prf{Q; g(q̂(q))} � Prf{Q; s} for all s 2 F,

showing that g(q̂(q)) is the MLE of f, as required.
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The next result follows straightforwardly.

Theorem 4.7. The plug-in inference

Ê⇤q{h(X)} := Eq{h(X) | Q; q̂(q)}

is model-invariant.

Proof. Apply the Muddly table theorem (Thm 3.3) to verify that for
equivalent pq and pf,

p⇤q (x; t) =
1q(x) pq(x; t)

Prq(Q; t)
=
1q(x) pf(x; s)

Prf(Q; s)
= p⇤f(x; s)

for s = g(t). Hence E⇤q{h(X); t} = E⇤f{h(X); s} for s = g(t). Then

Ê⇤q{h(X)} = E⇤q{h(X); q̂(q)} by definition

= E⇤f{h(X); g(q̂(q))} see immediately above

= E⇤f{h(X); f̂(q)} by Thm 4.6

= Ê⇤f{h(X)} by definition again,

as required.

It is important to appreciate that other types of parameter es-
timate may not have the invariance property (e.g. Method of Mo-
ments estimators), and thus using them as plug-ins would make the
Frequentist inference sensitive to the labelling of F, which must be
undesirable.

* * *
As long as his inferential method is parameterisation-invariant,

the statistician can choose whichever parameterisation of F is most
convenient for him. This is an important practical point, because
some choices of parameterisation are far more convenient than
others. For example, when maximising over the parameter space
to find the value of the MLE, it is very convenient if the parameter
space can be written in a product form, i.e. if q = (q1, . . . , qp) then

W = W1 ⇥ · · ·⇥Wp,

because it is far easier to explore rectangular regions than non-
rectangular ones. In this case the parameters are said to be variation
independent. For example, in the Normal statistical model we have
q = (µ, s2) 2 W = R ⇥ R++ for a parameterisation in terms of
the expectation and the variance. Almost all practical models have
parameters that are variation independent, although there is no
theoretical reason for this property to be favoured.

Also, the statistician can choose a parameterisation in which

h⇤(q) := E⇤{h(X); q}

has a simple form (if this does not conflict with the previous prop-
erty of variation independence). Forms such as h⇤(q) = q1, or some
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linear combination of the elements of q, are popular. So popular, in
fact, that a label is available for those elements of q which are not in
h⇤(q): they are called nuisance parameters. ‘Old fashioned’ textbooks
devote a lot of material to particular families and parameterisations
in which the nuisance parameters can be circumvented.19 This ma- 19 See, e.g., Cox and Hinkley (1974). I

say ‘old fashioned’, but this remains
one of my favourite textbooks.

terial has largely been superseded by empirical methods such as the
bootstrap (see, e.g., Davison et al., 2003), or by a Bayesian approach,
as discussed in Sec. 4.5.

Set estimators. Thm 4.6 showed that the ML estimate is invariant,
in the sense that the results from equivalent models map onto
each other. The same property can be demanded of other types of
inference about the parameters. Here is a very useful invariance
result for estimates of q that are sets in W rather than points (it
generalises Thm 4.6).

Theorem 4.8 (Invariance of likelihood function level sets).

The level sets of the likelihood function are invariant, in the sense that if

Cq :=
�

t : Prq(Q; t) � c
 

and Cf :=
�

s : Prf(Q; s) � c
 

are level sets from two equivalent models, then g(Cq) = Cf.

Proof. Fix c. Then

Cq =
�

t : Prq(Q; t) � c
 

=
�

t : Prf(Q; g(t)) � c
 

if pq and pf are equivalent

=
�

g�1(s) : Prf(Q; s) � c
 

as g is bijective

and hence g(Cq) =
�

s : Prf(Q; s) � c
 
= Cf, as required.

This result will be used in the definition of confidence sets
(Sec. 8.5). Concerning the latter, note that ‘Wald-style’ confidence
intervals of the form

q̂(q)⌥ k⇥cSEq̂(q)

for some constant k (like 1.96), where cSEq̂(q) is the estimated stan-
dard error, are not invariant in the sense given in Thm 4.8. Again,
this is undesirable. Twenty years ago this would have been for-
givable owing to computational cost, because approximating the
estimated standard error is much cheaper than identifying the lim-
its of an appropriate level set. These days, though, computational
cost should not be an issue.


