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This chapter is about prediction. Prediction is the task most often
required of the statistician by the client. In order to understand how
there can be good and bad predictions, we start with a brief outline
of the more general subject of Decision Theory (Sec. 5.1), and
the very powerful Bayes Rule theorem (Sec. 5.2). Sec. 5.3 outlines
the special case of prediction, and the reasoning that leads, in
mamy cases, to the optimal prediction rule being the hypothetical
expectation. There are some tricky implications for Frequentist
inference, notably the use of the Maximum Likelihood estimator as
a plug-in for the parameter (Sec. 5.4). Finally, Sec. 5.5 discusses a
vrey modern prediction problem, in order to explore when it is that
computer scientists will make better predictions than statisticians.

5.1 A little Decision Theory

In a decision problem, the client would like to choose an action
from among a range of options, on the basis of observations she
already has, or expects to acquire.1 Since this choice ought to be 1 Or maybe there are no observations:

this is an easy special case.optimal according to some criterion, we formalise this problem as
follows.

1. A set of random quantities, X 2 X, and a set of observables,
Y 2 Y.

2. A set of possible actions, A.

3. A decision rule d : Y! A. The intepretation of ‘d(y)’ is ‘the action
chosen by decision rule d based on the outcome Y  y’.

In other words, the client gets to observe Y before choosing action a,
and this choice is represented in the form of a rule d.

4. A loss function L : A⇥X ! R. The interpretation of ‘L(a, x)’ is
‘the expected loss incurred by the client who chooses action a
when X  x’.

The loss function can depend on y as well as X, but I have left this
out, for simplicity.

The loss function exists to define what it means for an action or
a decision rule to be optimal. An action or decision rule is optimal
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exactly when it minimises the expected loss. I assume that every
reasonable definition of ‘optimal’ can be represented in these
terms.2 But is it a task of mind-blowing complexity to specify such 2 This is bold but—I believe—

justifiable. There is a theory of rational
choice which asserts exactly this, un-
der some conditions; see, e.g., DeGroot
(1970) or Smith (2010). The conditions
are strong, for the individual, but I
think reasonable for an agent making
choices on behalf of others.

a loss function in practice, because loss is such a complex concept.
For example, a client managing the risk of a natural hazard, like

a volcano, must include in this one function the loss of life, grief
and trauma for the survivors, the financial costs of destruction and
rebuilding, and so on. A client designing an early warning system
for a volcano must also include reputational loss of the system (e.g.
if it produces lots of false alarms and people start to ignore it).

However, decisions have to be made; and, indeed, decisions
of this level of complexity are made all the time, decisions which
affect us all. My strong preference, for decisions which affect me, is
for a decision which is defensible according to a stated loss function
which I can inspect and reflect on. This acknowledges the point
made at the start of Chapter 1, that people are extremely poor at
reasoning under uncertainty. Frankly, I would have little confidence
in an an oracular pronouncement such as “We have thought very
deeply about this issue and have decided that the best action is
a”. I would much rather hear a pronouncement along the lines of
“According to the admittedly simplistic loss function L, the optimal
choice of action is a, with a0 a close second. But, taking account of
other hard-to-quantify aspects of the problem, we have decided that
the best action is a0.”

A standard hard problem in the public sector is to balance loss
of life against financial cost; for example when deciding whether to
make road improvements at an accident blackspot. The common ap-
proach is to value each life in money terms, and there are standard
values for this purpose. Any such value will undoubtedly be highly
contentious. A telling point which is often overlooked is that the
optimal action may well be robust to the particular choice of value.
This is something that can be checked and demonstrated in a for-
mal framework, but not in an oracular pronouncement. And if it is
not true, then one option is to reopen the discussion about what the
financial value of a life should be, in these calculations. Of course
another option is to reject utterly that these choices should be made
according to a financial value of a life. This does not undermine
the existence of a loss function, but it makes it much harder to
construct one. Smith (2010, ch. ???) discusses ‘multi-attribute’ loss
functions.

A realistic loss function will often depend on many quantities,
many more than are represented in the random quantities X. Here
X might represent some of the most important and easy-to-quantify
determinants of loss. The presence of missing quantities implies
that the loss function is itself an expectation. For suppose there is a
more complete loss function L[a, (x, z)], which includes values for
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the additional tricky quantities Z. Then

E{L[a, (X, Z)]} = Â
x

E{L[a, (X, Z)] | X =̇ x} · p(x) by the LIE, Thm 3.5

= Â
x

E{L[a, (x, Z)] | X =̇ x} · p(x) by Thm 3.7

⌘Â
x

L(a, x) · p(x)

= E{L(a, X)} by the FTP, Thm 1.6

provided that L(a, x) := E{L[a, (x, Z)] | X =̇ x}. Therefore the loss
function L is best treated as the expected loss supposing that X =̇ x.
This is also very challenging to specify.

Therefore we must acknowledge at the very start that difficul-
ties in specifying the loss function imply that the statistician is
not going to produce the client’s optimal action or decision rule.
Rather, he operates more in the role of ‘critical friend’, helping the
client to rule out bad choices, and to think more clearly about her
preferences.

5.2 The Bayes Rule theorem

From now on I will treat X and Y as scalars, simply to reduce the
amount of ink on the page.

A decision rule d is like a playbook. Before knowing the value
of the observables, the client is able to say how she would act for
each possible outcome in Y. Thus, a decision rule is about being
prepared. If the client is responsible for real-time risk management,
then she can respond rapidly to the observations as they come in.

Of course it is rarely that simple in practice, as the actual obser-
vations will tend not to be precisely the ones that were anticipated,
and not a superset of them either. In this situation the decision rule
is more about guidance: the client might find a y in the playbook
that is sufficiently like the actual observations that d(y) is a rea-
sonable candidate for a good action. And presumably the process
of computing the decision rule, involving specifying an action set
and a loss function and thinking about uncertainty, also equips the
client to make better decisions under pressure.3 3 “Plans are worthless, but planning is

everything.”, Dwight D. Eisenhower,
1957.

In other situations, where a rapid response is not required,
decision rules are important in experimental design, but less so in
choosing between actions. If the observations are already known
then there is little reason to compute the decision rule for any value
of Y other than yobs. In this section I consider decision rules in
general, and then the choice of optimal action in situtations where
Y is known.

As anticipated in the previous section, the optimal rule is one
which minimises expected loss. This rule is termed the Bayes rule.
But we must be careful about the precise definition, because of the
interaction between the choice of action, a, and the client’s beliefs
about X.
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For example, suppose that

A =
�

wear sandals, wear shoes

 

and X =
�

dry, rainy

 

.

I do not believe that my choice of footwear influences the weather,
although it might sometimes seem like that, and hence my beliefs
about X are invariant to a. On the other hand, suppose that

A =
�

don’t cloud seed, cloud seed

 

and X =
�

dry, rainy

 

.

In this case, the purpose of the action is to influence the weather,
and so there is a prima facie case that the client’s beliefs about X
depend on a.4 4 See Levin et al. (2010) for an assess-

ment of the long-running Israeli cloud
seeding experiment.

So beliefs about X ought to be able to depend on the choice a. At
the same time, though, beliefs about Y cannot depend on a, because
Y is observed before action a is chosen. Thus the client’s PMF over
(X, Y) should depend on a and factorise as

p(x, y; a) = p(x | y; a)p(y). (†)

Now consider some decision rule d. The expected loss from using
this rule, prior to knowing X or Y, is

E{L(d, X)} := Â
y

Â
x

L[d(y), x]p{x | y; d(y)}p(y) (‡)

by the FTP, and using the factorisation in (†). Now we can define
the Bayes Rule.

Definition 5.1 (Bayes Rule).
The rule d⇤ is a Bayes Rule exactly when

d⇤ := argmin
d2D

E{L(d, X)}

where D is the set of all functions from Y to A.

Now this looks like a hopelessly intractable problem: maximis-
ing a function, possibly very complex, over the space of all possible
functions mapping from observations to actions. Which makes the
following result almost miraculous.

Theorem 5.1 (Bayes Rule theorem).

d⇤(y) = argmin
a2A

E{L(a, X) | Y =̇ y; a}. (5.1)

The following proof is intriguing. It uses the existence of the
PMF p(x, y; a) to establish an ordering between two expectations.
This is the power of the FTP: mere existence of the PMF is enough.

Proof. We take an arbitrary rule d and show that E{L(d, X)} � E{L(d⇤, X)}:

E{L(d, X)} = Â
y

Â
x

L[d(y), x]p{x | y; d(y)}p(y) from (‡)

�Â
y

min
a2A

n

Â
x

L[a, x]p{x | y; a}
o

p(y) as p(y) � 0

= Â
y

n

Â
x

L[d⇤(y), x]p{x | y; d⇤(y)}
o

p(y) by (5.1)

= E{L(d⇤, X)} (‡) again
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as required, where the CFTP (Thm 3.2) is used to move between
(5.1) and the equivalent representation as a sum over x with respect
to p(x | y; a).

This result is a direct consequence of the definition of hypothet-
ical expectation given in Def. 3.2, and the implication that this has
for the factorisation of the PMF of (X, Y). It says, in words: in order
to determine your optimal action when Y ! y, simply imagine
yourself in the hypothetical world in which Y = y, and choose your
best action in this world. In retrospect such a result is highly reas-
suring, because any other result would seem, again in retrospect,
rather bizarre. It is another confirmatory result for the rightness of
Def. 3.2 as the defining property of a hypothetical expectation.

* * *
Now consider the case where the client knows the value of the

observable to be yobs, and wants to determine her optimal action.
If she has a pX|Y(· | yobs; a) then she can compute a E⇤{L(a, X)}
for each a, where, as before, the asterisk indicates ‘|Y =̇ yobs’. In
this way she constructs a complete ordering over the elements of A.
So she will be able to see immediately which is the best a, i.e. the
Bayes action a⇤, which other a’s are almost as good, which a’s are
hopeless, and so on.

a1

a2

a3

a4a5

a6

a7

Figure 5.1: A strict partial ordering
on A, in which there is a directed
path from a to a0 exactly when a � a0.
A⇤ = {a2, a3, a6, a7}.

But what if she has only limited beliefs about (X, Y)? In this case,
following the template outlined in Chapter 2, she represents her
beliefs as best she can (Sec. 2.1 and Sec. 2.3), includes the observa-
tions as an additional belief (Sec. 2.4), and then computes a lower
and an upper bound for E{L(a, X)} for each a (Sec. 2.2). Now she
no longer has a complete ordering over the actions. What she has
instead is a (strict) partial order, where a � a0 exactly when the up-
per bound of E{L(a0, X)} is below the lower bound of E{L(a, X)}.
In the best situation, there will be an a⇤ for which a � a⇤ for every
a 6= a⇤. Then she will have a unique optimal action. Otherwise, the
best she can do is identify a set A⇤ ⇢ A such that each member of
A⇤ is the rightmost element in some sequence; see Figure 5.1. All
of the actions not in A⇤ are ruled out, but an additional principle is
required to select a single action from within A⇤.

So limited beliefs allow us to rule out bad actions, but not nec-
essarily to select a single best action. This should not present
difficulties, because only the easily-quantified aspects of loss can
be represented in the loss function. Even in the case where she
has a complete ordering on A, the client ought always to consider
additional non-quantifiable aspects of each action, and, as outlined
in Sec. 5.1, the purpose of decision theory is to narrow down the set
of actions she needs to consider.

5.3 Prediction problems

A prediction problem is a special case of a decision problem, in
which the objective is to predict the value of the random quantity
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X based on the value of Y. This prediction is represented in terms
of an action space A = R, a decision rule d : Y ! R, and a loss
function L : R⇥ X ! R. Thus L(x0, x) is the expected loss that
follows from predicting x0 when the actual value is x. Letting
the prediction be a value in R rather than its subset X is a useful
generalisation. If necessary the action space can be restricted to X

by setting L(x0, x) • when x0 62 X.
There seem to be two main types of prediction problem. In the

first, the action is a simple function of the prediction, and hence
the loss function on the action translates to a loss function on the
prediction. In this type of prediction problem, different clients,
or the same client in two different situations, can have different
loss functions. Milner and Rougier (2014) give a straightforward
example. The amount of a drug that vet gives an animal is a simple
function of its weight. With some drugs, such as wormers, an
under-dose is more serious than an over-dose. With other drugs,
such as anaesthetics, the opposite is true. Therefore the vet’s loss
function for her prediction of an animal’s weight is asymmetric,
reflecting the different losses from under- and over-dosing, and
depending on the drug.5 This type of prediction problem falls 5 In the field, a vet predicts an ani-

mal’s weight using easier-to-make
observations like girth.

under the general framework of Sec. 5.1.
The other type of prediction problem is the ‘generic’ predic-

tion. In this case the client is a specialist tasked with making a
prediction about X, which will then be used by others in their own
decision problems. So the client might be, e.g., a meteorologist, a
vulcanologist, or a hydrologist. In these areas there is a wide range
of stakeholders, each with their own action set and loss function.
Ideally, each stakeholder would collaborate with a specialist and
a statistican to choose an appropriate action or decision rule us-
ing a full set of beliefs about X. But this is often impractical, and
costly. A quick-and-dirty alternative is for each stakeholder to
approximate their expected loss using

E{L(a, X) | Y =̇ y} ⇡ L[a, X̃(y)] (†)

where X̃ is a ‘generic’ prediction of X based on the value of Y.
This is a lot cheaper, and since cost is part of the loss, there will be
many applications where (†) is the right choice, because the fees of
the specialist and the statistician will outweight the benefit to the
stakeholder from a better choice of action.

As an intriguing aside, note that if the loss function L is linear in
some function g(x) for each a then

X̃(y) g�1 E{g(X) | Y =̇ y} (‡)

is the optimal forecast, because in this case (†) is exact. But this
is a strong restriction that would only be generally useful if all
stakeholders shared the same g.6 6 See the end of this section for where

this might be reasonable.From now on, we treat the client as the specialist, interested
in making a good ‘generic’ prediction about X, helpful to a wide
range of stakeholders.



prediction 71

Then there are two widely accepted features of generic pre-
diction problems. First, that the loss function is convex. A loss
function is convex exactly when

L(x0, x) = h(x0 � x)

for some non-negative convex function h with h(0) = 0. In other
words, the minimum loss is incurred for a correct prediction, and
the loss rises at least proportionately with the error in the pre-
diction. Convex loss functions represent the situation where a
near-miss is tolerable, but a large miss is intolerable. Second, that
the function h is approximately symmetric in X. After all, as the
vetinerary example shows, if losses are asymmetric for one stake-
holder, then it is quite possible that they are asymmetric in the
other direction for another stakeholder. But it is also possible to
represent the sitation where the same asymmetry exists for all
stakeholders, as discussed below.

Where both of these common features hold, there is a ‘generic’
loss function for prediction, the quadratic loss function

L(x0, x) := c(x0 � x)2 c > 0.

This follows from the Taylor series expansion

L(x0, x) = h(x0 � x)

= h(0) + (x0 � x) h0(0) + 1
2 (x0 � x)2 h00(0) + small terms

⇡ c(x0 � x)2

where c := 1
2 h00(0), since h(0) = h0(0) = 0, h00(0) > 0, and

h000(0) ⇡ 0 for a symmetric function. The quadratic loss function is
therefore often taken as the default loss function for a prediction
problem, accepting that convexity is a reasonable property, and
that the client’s loss function has no obvious asymmetry. So the
following result is very useful in practice.

Theorem 5.2. If the loss function is quadratic, and beliefs are not affected
by the prediction, then the Bayes Rule is

d⇤(y) = E{X | Y =̇ y}.

Proof. Here is a proof that does not involve differentiation. The
Bayes Rule theorem and the additional condition about beliefs
assert that

d⇤(y) = argmin
x02X

E{L(x0, X) | Y =̇ y}. (5.2)

So let y(y) := E(X | Y =̇ y). Then

L(x0, X) µ (x0 � X)2

= (x0 � y(y) + y(y)� X)2

= (x0 � y(y))2 + 2(x0 � y(y))(y(y)� X) + (y(y)� X)2.
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Take expectations conditional on Y =̇ y to get

E{L(x0, X) | Y =̇ y} µ (x0 � y(y))2 + E{(y(y)� X)2 | Y =̇ y}.

Only the first term contains x0, and this term is minimised over x0

by setting x0 = y(y), as was to be shown.7 7 There is a straightforward extension
to the case where X is a vector.

Note that Thm 5.2 is explicitly a property of the quadratic loss
function (and those convex loss functions that a quadratic loss func-
tion approximates). It is not the case that we can always interpret a
hypothetical expectation as a prediction, because one cannot make
a useful prediction without thinking first about losses, and losses
definitely do not have to be quadratic. But we can turn this result
around, as a device for assessing hypothetical expectations. I could
envisage my hypothetical expectation as the prediction I would
make were I to incur a quadratic penalty. Personally, I do not find
this helpful, except in a formal sense. Goldstein and Wooff (2007)
provide a detailed investigation of this viewpoint, which origined
with Bruno de Finetti (see, e.g., de Finetti, 1974).

The condition in Thm 5.2 that the client’s prediction does not
affect her beliefs about X seems reasonable in many situations,
but not all. If the client is the Chief Economist in a Central Bank,
then her public prediction of next year’s interest rates will affect
the market for bonds, and thus affect next year’s interest rate. In
fact, her prediction of interest rates is an instrument for changing
interest rates, and thus affects her beliefs, and other people’s too.8 8 The precise effect is very subtle,

because of the game-theoretic elements
in the way that a Central Bank man-
ages its superior information about
financial markets, in the light of its
public and private targets.

The quadratic loss function approximates a more general loss
function that is convex and symmetric on an interval scale. There
are some predictions where another scale seems more appropriate.
For example, for population, a loss function on a ratio scale might
be better, giving rise to

L(x0, x) = h(log(x0)� log(x))

for a convex symmetric h. Following the same argument as above,
the Bayes Rule prediction in this case is

X̃(y) = exp E{log(X) | Y =̇ y}

with a quadratic approximation. Applying Jensen’s inequality
(Thm 2.1), this prediction is never larger than that on the interval
scale; it is highly likely to be smaller.

5.4 Estimators and admissibility

All of this talk of ‘Bayes Rules’ undoubtedly makes the Frequentist
from Sec. 4.4 very nervous. And yet, as discussed in that section,
he is also in desparate need of a prediction for the parameter q to
plug into his inference; naturally, he would like to use an optimal
prediction if he can. A prediction for the parameter is termed an
estimator.
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The Frequentist has specified a family of PMF’s for (X, Y) which
is indexed by the parameter q, written

p(x, y; q) for some q 2 W.

The Frequentist can accept the notion of a loss function, since
without it there is no optimality, but not the notion that q should
have a probability distribution. So he is not able to compute an
expectation such as E{L[d(Y), X]}, although he can compute an
expectation such as E{L[d(Y), X]; q}. This turns out to be enough
to provide a framework to rule out some obviously suboptimal
estimators. But it also opens a can of worms.

The risk function is defined as

R(d, q) := E{L[d(Y), X]; q}.

If we imagine all of the possible decision rules in one long col-
umn, and all the elements of W in one long row, then the risk
function can be represented as a possibly huge matrix R, with
Rij := R(di, q(j)). Among the rows we are likely to find rules that
are dominated by other rules, in the sense that

Rij � Ri0 j for all j, and Rij > Ri0 j for at least one j.

In other words no matter what the value of q, rule i has a risk
which is no lower than that of rule i0, and which is higher for at
least one value of q. Rule i is said to be dominated by rule i0, or to
be inadmissible. If a rule is not inadmissible, it is admissible. It would
appear to be an embarassing error to use a rule which was inad-
missible. Thus it appears as though all statisticians require require
necessary and sufficient conditions for a rule to be admissible.

A sufficient condition is easy to derive. A rule d is admissible if it
is a Bayes Rule for some distribution pq with support on the whole
of q. For suppose that d⇤ were a Bayes rule for pq , but that it was
inadmissible. In this case there would be a d0 for which

R(d⇤, q) � R(d0, q) for all q 2 W,

with a strict inequality for at least one q. But since for the Bayesian

E{L[d(Y), X]} = Â
t

R(d, t)pq(t)

by the LIE (Thm 3.5), d⇤ inadmissible would imply that

E{L[d⇤(Y), X]} > E{L[d0(Y), X]},

and hence d⇤ could not be a Bayes Rule for pq , contradicting the
original claim. So in fact, Bayesians are largely unconcerned about
admissibility: they are automatically admissible.

Much more grippingly, however, there is a converse to this
result, first proved by Abraham Wald in 1950 and the subject of
much further refinement since; see, e.g., Berger (1985, ch. 8).9 This 9 This converse is not hard to prove

in the case where W is finite: see
Schervish (1995, ch. 3) or Cox and
Hinkley (1974, ch. 11).

converse states that every admissible rule is either a Bayes Rule, or
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the improper limit of a sequence of Bayes Rules (in the case where
the parameter space is unbounded). But this does not guarantee
that the improper limit is actually admissible—some are, but some
are not.

This this result is very troubling for the maximum likelihood
estimator (MLE),

q̂(y) := argmax
t2W

p(y; t)

which appeared in Sec. 4.4 and Sec. 4.7. The MLE is typically not
a Bayes Rule for quadratic loss according to some proper prior
distribution pq . So it fails the sufficient condition. Happily, it often
satisfies the necessary condition, being the improper limit of a
sequence of Bayes Rules, e.g. from a sequence of pq’s tending to a
flat prior on an unbounded W. So there is hope! Unhappily, this is
not enough. Stein’s paradox was a bombshell dropped in the early
1950s, which showed that, in almost the simplest possible case, the
MLE was inadmissible for quadratic loss; see Efron and Morris
(1977).

This puts the Frequentist in a difficult position. As discussed
in Sec. 4.7, the MLE has exactly the invariance property that is
required to make sense of an inference made over a family of
distributions; not to mention that it is often fairly easy to compute
in closed form, or numerically. But it is, typically, inadmissible
under quadratic loss. Moreover, the Bayesian’s decision to provide a
prior distribution pq appears to have been vindicated, although this
does not make the actual specification of his prior distribution any
easier.

This just goes to show that statistical inference is very compli-
cated, involving trade-offs and compromises as the statistician
attempts to stitch a defensible line between what is theoretically
attractive and what is feasible. The main issue, it seems to me, is
that this difficult task should not be undertaken in ignorance. If a
statistician chooses to use the MLE as a plug-in estimator for his
inference, he must be able to defend his decision. This is the first
question I would ask, as an auditor: Did you check that the MLE
in your problem is admissible, and, if it is not, why did you use it
anyway? I’d be interested in the answer, but, as an auditor, I would
also want to see whether that the statistician was knowledgeable
and thoughtful. I would be concerned about a statistician who had
unknowingly used an inadmissible estimator—what other alarming
things might he also have done?

5.5 The Netflix Prize

This section is about a modern high-profile prediction problem.
It was the prototype Big Data prediction competition, and kicked
off a new industry, represented, for example, by the website http:

//www.kaggle.com. In the following, I will simplify slightly. Details
are available at https://en.wikipedia.org/wiki/Netflix_Prize.
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Imagine a huge matrix X, where Xum is the rating that user u
would give to movie m.10 A small number of the elements of X

10 In deference to the N. American
origin of this competition, I write
‘movie’ instead of ‘film’.

have been filled-in with actual ratings, on a scale of 1 to 5 stars.
Netflix wants to predict the ratings that user u would give to the
movies she has not rated, in order to make a helpful recommenda-
tion. According to Netflix, a good prediction has a small quadratic
loss.

Netflix organised a competition to find a rating prediction rule
that did at least 10% better than its in-house rule. They supplied
part of their database for ‘training’, and kept the rest back for
final evaluation, and also for updating a leaderboard during the
competition. The data they supplied were in the form of a large
number of triples y

obs := {(ui, mi, ri)}n
i=1, where ri is the rating that

user ui gave to movie mi.
This is a well-posed prediction problem. A statistician applying

the principles of decision theory would represent his beliefs about
people and movies as expectations of functions of X, or, more com-
prehensively, as a PMF, p

X

. Then he would predict the rating given
by user u for movie m as E{Xum | Y =̇ y

obs}. In representing his
beliefs, he might consult a psychologist, perhaps even talk to peo-
ple who know people who know big-name Hollywood producers.
Unfortunately this statistician, although he might make a useful
prediction, will not win the competition; in fact it is unlikely that
he will do as well as the Netflix in-house system. It is important to
understand why this is.

One reason, which I will set aside, is that this is a Big Data
problem, and that many of the calculations that the statistician
needs to do will be beyond the scale of his resources. However, this
is not the main reason that the statistician will be out-performed.

The main reason is the peculiar nature of X. The Netflix random
quantities X have the feature that X can be partitioned into sets that
are like each other. On this basis Netflix assumes that, for such a
partition, a prediction rule that works well on one set will also work
well on another. If y

obs is an element of such a partition, and Netflix
can find a prediction system that works well on y

obs, then it will
also work well on all the missing values in X.

A process that partitions X into subsets that are like each other
might be termed ignorable. There are many ways of making a parti-
tion of X that are not ignorable. For example, partitioning according
to whether the user is a man or a woman. I doubt that a prediction
rule which works well for women will work as well for men. The
users have partitioned X into the set of rated movies and its com-
plement. I doubt that this process is ignorable; in other words, I
believe that there are systematic differences in preferences between
users who rate movies and those who do not. This implies that a
10% improvement in the measured performance of the rule does
not necessarily translate into a 10% improvement in recommenda-
tions. But maybe this does not perturb Netflix, who have garnered
lots of publicity from their competition.
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One process which is definitely ignorable is to partition at ran-
dom. The training dataset y

obs was a random sample from all of
the rated movies, and the evaluation dataset was a random sample
from the remainder. Thus competitors could replicate the Netflix
scoring procedure by training their aglorithms on a subset of the
training dataset—a random subset, naturally—and evaluating it on
the remainder. Because the Netflix training dataset was so large, a
competitor’s training/training subset could still be large, allowing
them to develop complex rules. Competitors with huge comput-
ing resources could generate a large number of rules using their
training/training subset, keep the best ones according to their train-
ing/evaluation subset, and iterate the process. Competitors without
the computing resources to do this were rapidly eclipsed.

So when will computer scientists make better predictions of
unobserved components of X than statisticians? Primarily, when
the process selecting the observations is ignorable. It will also help
if the number of observations is very large, although this can be
somewhat finessed by cross validation, in which a series of different
randomly-chosen subsets are used for training and evaluation.
Finally, the client must put safeguards in place to avoid overfitting.
Netflix did this by separating the final evaluation dataset from
the leaderboard dataset. Thus competitors knew that adjusting
their prediction rule purely to climb the leaderboard would not
necessarily benefit them in the final assessment.

I would say that most prediction problems fall outside these
conditions. For a start, most collections of random quantities lack
the simple structure that is a necessary condition for ignorability.
This requires replication over different instances of the same ba-
sic unit: different people, different schools or hospitals, different
regions, and so on. The Netflix random quantities had almost the
simplest structure possible: replication over triples of the form
(u, m, Xum). With this type of structure, ignorability follows from
random sampling, but only if there is complete compliance. Ran-
dom sampling is very popular for surveys, but ignorability does not
follow because some people in the sample choose not to respond,
and some choose to respond facetiously. The Netflix obervations
were not randomly sampled but self-selected. Wherever humans
exercise choices, it is prudent to assume that these choices vary
systematically with their preferences.


