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Model diagnostics and model choice

From Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2015.

It is a complicated business to estabish whether a statistical model
is appropriate, and we should beware of facile answers to com-
plicated questions. This chapter covers model choice (Sec. 6.1),
hypothesis testing (Sec. 6.2), significance levels (Sec. 6.3), and confi-
dence sets (Sec. 6.4). Some strong opinions will be expressed.

6.1 Model choice

Consider the case where there are competing proposals for the PMF
of a set of random quantities X. This would usually arise where
the client has several groups of experts, with incompatible beliefs.
For example, the client might be the Intergovernmental Panel on
Climate Change (IPCC) and the experts might be the different
climate modelling groups, where each group has one or more
simulators of future weather, which can be used to induce a PMF
(see Rougier and Goldstein, 2014). Or else the client might be the
State of California, and the experts might be different earthquake
modelling groups.1 1 See http://www.cseptesting.org/

for an example of a large experiment
to choose between different models for
earthquakes.

These are large-scale examples, but there are many smaller-scale
ones as well, such as a catastrophe modelling company which
requires a storm model, or an engineering consultancy which
requires a fatigue model, or a pharmaceutical company which
requires a model for metabolic processes, and so on. In each case
a search of the literature will reveal a number of alternatives. For
reasons of cost the client would like to choose a single one, but it is
important to appreciate that she does not have to.

6.1.1 Belief pooling and model averaging

Let the competing models for X be represented as the PMFs

�
pm

 
m2M.

The client has an application, and for this application she would
like to select a subset of these models—say just one for simplicity—
because it is cheaper than maintaining and using all of the models.
We will analyse this decision as though she could proceed with all
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of the models, in order to decide on the appropriate criterion for
selecting just one.

The client always has the option to combine her models into a
single ‘super-model’. There are two main approaches:

p(x) = Â
m

pm(x) · wm linear pooling

p(x) µ ’
m

pm(x)wm logarithmic pooling,

For linear pooling it is necessary and sufficient that w 2 S|M|�1,
in order that p(·) is always a PMF.2 For logarithmic pooling it is 2 Recall that Sk denotes the k-

dimensional unit simplex, see (1.2).necessary and sufficient that wm � 0. One advantage of linear
pooling over logarithmic pooling is immediately apparent: there is
no need to compute a normalising constant.

The reason for two approaches is that both approaches have at-
tractive and unattractive theoretical properties.3 Linear pooling has 3 More details are available in Cooke

(1991, ch. 11); note the typo on p. 172,
item 6, where the inequalities go the
wrong way. See also the recent survey
by French (2011).

the attractive property that it preserves a common ordering across
the probabilities of random propositions. In other words, if every
model in M implies that Prm(P)  Prm(Q), then Pr(P)  Pr(Q)

in the pooled model as well. Another attractive property is that
p(x) depends only on the probabilities assigned to x. A third is
that the support of p(·) is the union of the supports of the pm(·)’s.
Logarithmic pooling does not have any of these properties.

On the other hand, logarithmic pooling is invariant to the order
of pooling and conditioning. With linear pooling the result will
typically be different if we pool first and then condition, or if
we condition first and then pool—as shown below. This implies
that every model in M might treat X1 and X2 as probabilistically
independent, and yet the pooled model might not.4 Logarithmic 4 Cooke (1991, p. 174) notes that this is

not necessarily an attractive property
if the models themselves disagree
one with another about the marginal
probabilities of X1 and X2.

pooling has the very unattractive property that the support of p(·)
is the intersection of the supports of the pm(·)’s; in other words it
takes only one model to assert pm(x) = 0 to ensure that p(x) = 0.

Overall, linear pooling seems to have won out due to its practi-
cal simplicity, and its intuitive form when pooling first and then
conditioning. The default position would be to take the weights
equal, but it is useful to have the flexibility to go further. For exam-
ple, two similar models could share the weight of one model, or a
model that was apparently deficient (e.g. missing a process) could
be down-weighted. For the climate simulators used by the IPCC,
the default position of the IPCC is to give all of the models equal
weight. But most climate scientists would definitely have a view
about non-equal weights, reflecting all sorts of things like simula-
tor genealogies, and the accumulated experience of the research
groups.

As in Chapter 4, represent the dataset as the truth of the proposi-
tion Q := q(X), where q is a first-order sentence. Now consider the
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effect of conditioning the linearly pooled model:

p⇤(x) := Pr(X =̇ x | Q)

µ 1q(x) p(x) Muddy table theorem, Thm 3.3

= 1q(x) Â m pm(x) · wm linear pooling

= Â m 1q(x) pm(x) · wm

= Â m p⇤m(x) · Prm(Q)wm

where

p⇤m(x) := Prm(X =̇ x | Q) =
1q(x) pm(x)

Prm(Q)

by the Muddy table theorem again. Reincorporating the normalis-
ing constant Pr(Q)�1 then gives

p⇤(x) = Â m p⇤m(x) · w⇤m

where

w⇤m :=
Prm(Q)wm

Pr(Q)
=

Prm(Q)wm

Â m0 Prm0(Q)wm0
.

So conditioning the linear pooled model on Q has two parts: con-
ditioning each model on Q, and updating the weights from w to
w

⇤. Combining multiple models into an inference in this way is
termed Bayesian Model Averaging (BMA); see Hoeting et al. (1999) for
a review.

This update of the weights is the reason that linear pooling is
sensitive to the order of pooling and conditioning. But the update
of the weights is also one of the most attractive features of this pro-
cedure. Observe that the expression for w

⇤ has the form analysed
in Sec. 4.6. Hence we can consider the stability conditions in order
to determine whether, for the dataset represented by Q, the simpler
expression

ewm :=
Prm(Q)

Â m0 Prm0(Q)

provides a good approximation to w

⇤. If so, the precise values
of the linear combination w can be neglected (without needing
to be all the same), and the weights and the conditional PMF are
determined entirely by the set of models and the dataset Q.

The value Prm(Q) is termed the evidence of model m. The suit-
ability of the evidence in updating the weights depends on Prm(Q)

being a reasonable representation of modelling group m’s beliefs
about the dataset. As discussed at the end of Sec. 4.6, the statisti-
cian in group m may decide that the stability conditions hold, so
that he can replace a carefully-considered prior distribution pq with
something flat and tractable. In this case the X margin of the joint
distribution (X, q) may not be a reasonable representation of group
m’s beliefs about X, and hence Prm(Q) may not be a reasonable rep-
resentation of group m’s beliefs about the dataset. This is a serious
impediment to the model choice methods discussed in the next two
subsections.
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6.1.2 Model choice as a decision problem

As shown in the previous subsection, the client could have pooled
her models and derived a BMA representation of her beliefs, p⇤(·).
Even if she chooses not to do this, but instead to proceed with one
model alone, she still has the option to assess each of the models
according to how well it matches p⇤(·) in her application. And this
last point is crucial: she needs a model for a reason, and this reason
will help to determine which model she should choose.

Now would be a good time to refer back to Sec. 5.1 for a review
of decision theory and decision rules. The client has an action set
A and a loss function L(a, x). Her best choice of action is the one
that minimises her expected loss E⇤{L(a, X)}.5 Both A and L may 5 I assume, purely for simplicity, that

the client’s choice of action has no
impact on her beliefs about X.

be somewhat simplified compared to the client’s actual application,
but the idea is that they are representative, in the sense that conclu-
sions she draws from the simplified analysis are informative about
how she should proceed in her actual application.

Using her BMA representation, the client can identify her best
choice of action,

a⇤ := argmin
a2A

E⇤{L(a, X)},

for which her Bayes risk is defined as R⇤ := E⇤{L(a⇤, X)}. She can
also identify her best choice of action using each model on its own,

am := argmin
a2A

E⇤m{L(a, X)} m 2M.

When she uses the action optimal for model m in place of her
optimal action a⇤ her risk is

R(m) := E⇤{L(am, X)}

where, necessarily, R⇤  R(m). The different R(m) � R⇤ is the
expected additional loss she incurs from using just model m. The
optimal single model is therefore

em := argmin
m2M

R(m).

This analysis makes it clear that the choice of a single model from
M depends on the dataset, but also on the action set and loss
function; i.e. on the client’s application.

To illustrate, consider two different applications. In one, the loss
is approximately linear in X for each action; for example, the action
is the amount of advertising spending and the loss is the negative
revenue. In this case, a good model has E⇤m(X) ⇡ E⇤(X). In another
application, the loss is highly non-linear in X for some actions. This
is typically the case for hazards, such as flooding; for example, the
action is the height of the flood defenses, and the loss is the amount
of land inundated. In this case, a good model has p⇤m ⇡ p⇤ for the
extreme values of X.

There are just two conditions in which the choice of model does
not depend sensitively on the action set and loss function. If the
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relative likelihood is almost entirely concentrated on one model, the
maximum likelihood model m̂, then the Stable estimation theorem
(Thm 4.3) implies that

w⇤m ⇡

8
<

:
1 m = m̂

0 otherwise.

In this case, p⇤m̂ ⇡ p⇤, and consequently am̂ ⇡ a⇤ no matter what the
action set and loss function. Hence there is no additional expected
loss from replacing M with the single model m̂. Second, if the
action set is really small—perhaps having only two elements—then
there is a chance that the maximum likelihood action will be the
same as the optimal action; but this is not something one could just
assume. Except under these conditions, though, the action set and
loss function should play a role in selecting a single model from a
set of competing models.

6.1.3 Where does this going wrong?

There is a huge amount of confusion in statistical model choice,
and many competing criteria. This reflects an unwillingness on the
part of the statistician and/or the client to think explicitly about the
underlying application, which I have represented above as an action
set and a loss function. It goes without saying that the client is
choosing between models for a reason; we should not be surprised
that neglecting the reason leads to disarray.

If we strike out both the action set and the loss function, then the
main thing left to judge the model on is Prm(Q), the ‘evidence’ of
model m. As outlined at the end of the previous subsection, if the
evidence of one of the models is a lot larger than the sum of the
evidences of the other models, and if the action set is small, then
selecting the model with the largest evidence is a defensible choice.
Otherwise, further checks are required.

At the very least, the statistician would need to check that the
model with the largest evidence was a member of a subset of the
models which together made up most of the relative likelihood,
and for which p⇤m was similar across the subset. Checking p⇤m
is important, because different models will connect Q and X in
different ways. ‘Similar’ is tough to quantify, because what is really
needed is an assessment in terms of the action set and the loss
function. But one could imagine a metric on PMFs for X which
tried to reflect aspects of the PMF of X which are important in
the client’s application. In some cases this could be as simple as
checking the each of the p⇤m’s had similar expectations (linear loss
function) or expectations and variances (quadratic or convex loss
function, see Sec. 5.3).

But at this point another difficulty looms. In a parametric ap-
proach, pm(x) is constructed as the X margin of the joint PMF

Prm(X =̇ x, qm =̇ t) = pm(x; t)pm(t) t 2 Wm.
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There are two difficulties here. First, as already discussed, the
Bayesian statistician in group m may be happy (keen!) to replace
his considered prior distribution pm with a flatter more tractable
alternative, on the grounds that the stability conditions of Sec. 4.6
hold. So Prm(Q) is not representative of his group’s beliefs about
Q. Second, the Frequentist statistician in group m0 may not want to
supply a pm0 at all. So we may have to do model choice without the
evidences.

This is where Information Criteria come in. There are lots of dif-
ferent ones, originating with the Akaike Information Criterion
(AIC). All Information Criteria have the same form, comprising
a goodness-of-fit term for the dataset and a penalty for model
complexity. A penalty is required, because more complex mod-
els will tend to fit the same dataset better than simpler ones; e.g.
a quadratic will fit a time-series better than a straight line. The
penalty guards against over-fitting, in which a good fit within the
dataset can lead to bad fits outside it. Information Criteria are
presented in a negative orientation, so that smaller is better.

For example, the Bayes Information Criterion (BIC) under the
simple observation model (SOM, Sec. 2.4) is

BICm(y) := � 2 log pm
�
y; q̂m(y)

�
+ km log n

where q̂m is the Maximum Likelihood Estimator of model m,
km := dim Wm, and n is the number of observations. The first term
measures goodness-of-fit by the maximum of the log-likelihood,
and the second term penalises the number of model parameters by
the log of the number of observations. The difference in the BICs
of two models is a first-order approximation to the difference in
the log-evidences; see Kass and Raftery (1995, sec. 4). This may be
preferred to the actual difference in the log-evidences if the actual
prior distributions are too flat, but in this case the BIC is being pre-
ferred because it is not a good approximation, which is a delicate
argument.

Information Criteria are discussed in Gelman et al. (2014, ch. 7).
The most popular one at the moment is the DIC (Spiegelhalter et al.,
2002).6 This is for a couple of reasons: 6 Be sure to read the discussion and

rejoinder of this paper. Then read
Spiegelhalter et al. (2014).

1. It is easy to compute on the back of a Monte Carlo simulation
from the posterior distribution of the model parameters; indeed
DIC is built-in to software tools such as BUGS (Lunn et al., 2013,
sec. 8.6).

2. It has a sophisticated assessment of model complexity which
goes beyond simply counting the parameters. This is important
for hierarchical models in which exchangeability modelling
creates large numbers of highly dependent parameters (to be
discussed later).

As I hope I have made clear, I doubt that Information Criteria are
appropriate for helping a client to choose a model in an important
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application. But by all means use them if you—the statistician—are
your own client, and you are working on something not important
enough to devote much thought to.

* * *
The other approach to mention is cross-validation. This was

already discussed in Sec. 5.5. Under various simplifying conditions,
models can be usefully compared in terms of their out-of-sample
prediction performance. The main simplifying conditions are that
the SOM hold (Sec. 2.4) holds, and that there is no overt sample
bias. See Gelman et al. (2014, ch. 7) for a discussion of cross valida-
tion in the context of model choice.

6.2 Hypothesis testing

Hypothesis testing is a special case of model choice, in which all of
the models for X are contained within the same parametric family.
Usually the choice is between two distinct subsets of the parameter
space. Thus we start with the family of distributions

p(·; q) for some q 2 W,

where W is some convex subset of Rp, and then specify the compet-
ing subsets as

H0 : q 2 W0

H1 : q 2 W1

where W0 \ W1 = ∆ and, ideally, W0 and W1 are well-separated.
H0 and H1 are termed hypotheses. If a hypothesis contains only a
single element of W it is termed a simple hypothesis, otherwise it is a
composite hypothesis.

For hypothesis testing, it is necessary to marginalise the PMF of
X to provide a PMF for the observables Y ; usually this marginal-
isation operation is only feasible under the SOM (Sec. 2.4). From
now on ‘p’ represents the marginal PMF of Y ; hence p(y; q) is the
probability of the random proposition Y =̇ y under the PMF with
index q. The objective of hypothesis testing is to choose in favour of
H0 or H1 using p and y, and to quantify the strength of evidence on
which that choice is based.

The most studied hypothesis test, and the one for which the
strongest theoretical results are available, is the case of two simple
hypotheses, written

H0 : q = q0

H1 : q = q1.

In this case there is agreement among statisticians that the appropri-
ate test is based on the likelihood ratio,

B01(y) :=
p(y; q0)
p(y; q1)

,
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and the test must have the form

B01(y)

8
>><

>>:

< k1 choose H1

in the middle undecided

> k2 choose H0

(6.1)

for some values 0 < k1  k2. If the client dislikes ‘undecided’ then
k1 and k2 will need to be close together, maybe even the same value.
But the client should understand that ‘undecided’ is a perfectly
acceptable category for evidential support, and that suppressing it
can lead to wrong choices.7 7 In Scots law, for example, the judge

or jury can return a verdict of ‘not
proven’, lying somewhere between
‘proven’ and ‘not guilty’.

Appropriate values for k1 and k2 are tricky to decide—they
ought to depend on the consequences of each choice, but in hypoth-
esis testing we are discouraged from taking explicit account of the
client’s action set and loss function.

For the Bayesian, the following equality is a direct consequence
of Bayes’s theorem in odds form (after Thm 3.11):

Pr⇤(q =̇ q0)
Pr⇤(q =̇ q1)

= B01(y)
Pr(q =̇ q0)
Pr(q =̇ q1)

(6.2)

where Pr⇤ is the probability conditional on Y =̇ y, as usual. This
equality is also expressed as the mantra

posterior odds = likelihood ratio⇥ prior odds

where ‘odds’ is a generic term for a ratio of probabilities. So the
Bayesian concerned with selecting the hypothesis with the highest
posterior probability needs only to be satisfied that the likelihood
ratio outweighs the prior odds. Unless he starts with strong beliefs
about q, the Bayesian will find a likelihood ratio of 20 or greater
fairly compelling evidence for favouring H0. Jeffreys (1961, Ap-
pendix B) termed this ‘strong’ evidence in favour of H0.8 So the 8 See also the scale given in Kass and

Raftery (1995).Bayesian might well have k1  1/20 and k2  20, or something
similar.

Things are more complicated for the Frequentist, because he
will not admit a prior PMF for the parameter, and so (6.2) is a
non-starter. The traditional approach to this problem is the Neyman-
Pearson approach, in which the sampling distributions of the ran-
dom quantity B01(Y) under H0 and H1 are used to set k1, with
k2  k1. I am not going to describe the Neyman-Pearson approach,
because I believe it is obsolete.9 Instead, I will give ‘Barnard’s rule’. 9 Casella and Berger (2002, ch. 8) and

then Lehmann and Romano (2005,
ch. 3) are good references.

I base this on a suggestion of George Barnard, in the discussion
of Lindley (2000). It is necessary to suspend our disbelief and to
assume that exactly one of H0 or H1 is ‘true’.10

10 The same suspension of disbelief
is necessary in the Neyman-Pearson
approach. Nowhere else in these
notes do we need to make this totally
bogus assertion. A model is a human
construct, and its parameters are as
artificial as plastic flowers. Only in
very rare situations can q = q0 be a
statement about operationally defined
quantities in the real world. I am
compelled to put ‘true’ in scare quotes.

Theorem 6.1 (Barnard’s rule). Suppose that exactly one of H0 or H1
is ‘true’. Define an incorrect choice as choosing H0 when H1 is ‘true’, or
choosing H1 when H0 is ‘true’. Then the probability of an incorrect choice
when using (6.1) with k1  1/c and k2  c is never more than 1/c.

Proof. This is a double application of Markov’s inequality (Thm 1.5).
Suppose that H0 is ‘true’. Then, in an obvious notation,

Pr0{incorrect} = Pr0{B01(Y)  1/c} = Pr0{1/B01(Y) � c}  1/c
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by Markov’s inequality, because 1/B01(Y) has expectation 1 under
H0 (prove this using the FTP, Thm 1.6). On the other hand, suppose
that H1 is ‘true’. Then

Pr1{incorrect} = Pr1{B01(Y) � c}  1/c

by the same reasoning. Since the probability of an incorrect choice
is  1/c under both H0 and H1, it must be never more than 1/c,
because of the condition that exactly one of H0 or H1 is ‘true’.

With Barnard’s rule, the client states, “I don’t like being wrong,
so I am going to set c  20 whenever I have to make a choice
between two mutually exclusive simple hypotheses.” This im-
plies that the client will not be wrong more than 5% of the time.11

11 It is not obvious that the client wants
to control her lifetime probability
of being wrong, rather than her
probability of being wrong in this
particular application.

Because Markov’s inequality is generous (i.e. seldom tight) the
client can be fairly sure that her actual probability is a lot less than
0.05, and so she might be happier with a more relaxed value for c,
say c  10. In many applications, she will find that the observa-
tions leave her undecided: that’s just the way it is—sometimes the
evidence in y is not very compelling.

Composite hypotheses. Composite hypotheses provide no additional
challenges for the Bayesian, who simply sums over subsets of the
posterior distribution to compute Pr⇤(q 2 W0)

�
Pr⇤(q 2 W1).

Composite hypotheses are a major challenge for the Frequentist,
except for one special case which is massively overused in both
teaching and research (the Normal distribution). The general theory
is a veritable blizzard of ‘adhockery’.12 You can take my word for 12 ‘Adhockery’ has gone mainstream,

but I believe the word was coined by
I.J. Good, a famous statistician and
Bletchley Park code-breaker.

this, or you can read chapters 3–10 of Lehmann and Romano (2005,
pp. 56–415) and decide for yourself.

6.3 Significance levels (P-values)

Significance levels were the invention of the great statistician
R.A. Fisher. Savage (1976) and Efron (1998) give fascinating com-
mentaries on Fisher’s statistical work. Fisher was also a founder
of the modern theory of evolution, and nominated by Richard
Dawkins as the greatest biologist since Darwin.13

13 http://edge.org/conversation/
who-is-the-greatest-biologist-of-all-time

6.3.1 Motivation and definition

The distinguishing feature of a significance level is the absence of
an explicit alternative hypothesis. In other words, a significance
level attaches a score to

H0 : q 2 W0

directly. Initially, consider simple hypotheses of the form W0  {q0};
composite hypotheses will be covered in Sec. 6.3.4. Thus H0 corre-
sponds to

H0 : Y ⇠ p(·; q0)
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which I write as Y ⇠ p0, where p0 is the null distribution. This type
of H0 simply describes a PMF for Y . There is no particular reason
for it to be one member of a parametric family: it could equally
well be the Y-margin of a joint PMF over random quantities and
parameters, although this is less common in practice (see Box, 1980,
and the discussion and rejoinder).

There is some interesting theory about how to score an observa-
tion y with respect to a distribution p0. Any score can be written as
s(p0, y), which I will take in the positive orientation, so that larger
scores indicate a better match. A sensible constraint on scoring
rules is that they are proper:

E0{s(p0, Y)} � E0{s(p0, Y)} for all p0,

where E0 is the expectation with respect to p0.14 Among the proper 14 See Gneiting and Raftery (2007) for
more details about proper scoring
rules.

scoring rules, perhaps the simplest is the logarithmic scoring rule

s(p0, y) log p0(y).

It is easy to prove that this scoring rule is proper, using Gibbs’s
inequality.15 Bernardo and Smith (2000, sec. 2.7) make a case for 15 Which states that Âi pi log(pi/qi) � 0

for probability vectors p and q, with
equality if and only if p = q. Follows
immediately from log(x)  x� 1 with
equality if and only if x = 1. And this
latter result follows from log(1) = 0
and log(·) strictly concave.

favouring the logarithmic scoring rule, on the basis that it uniquely
satisfies properties of smoothness and locality.

Proper scoring rules are useful for comparing two PMFs for y. If

s(p0, y)� s(p1, y) > 0

then the evidence in y favours p0 over the alternative p1. This
conclusion would be much less compelling if the scoring rule was
not proper, because we would lose the property that the score of
p0 ought to be higher (except for random variation) than that of p1
were p0 to be true. But the score s(p0, y) on its own is much harder
to interpret. Is a value such as s(p0, y) = �13.863 large or small?
Even with a logarithmic scoring rule, finding that

log p0(y) ⇡ �13.863

is not very helpful. We infer that p0(y) ⇡ 0.000000954, but this
small value might just reflect a huge Y, in which any value for y

has only a small probability of occurring. For example, I toss a coin
20 times and get

H, H, T, T, T, H, H, H, T, H, T, T, T, H, T, H, T, H, T, H.

The probability of this outcome under the hypothesis

H0 : the coin tosses are independent and fair

is 2�20 = 0.000000954, but clearly the smallness of this value on its
own cannot convince me that H0 is false, since every outcome has
the same probability under H0. In fact, in this case I could easily be
convinced, both before and after tossing the coin, that H0 is true.
So the smallness of p0(y) can never, on its own, count as evidence
against H0.16

16 This is something that Fisher got
wrong. See, for example, Hacking’s
critique (Hacking, 1965, p. 80) of
Fisher’s exposition of significance
levels in his final book (Fisher, 1956).
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This is the basic problem that the significance level seeks to
address: to construct a score s(p0, y) which occupies a meaning-
ful scale, so that we can identify small values which cause us to
question the model p0 as an appropriate representation for Y . The
P-value is the result.17 In the following definition, the scalar ran- 17 Here I am presenting a modern

definition of a P-value, not the one
advanced by Fisher.

dom quantity X has a subuniform distribution exactly when

Pr(X ̇ u)  u for all 0  u  1.

The uniform distribution is a special case of the subuniform dis-
tribution, with Pr(X ̇ u) = u. The word ‘statistic’ is used in its
technical sense of a specified function of the observables.

Definition 6.1 (P-value). The statistic p0 : Y! [0, 1] is a P-value for the
simple hypothesis H0 exactly when p0(Y) has a subuniform distribution
under H0.

In this definition, p0 appears to be a function of y alone, but the
construction of p0 must involve p0 as well, in order to ensure that
the subuniformity property holds: hence the inclusion of the ‘0’
subscript. A subuniform distribution is a weaker condition that
uniform distribution, but without it there would not be P-values
for random quantities with finite or countably-infinite realms
(Sec. 6.3.3), P-values computed by sampling (also Sec. 6.3.3), or
P-values for composite hypotheses (Sec. 6.3.4).

6.3.2 Difficulties with interpretation

The basic idea with a P-value is that a value of p0(y) close to zero
indicates an event in the lefthand tail of the distribution that would
be implied by the truth of H0. For example, since

Pr0{p0(Y) ̇ 0.005}  0.005

we conclude that the outcome p0(y) = 0.005 is no larger than the
0.5th percentile of the distribution of p0(Y) under H0. An outcome
this far into the tail of a distribution is unusual, and leads us to
consider whether in fact H0 is ‘true’, or even adequate. But this
apparently simply story is full of subtlety.

Sub-uniformity. The subuniformity of P-values limits the conclu-
sions that we can draw. Suppose that p0(Y) were uniform under
H0, rather than subuniform. In this case if p0(y) = 0.005 we could
conclude that we were in the tail of the distribution of p0(Y) under
H0, while if p0(y) = 0.35 we could conclude that we were near
the middle of the distribution. But with subuniformity we can no
longer conclude the latter, because Pr0{p0(Y) ̇ 0.35} is no longer
equal to 0.35, but only no larger than 0.35. So subuniformity pre-
vents us from interpreting middling P-values as indicating we are
near the centre of the distribution of p0(Y) under H0. In fact, with
p0(y) = 0.35 we may actually be in the lefthand tail, but not know
it. Similarly, p0(y) = 0.09 looks a bit improbable under H0, being in
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the lefthand tail, but with subuniformity we do not know whether
we are a little into the lefthand tail, or way into the lefthand tail.

So wherever possible, we construct P-values which are uniform
or nearly uniform under H0, rather than subuniform. Sec. 6.3.4
shows that a necessary (but not sufficient) condition is that the
realm of Y is large; ideally uncountably infinite.

The ‘truth’ of H0. Computing P-values is, from the outset, a forlorn
exercise, because we know that p0 is not the ‘true’ PMF for Y . It is a
representation of my beliefs about Y . The randomness I perceive in
Y is a symptom of my lack of knowledge. So I should respond to a
small P-value without any surprise: what did I expect, that nature
herself would choose y according to my PMF?! Likewise, even in
the uniform case a large P-value does not indicate that H0 is ‘true’:
it simply shows that y is not very informative, since it has failed to
alert me to a claim which I know to be false.

It is tempting to try to finesse this difficulty by focusing on
adequacy rather than ‘truth’. But this does not work. If n, the
number of observations is small, then the P-value will be large
because Y is not very informative. But if n is large, then the P-value
will be small because H0 is not ‘true’. So one might argue that in
the middle there is a ‘sweet spot’ for n for which the P-value is
informative about the adequacy of H0 as a model for Y . But there is
no logic for this claim. If something is not useful for small n or for
large n, there is no basis to claim that it will nevertheless be useful
for middling n.18 We should call this the no sweet spot argument. 18 For a similar observation (“the

P-value can be viewed as a crude
measure of sample size”), see this
blog entry, http://andrewgelman.com/
2009/06/18/the_sample_size/, and
the following comments.

Many P-values. For any H0, there is an infinity of P-values (see
Sec. 6.3.3). In fact, one can find a P-value to take any value in (0, 1),
for any y. So if you have a P-value p0(y) = 0.005, which you think
is quite interesting, I can counter with a p00(y) = 0.35, which is not
very interesting at all. Who is right?

Here is a recipe for a completely meaningless P-value. Use y

to seed a uniform random number generator u1, u2, . . . , and let
p0(y) be the value of the trillionth term in the sequence. By any
reasonable criterion this value has a uniform distribution, and
hence is a valid P-value according to Def. 6.1.

DeGroot (1973) identified an additional condition which was
necessary for p0 to be a sensible P-value: p0(Y) under H0 has to
stochastically dominate p0(Y) under a decision-relevant alternative to
H0. A random quantity X stochastically dominates Y exactly when

Pr(X  v)  Pr(Y  v) for all v,

and Pr(X  v) < Pr(Y  v) for some v.

The stochastic dominance property implies that the distribution of
p0(Y) is pushed to the left under a decision-relevant alternative to
H0, and in this sense small P-values favour the alternative over H0.

The stochastic dominance condition eliminates P-values like the
uniform random number generator, because its distribution is the
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same under all models. But the condition reintroduces a competitor
model through the back door—the decision-relevant alternative
to H0—and thus compromises the ‘purity’ of the P-value as an
assessment of H0 alone. If users of P-values want to demonstrate
that their particular choice of p0 is an appropriate one, then they
need to establish that it has both the subuniformity property for H0

and the stochastic dominance property for some alternative to H0.
But, having produced an alternative, these users might as well be
doing a hypothesis test.

Not a hypothesis test. Many people confuse P-values and hypoth-
esis tests. A typical symptom is to compute a p0(y) less than 0.05
and then report that “the null hypothesis is rejected at a Type 1

error of 5%.” The characteristic of a hypothesis test is that two hy-
potheses compete, and both of them get tested by the observations y.
The result is a test statistic B01(y) which, to the Bayesian at least, is
directly meaningful, and which is used by statisticians of all tribes
to construct a rule for choosing between H0 and H1, or remaining
undecided. This does not happen with a P-value, and there is no
sense in using a P-value to “reject” H0 if it cannot be demonstrated
that an alternative H1 is better. See Goodman (1999a,b).

Not a proper scoring rule either. The function p0 takes both p0 and
y as its arguments (as will be seen explicitly in Sec. 6.3.3), and
therefore it is a scoring rule. But it is not a proper scoring rule (see
Sec. 6.3.1), and therefore comparisons between P-values of different
models is not a good way to choose between models. See Schervish
(1996).

* * *

There is a huge literature on why P-values do not do what
people would like them to do; start at Greenland and Poole (2013)
and work backwards. There is also, unfortunately, quite a lot of
evidence that it is easy to cheat with P-values, and that people do
cheat with P-values; see, for example, Simmons et al. (2011) and
Masicampo and Lalande (2012).19 See the discussion on level error 19 Simmons et al. coin the coy eu-

phemism ‘researcher degrees of
freedom’ to describe ‘flexibility in data
collection, analysis, and reporting’;
i.e. ways that researchers can get their
P-values lower without ‘cheating’.
This practice is prevalent enough to
have acquired the unsavoury name of
‘P-hacking’.

at the end of Sec. 6.4 for further comments.

6.3.3 Constructing and computing P-values

I stated above that there is an infinity of P-values for any H0. This
subsection presents a recipe for making them. But first, a very
useful general result.

Theorem 6.2 (Probability Integral Transform, PIT).

Let X 2 X ⇢ R be a scalar random quantity with distribution func-
tion FX(x) := Pr(X  x), and let Y := FX(X). Then Y has a sub-
uniform distribution, and FY(u) = u if there exists an x 2 X such that
u = FX(x).
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Proof. First, consider the case where u = FX(x) for some x 2 X:

FY(u) = Pr{FX(X)  FX(x)} = Pr{X  x} = FX(x) = u.

The ‘cancellation’ of F at the second equality occurs because of the
bijective relationship between x and F(x) for x 2 X.20 This proves 20 Technical note: here we can ignore

points in X that have zero probability.the second part of the claim.
Otherwise, let x and x0 be two consecutive values in X, with

u = FX(x) and u0 = FX(x0), and let u + d be some value in the open
interval (u, u0). Then

Y  u + d =) X  x

and so FY(u + d)  FX(x) = u. But we must also have FY(u + d) �
FY(u) = u. Therefore we conclude that FY(u + d) = u, and hence
FY(u + d) < u + d.
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Figure 6.1: Distribution
function of Y := FX(X), where
X ⇠ Poisson(l = 2.5).

So the distribution function of Y looks like a staircase where
each step starts from the 45� line drawn from (0, 0) to (1, 1); see Fig-
ure 6.1. If X is a ‘continuous’ random quantity then the steps will
remain infinitesimally close to the 45� line, and FX(X) will be uni-
form. Otherwise, and this includes random quantities with count-
ably infinite support like the Poisson in Figure 6.1, the steps can
diverge substantially from the 45� line and FX(X) can be severely
subuniform.

Now here is the recipe for making a P-value.

Theorem 6.3. Let t : Y! R be a statistic. Then

p0(y) := Pr0{t(Y) � t(y)}

is a P-value satisfying Def. 6.1.

Proof. I use a nifty trick from Casella and Berger (2002, section 8.3.4).
Define T := t(Y). Let G0 be the distribution function of �T under
H0. Then

p0(y) = Pr0{T � t(y)} = Pr0{�T  �t(y)} = G0(�t(y)).

Then since p0(Y) = G0(�T), subuniformity of p0(Y) under H0

follows from the PIT (Thm 6.2).

Hence there is a P-value for every test statistic, and there is an in-
finity of test statistics. Here is another dodgy P-value: t(y) = c (any
constant will do). This does indeed have a subuniform distribution
under H0, with

Pr0{p0(Y) ̇ 1} = 1 and Pr0{p0(Y) ̇ u} = 0 for u < 1.

What a useless P-value! This makes the point that of the infinity of
possible P-values for H0, many of them will be useless, or nearly
so. Clearly, T needs to have a large support under H0, in order
that p0(Y) is even approximately uniform under H0. But recollect
Figure 6.1, which showed that a countably infinite support was not
big enough.
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* * *
Occasionally it will be possible to choose a test statistic t(·) with

a known distribution under H0, from which an explicit p0 can
be derived.21 But this puts the cart before the horse—we want to 21 Asymptotic results are useful here;

see Cox (2006, ch. 6). These give
approximate P-values, in which the
distribution of p0(Y) is approximately
uniform under H0. There is a level
error problem with these P-values, just
as in confidence sets; see Sec. 6.4.

choose our test statistic to reflect our application; in particular, we
would like the resulting P-value to satisfy the stochastic dominance
property discussed in Sec. 6.3.2. Happily, a P-value for any t(·)
can be computed by simulation using following result, which uses
exchangeability (Chapter 7).

Theorem 6.4. For any finite sequence of scalar random quantities
X0, X1, . . . , Xm, define the rank of X0 in the sequence as

R :=
m

Â
i=1

1Xi̇X0 .

If X0, X1, . . . , Xm are exchangeable then R has a uniform distribution
on the integers 0, 1, . . . , m, and (R + 1)/(m + 1) has a subuniform
distribution.

Proof. By exchangeability, X0 has the same probability of having
rank r as any of the other X’s, for any r, and therefore

Pr(R= r) =
1

m + 1
for r = 0, 1, . . . , m (†)

and zero otherwise, proving the first claim.
To prove the second claim,22

22 Notation: bxc is the largest integer
no larger than x, termed the ‘floor’ of
x.

Pr
⇢

R + 1
m + 1

 u
�

= Pr
�

R + 1  u(m + 1)
 

= Pr
�

R + 1  bu(m + 1)c
 

as R is an integer

=
bu(m+1)c�1

Â
r=0

Pr(R = r)

=
bu(m+1)c�1

Â
r=0

1
m + 1

from (†)

=
bu(m + 1)c

m + 1
 u,

as required.

Now take a statistic t : Y! R which has the property that larger
values of t(y) are suggestive of a decision-relevant alternative from

H0. Define T := t(Y) and Tj := t(Y j) where Y

1, . . . , Y

m iid⇠ p0. Then
T, T1, . . . , Tm form an exchangeable sequence under H0. Hence if

R(y) :=
m

Â
j=1
1�Tj̇�t(y) =

m

Â
j=1
1Tj�̇t(y)

then Thm 6.4 implies that

P(y) :=
R(y) + 1

m + 1
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has a subuniform distribution under H0.23 Furthermore, the Weak 23 Here I write both R and P as capitals,
because they are functions of the
random quantities Y

1, . . . , Y

m.
Law of Large Numbers (see, e.g. Grimmett and Stirzaker, 2001,
sec. 5.10) shows that

lim
m!•

P(y) =
limm m�1�R(y) + 1

�

limm m�1(m + 1)
= E0{1T�̇t(y)} = Pr0{T �̇ t(y)}

and so the asymptotic limit of P(y) is the P-value defined in
Thm 6.3.

P(y) is subuniform for all m, but it is approximately uniform for
large m, because in this case

bu(m + 1)c
m + 1

⇡ u.

So a bigger m is preferred, because a more uniform distribution
under H0 is more informative, as discussed in Sec. 6.3.2.

In cases where it is not straightforward to simulate independent
realisations from p0, the value of P(y) can be computed from an
MCMC sequence from p0. In order for the Y

j’s to be exchangeable
it is sufficient that they are independent, and hence these m values
must be extracted from well-separated locations in the sequence.
Besag and Clifford (1989) described an elegant backwards-and-
forwards implementation for MCMC sampling from p0 which
produces exchangeable but not IID Y ’s under H0.

6.3.4 Composite hypotheses

The definition in Def. 6.1 is for a simple null hypothesis. It can be
extended to a composite hypothesis, written

H0 : q 2 W0

where the previous simple hypothesis was just the special case
W0 = {q0}. Composite hypotheses are common—more common
than simple ones in fact. Nuisance parameters were mentioned in
Sec. 4.7. Where interest is in a subset of the parameters, the other
nuisance parameters remain unconstrained, and the hypothesis is
composite. For example, if q = (µ, s2) 2 R⇥R++, then

H0 : µ = µ0

is a composite hypothesis with W0 = {µ0}⇥R++.
With a composite hypothesis, p0(·) is a P-value for H0 if it has a

subuniform distribution under every element of W0. This is easy to
achieve, given a set of P-values for simple hypotheses.

Theorem 6.5. Let H0 : q 2 W0 be a composite hypothesis, and p(·; t) be a
P-value for the simple hypothesis q= t. Then

p0(y) := sup
t2W0

p(y; t)

has a subuniform distribution for every t 2 W0.
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Proof. Follows from the fact that

p0(y)  u =) p(y; t)  u

for all t 2 W0. Therefore

Prt{p0(Y) ̇ u}  Prt{p(Y ; t) ̇ u}  u

for all t 2 W0, where Prt is the probability under q = t.

From this proof it is clear that p0(Y) can be extremely sub-
uniform, even in the case where p(Y ; t) is uniform for every t 2 W0.
As discussed in Sec. 6.3.2, subuniformity reduces the information
in a P-value, and hence P-values for composite hypotheses are gen-
erally rather uninformative. Berger and Boos (1994) have a clever
suggestion to address this, but it has not been taken up in practice.

A much more common approach, in the case of a single para-
meter of interest plus nuisance parameters, is to compute a confi-
dence interval for the parameter, discussed in the next section.

6.4 Confidence sets

Confidence sets are a way of assessing uncertainty about the param-
eters without treating the parameters as random variables. I will
say more about level error at the end of the section.

Definition 6.2 (Confidence set and coverage). Cb is a level b confi-
dence set for q exactly when Cb(y) ⇢ W and

Prt
�

t 2 Cb(Y)
 
� b for all t 2 W.

The probability on the lefthand side is defined as the coverage of Cb at t. If
the coverage is exactly b for all t, then the confidence set is ‘exact’.

There is a close relationship between confidence sets and P-
values; for every P-value, there is a confidence set (and vice versa).24

24 The vice versa is that if q0 is on the
boundary of a level b confidence set,
then 1� b is a P-value for H0 : q = q0.

Thus reservations about P-values hold for confidence sets as well.

Theorem 6.6. Let p(·, t) be a P-value for the hypothesis H0 : q = t. Then

Cb(y) :=
�

t 2 W : p(y, t) > 1� b
 

is a level b confidence set for q. If the P-value is exact, then the confidence
set is exact as well.

From this construction it is immediate that, for the same P-value,
b  b0 implies that Cb(y) ⇢ Cb0(y), so that these confidence sets
are always nested. While this property is not in the definition of a
confidence set, anything else would seem bizarre.

Proof. This proof uses the subuniformity property of P-values.

Prt{t 2 Cb(Y)} = Prt{p(Y , t) > 1� b}
= 1� Prt{p(Y , t)  1� b}
� 1� (1� b) = b,
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where the inequality follows from the P-value being subuniform. In
the case where the P-value is uniform, the inequality is replaced by
an equality, and the confidence set is exact.

A more general definition of confidence sets holds for any func-
tion of q. If g : q 7! y, then C

y
b (y) is a level b confidence set for y

exactly when

Prt
�

g(t) 2 C
y
b (Y)

 
� b for all t 2 W.

If y is one-dimensional and C
y
b (y) is convex for every y, then C

y
b is

termed a confidence interval.
These confidence sets can be contructed directly from a confi-

dence set for q.

Theorem 6.7 (Marginal confidence sets).

If Cb is a level b confidence set for q, and g : q 7! y, then gCb is a level b

confidence set for y.25

25 If A is a set in A, and g is a function
with domain A, then gA is the set�

b : b = g(a) for some a 2 A
 

.Proof. This follows immediately from

t 2 Cb(y) =) g(t) 2 gCb(y)

for each y. Hence

b  Prt
�

t 2 Cb(Y)}  Prt
�

g(t) 2 gCb(Y)}

as required.

If g is one-to-one and Cb is an exact level b confidence set for q,
then the proof shows that gCb is an exact level b confidence set for
y. Otherwise, though, the coverage of gCb might be much larger
than b for all q.

As mentioned at the end of Sec. 6.3.4, confidence intervals are an
alternative to P-values for composite hypotheses involving nuisance
parameters. Consider, for example, the null hypothesis H0 : µ = µ0

in the presence of additional nuisance parameters. The nominal
95% confidence set for all of the parameters can be marginalised to
derive a nominal 95% confidence set for µ, according to Thm 6.7.
If the resulting confidence interval does not contain µ0 then the
P-value for H0 is less than 0.05, by Thm 6.6.

There are merits to presenting H0 in terms of a confidence in-
terval for µ, rather than a P-value for µ = µ0, because there is a
difference in interpretation between a narrow confidence interval
which just misses µ0 and a wide interval that just includes it. In
the former case, µ may be significantly different from µ0, but not
enough to worry about. In the latter case it µ has the potential to be
very different from µ0, even if it is not significantly different.

In medicine, for example, there is the notion of a minimally
clinically important difference (MCID), say d > 0. In an ideal world a
hypothesis test would compare H0 : µ  µ0 versus H1 : µ � µ0 + d.
A quick-and-dirty approximation would compute a 95% confidence
interval for µ, for which one of the following outcomes is possible
(writing µ1 := µ0 + d):
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1. C
µ
0.95(y) < µ0, µ1

2. µ0 2 C
µ
0.95(y) and C

µ
0.95(y) < µ1

3. µ0, µ1 2 C
µ
0.95(y)

4. µ0 < C
µ
0.95(y) and C

µ
0.95(y) < µ1

5. µ0 < C
µ
0.95(y) and µ1 2 C

µ
0.95(y)

6. µ0, µ1 < C
µ
0.95(y).

We could imagine, depending on the application, that each one of
these outcomes could have a different interpretation. Hence a con-
fidence interval for µ provides a much richer source of information
than a P-value for H0 : µ = µ0.

Level error and calibration. Level error is the different between the
nominal coverage b and the actual coverage, both of which depend
on q. Level error typically arises when large-sample theory is used
to construct a confidence set which is asymptotically exact. But, for
finite n, the coverage is only approximately b, and can vary by q.

Due to the duality of P-values and confidence sets, level error
in a confidence set is equivalent to error in the calculation of a P-
value. This error cannot be assumed to be in the direction of larger
confidence sets and P-values, which would be consistent with
their definitions. It may be that confidence sets are too small, and
P-values likewise. For people who make the mistake of confusing
P-values and hypothesis tests (see Sec. 6.3.2) this would lead to
too many H0’s rejected. This was the basis of John Ioannidis’s
controversial paper ‘Why most published research findings are
false’ (Ioannidis, 2005). He noted that ambitious scientists had an
incentive not to correct this bias, because a small P-value increased
their chance of publication in a prestigious journal.

If it is possible to sample cheaply from the model for Y then
there is a simple way to correct for level error, to first order, which
is to adjust the nominal coverage b until the actual coverage at
the MLE q̂(y) is equal to the desired coverage. This is bootstrap
calibration, see DiCiccio and Efron (1996). I find it surprising that
this sensible precaution is not better known (but perhaps I should
be more cynical!). My advice would be not to trust a confidence set
or P-value unless it has been calibrated to have the desired coverage
at the MLE.

In related research the Observational Medical Outcomes Partner-
ship (OMOP) have studied confidence intervals and P-values from
observational studies based on medical databases (Schuemie et al.,
2014; Madigan et al., 2014). The very alarming conclusion is

Empirical calibration was found to reduce spurious results to the de-
sired 5% level. Applying these adjustments to literature suggests that
at least 54% of findings with p < 0.05 are not actually statistically
significant and should be reevaluated. (Schuemie et al., 2014, abstract)



96

Commentators are talking about a ‘crisis of reproducibility’ in
science, and it looks as though uncorrected level error in confidence
intervals and P-values is partly to blame.


