
Theory of Inference: Homework 2

1. Study the statement and proof of the Bayes Rule theorem. Now state

and prove the theorem in the special case where the choice of action

does not affect the client’s beliefs about X.

Answer. Define

δ∗(y) := argmin
a∈A

E{L(a,X) | Y =̇ y},

note that there is no ‘; a’ in the expectation, because the action does not

affect beliefs about X. We want to show that, for arbitrary rule δ,

E{L(δ(Y ), X)} ≥ E{L(δ∗(Y ), X)},

which would prove that δ∗ was a Bayes Rule. Thus:

E{L(δ(Y ), X)} =
∑

x

∑
y
L(δ(y), x) p(x, y) FTP

=
∑

y

∑
x
L(δ(y), x) p(x | y) p(y) definition of p(x | y)

≥
∑

y

{
min
a∈A

∑
x
L(a, x) p(x | y)

}
p(y)

=
∑

y

{
min
a∈A

E{L(a,X) | Y =̇ y}
}

p(y) CFTP

=
∑

y
E{L(δ∗(y), X) | Y =̇ y} p(y) by definition

=
∑

y

{∑
x
L(δ∗(y), x) p(x | y)

}
p(y) CFTP again

=
∑

y

∑
x
L(δ∗(y), x) p(x, y) p(x | y) again

= E{L(δ∗(Y ), X)} FTP again

as required. This is overkill on the number of steps; about four would do.

2. A volcano can be either inactive or active; it is active with probability θ.

If it is inactive its eruption rate is zero. If it is active, its eruption rate
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has a Gamma distribution with shape parameter α and rate parameter

β. Let λ be its eruption rate. Show that

Pr(λ ≤̇ v) = 1− θ + F (v;α, β) · θ

for v ≥ 0, and zero otherwise, where F is the distribution function of the

Gamma distribution. Hint: introduce the random quantity A ∈ {0, 1},
where A = 1 exactly when the volcano is active, and use the Law of

Total Probability.

Answer. Introduce A as in the hint, so that {A =̇ 0, A =̇ 1} is a belief

partition. Let γ ∼ Gamma(· ;α, β). Then λ = Aγ, and

Pr(λ ≤̇ v) = Pr(λ ≤̇ v |A =̇ 0) Pr(A =̇ 0) + Pr(λ ≤̇ v |A =̇ 1) Pr(A =̇ 1) LTP

= Pr(Aγ ≤̇ v |A =̇ 0) Pr(A =̇ 0) + Pr(Aγ ≤̇ v |A =̇ 1) Pr(A =̇ 1)

= Pr(0 ≤̇ v |A =̇ 0) Pr(A =̇ 0) + Pr(γ ≤̇ v |A =̇ 1) Pr(A =̇ 1) by TOWIK

= 1 · Pr(A =̇ 0) + F (v;α, β) · Pr(A =̇ 1) as v ≥ 0

= 1− θ + F (v;α, β) · θ

as required.

3. Here is an exam-style revision question on the first strand of lectures.

(a) The Fundamental Theorem of Prevision (FTP) is an if-and-only-if

theorem. Pick one branch (either if or only-if), state it, and prove

it. [5 marks]

Answer. All of these answers are covered in the notes; I’ll produce

off-the-cuff answers here without reference to the notes—just for fun.

One branch of the FTP states that if E is coherent then there exists

a p ∈ Ss−1 for which E{g(X)} =
∑

j g(x(j)) · pj for any specified g,

where s is the dimension of the realm of X, which is X := {x(j)}sj=1.

To prove this, note that

1 =
∑

j
1X=̇x(j) ,
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because X must take exactly one value from its realm. And then

E{g(X)} = E{g(X) · 1}

= E
{
g(X)

∑
j
1X=̇x(j)

}
= E

{∑
j
g(X)1X=̇x(j)

}
= E

{∑
j
g(x(j))1X=̇x(j)

}
(make sure you understand this step)

=
∑

j
g(x(j)) E{1X=̇x(j)} by linearity

=
∑

j
g(x(j)) · pj

say. We have pj ≥ 0 by lower-boundedness, and also

1 = E{1} = E
{∑

j
1X=̇x(j)

}
=
∑

j
E{1X=̇x(j)} =

∑
j
pj

by lower-boundedness and linearity, showing that p := (p1, . . . , ps) is a

point in Ss−1, as required.

(b) Outline a model for data, distinguishing between random quan-

tities, observables, and observations. Give an example of how an

observable differs from the random quantity it measures, owing to

limitations in the instrument. [5 marks]

Answer. Suppose we have m random quantities X := (X1, . . . , Xm).

An ‘observable’ Yi is a specified function of X, say gi(X), whose value

will at some point become known; its value is the ‘observation’ yobs
i .

‘Data’ can collectively be represented as the truth of the random propo-

sition

Q := q(X) where q(x) :=
n∧

i=1

(
gi(x) =̇ yobs

i

)
.

In the simplest possible case, gi(x)← xi, in which case the data com-

prise observations on the first n random quantities: call this the Simple

Observation Model (SOM). More generally, Yi might be a more com-

plicated function of Xi, reflecting in part the measuring instrument’s

limitations. For example, a meter which only reads up to the value v

has gi(x) = min{xi, v}.
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(c) State and prove the Muddy Table theorem. Illustrate it with a

diagram. [5 marks]

Answer. Let q(x) be a first order sentence, and define the random

proposition Q := q(X). The Muddle Table theorem states that

Pr(X =̇ x |Q) =
1q(x) p(x)

Pr(Q)
provided that Pr(Q) > 0,

where p(·) represents the PMF of X and Pr(Q) =
∑

x 1q(x) p(x) by

the Fundamental Theorem of Prevision (FTP).

For the proof, take Pr(Q) > 0 as stated, and then

Pr(X =̇ x |Q) =
Pr(X =̇ x, Q)

Pr(Q)

according to the definition of hypothetical/conditional probability. Eval-

uate the numerator using the FTP to get

Pr(X =̇ x, Q) =
∑
x′

1x′=̇x∧q(x′) p(x′) = 1q(x) p(x)

as required. Here is my diagram:
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(d) ‘Bayesian conditionalisation’ is the name given to a model for

learning in which new information is incorporated into beliefs

through conditioning. What are the attractive features of this

model? Why does it not describe the typical practice of statisti-

cal inference? [10 marks]

Answer. Here are some bullet points for this answer:

• Bayesian conditionalisation asserts that beliefs are represented as

probability statements and updated by conditioning. A set of

propositions Ψ is already known to be true, and another proposi-

tion Q is newly learnt to be true, and is to be added to Ψ. Before

knowing Q, beliefs have the form BelΨ(·) = Pr(· |Ψ). After know-

ing Q, updated beliefs have the form BelQ∧Ψ(·) = Pr(· | Q,Ψ),
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provided that Pr(Q |Ψ) > 0.

• One attractive feature of this approach is that it has a very sim-

ple form: it is easy to compute the updated beliefs by applying

sequential Bayes’s theorem. Other attractive features include:

i. It is a theorem that conditional probabilities represented as

Pr(Q |R) in the defining relationship

Pr(Q,R) = Pr(Q |R) Pr(R)

are indeed probabilities (i.e. satisfy the axioms of expecta-

tion), so this type of update is ‘coherence preserving’.

ii. As a specical case of the above, the update satisfies the mini-

mal property of being logically consistent, so that if Q implies

R then Pr(R |Q) = 1.

iii. The update is order-invariant, so that if Q = Q1∧Q2, then the

same beliefs arise from conditioning first on Q1 and then on

Q2, or the other way around: in other words, only Ψ matters,

not the order in which its elements were acquired.

• The learning model has a simple sequential form in which we start

with some beliefs Ψ, acquire new knowledge Q, and then update to

Q∧Ψ. Practically speaking, it can only work if we anticipate Q, in

order that Pr(Q |Ψ) > 0. It is very hard to anticipate everything

that one might learn.

More generally, in a statistical inference the nature of Q is itself

shaped through dialogue with the client, and analysis of the data-

pool. Often the Q that is selected is only a small subset of the

datapool, reflecting the statistician’s and the client’s limitations

in specifying defensible beliefs about many of the elements of the

datapool. This ‘backwards and forwards’ activity to choose Q

is quite different from the simple sequential form represented in

Bayesian conditionalisation.

Please hand in your answers for marking next Tue (3 Mar), at the lecture

or by 5pm in the box outside my office door. I will return them in Thu’s
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lecture.

Jonathan Rougier

Feb 2015
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