
Theory of Inference: Homework 3

1. Important but a bit tedious. Let X := {X1, . . . , Xm} ∈ X , as usual.

Show that the PMF of the observables is

p(y) =
n∏
i=1

pX(yi)

under the following conditions:

(a) Simple observational model (SOM), i.e.

Yi = Xi i = 1, . . . , n,

(b) X1, . . . , Xm
iid∼ pX(·), i.e.

p(x) =
m∏
i=1

pX(xi).

Answer. Let’s do this with m← 4 and n← 2.

p(y1, y2) = E{1Y1=̇y1∧Y2=̇y2} Def. of prob.

= E{1X1=̇y1∧X2=̇y2} Cond. (a)

=
∑
x1

· · ·
∑
x4

1x1=̇y1∧x2=̇y2 · p(x1, x2, x3, x4) FTP

=
∑
x1

· · ·
∑
x4

1x1=̇y1 · 1x2=̇y2 · pX(x1) · · · pX(x4) Cond. (b)

=
∑
x1

1x1=̇y1 pX(x1) ·
∑
x2

1x2=̇y2 pX(x2) ·
∑
x3

pX(x3) ·
∑
x4

pX(x4)

= pX(y1) · pX(y2) · 1 · 1

as required.

2. Here is a exam-style revision question on decision theory and prediction.

Each part is worth five marks.
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(a) Describe the statistical framework for analysing decision problems,

including decision rules. Define what it means for an action or a

decision rule to be optimal.

Answer. As previously, these answers will be free-style, although they

should not be too different from what you will find in the handouts and

lecture notes.

Given a set of random quantities X ∈ X , the two essential features

of a decision problem are an action space A := {a1, . . . , ak} and a

loss function L : A × X → R, where L(a,x) is the loss incurred for

choosing action a when X turns out to be x. An action is optimal

when it minimises the expected loss, i.e.

a∗ = argmin
a∈A

E{L(a,X)}.

In a more complicated situation, observables Y ∈ Y will be available

before the action is chosen. In that case the task is to choose a decision

rule δ : Y → A, where δ(y) is the action selected if the observations

are y. A decision rule δ∗ is optimal if it satisfies

δ∗ = argmin
δ∈D

E{L[δ(Y ),X]}

where D is the set of all possible decision rules.

(b) Consider the special case of a prediction problem: how does this

differ from more general decision problems? Provide illustrations

of prediction problems for the same random quantity X, but which

are likely to differ in the prediction that is made.

Answer. In a prediction problem, the objective is to provide a point

value for a random quantity, X say, either directly, or as a function

of some observables, y. The action space is A = R (or possibly some

subset of it), and the loss function is then L : R × X → R. So the

difference is mainly in the action space.

If X was the weight of a donkey assessed for the purposes of treatment,

then, as discussed in the lectures, the loss from a wrong prediction
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can be asymmetric. Some drugs, such as wormers, incur a larger loss

from an under-prediction than from an over-prediction; others, such

as anaesthetics, incur a larger loss from over-prediction; the loss in

both cases being measured in terms of the animal’s health. So predic-

tions made to minimise expected loss will be different in the two cases,

with the predictions for wormers being systematically higher than the

predictions for anaesthetics.

(c) Explain the motivation for producing ‘generic’ predictions, and

justify the use of convex loss functions for such predictions.

Answer. In many decision problems, the increase in expected losses

from making a slightly sub-optimal decision are outweighted by the

increase in cost from hiring a statistician and doing a careful decision

analysis. Also, of course, many people want to make a quick decision

and are unaware that there is a framework within which they could

take account of their uncertainties when choosing between actions. In

these cases the simple rule is to replace expected loss over X with the

loss evaluated at some predicted value for X, i.e. to hope that

argmin
a∈A

E{L(a,X)} ≈ argmin
a∈A

L(a, x̂)

where x̂ is a prediction for X; there is a straightforward generalisation

to many X’s. In this case we need a ‘generic’ prediction for X which

will work across many different decision problems.

When deciding on a loss function for a generic prediction, one natural

feature, which would be widely accepted, is that small prediction errors

are tolerable, but large ones are intolerable. This is captured by a

convex loss function

L(x′, x) = h(x′ − x)

for some non-negative and convex h satisfying h(0) = 0. This loss

function attributes zero loss to a correct prediction, a (relatively) small

loss to a nearly-correct prediction, and a (relatively) large loss to a large

mis-prediction. [A picture of h would be helpful here.]
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(d) Let Y be a set of observables with the statistical model Y ∼ p(· ; θ)
for some θ ∈ Ω. Define what is meant by an ‘estimator’, and what

it means for an estimator to be ‘admissible’ (for simplicity, assume

that Ω is finite).

Answer. An estimator is a prediction rule for θ based on y. Let Ω

be a convex subset of Rp and let θ̂ : Y → R
p be any estimator. Define

the risk function for a specified loss function L : Rp × Ω→ R as

R(δ, θ) := E{L[θ̂(Y ), θ]; θ}.

Now consider two different predictors, δ and δ′. We say that δ′ domi-

nates δ exactly when

R(δ, θ) ≥ R(δ′, θ) for all θ ∈ Ω

with a strict inequality for at least one θ ∈ Ω. If δ is not dominated

by another rule we say it is admissible. [I did not use finiteness of Ω

in this answer.]

(e) State, informally, Wald’s theorem. Using a diagram, describe the

classification of the space of all estimators, in terms of necessary

and sufficient conditions for admissibility. Where does Stein’s

paradox locate the Maximum Likelihood (ML) estimator in this

space?

Answer. It is easy to show that if δ is a Bayes prediction for some πθ

with support Ω then δ is admissible. This is a sufficient condition for

admissibility. Wald proved a converse result: all admissible rules are

either Bayes rules for a proper πθ, or, in the case where Ω is non-finite,

the improper limit of a sequence of Bayes rules. This is a necessary

condition for admissibility. Here is the Venn Diagram of Admissibility,

with the ML estimator shown in the necessary set, but not in the

admissible set, as per Stein’s paradox.
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More on Stein’s paradox. This comment inserted after looking

at the handed-in homeworks. In some cases, including some common

ones, the MLE is the improper limit of a sequence of Bayes rules for

quadratic loss. So in these situations it satisfies the necessary condition

for admissibility. Stein showed that one such MLE, again a common

one, was inadmissible.

Please hand in your answers for marking next Tue (17 Mar), at the lecture

or by 5pm in the box outside my office door. I will return them in Thu’s

lecture.

Jonathan Rougier

Mar 2015
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