
Theory of Inference: Homework 4

1. Here is a slightly technical question about hypothesis tests. Suppose that

Y1, . . . , Yn
iid∼ Poisson(λ) λ > 0.

The two competing hypotheses are

H0 : λ = λ0 versus H1 : λ = λ1

for specified values of λ0 and λ1.

(a) Derive the form of the likelihood ratio, f0(y)/f1(y).

Answer. First, we need the PMF for y, which is

f(y;λ) =
n∏
i=1

e−λ
λyi

yi!
∝ e−nλλ

∑
i yi = e−nλλnȳ

where ȳ is the sample mean; we can ignore multiplicative terms that do not

depend on λ (since they will cancel in ratios). Then

f0(y)

f1(y)
= e−n(λ0−λ1)

(
λ0

λ1

)nȳ
.

(b) Evaluate this ratio for the values λ0 = 0.50, λ1 = 1.25 and the dataset

yobs =
{

1, 0, 2, 2, 0, 1, 1, 1, 1, 1, 3
}
.

Thinking like a Bayesian, what does the dataset say about the two hy-

potheses?

Answer. Here is the R code I used to generate the dataset and evaluate the

likelihood ratio.
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set.seed(101)

lambda0 <- 0.50

lambda1 <- 1.25

n <- 11

y <- rpois(n, lambda1); print(paste(y, collapse = ", "))

ybar <- mean(y)

logLR <- -n * (lambda0 - lambda1) + (n * ybar) * log(lambda0 / lambda1)

print(exp(logLR)) # 0.02568676

This is a likelihood ratio of about 1/40. To a Bayesian who did not have strong

prior beliefs about λ, this would indicate strong support for H1 over H0. This is

reassuring because you will see from the code that the ‘true’ hypothesis is H1.

(c) (Harder—maybe just think about this one over Easter.) Evaluate the

Type 1 and Type 2 errors of the rejection region

R :=

{
y :

f0(y)

f1(y)
≤ k

}
for k ← 0.5. Hint: you will find the Normal approximation to the Poisson

very helpful for a pen-and-paper calculation (leave your results expressed

in terms of the Normal distribution function), or else you can do the exact

calculation in R, using the ppois function.

Answer. Taking λ0 < λ1, we have

y ∈ R ⇐⇒ nȳ ≥ log k + n(λ0 − λ1)

log(λ0/λ1)
=: c

(make sure you check this!). If the Y ’s are IID Poisson with rate λ, then the sum

of the Y ’s is also Poisson (prove this using the Moment Generating Function),

and its rate is its expectation, nλ. Using the Normal approximation to the

Poisson, we then have

nȲ ∼ N(· ;nλ, nλ),

approximately, remembering that the variance of a Poisson is the same as the
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expectation. Therefore the Type 1 error is approximately

α := Pr0(Y ∈ R) = Pr0(nȲ ≥ c) ≈ 1− Φ(c ;nλ0, nλ0)

where Φ is the Normal distribution function, with specified expectation and

variance. The Type 2 error is

β := Pr1(Y 6∈ R) ≈ Φ(c ;nλ1, nλ1)

Here is some R code for the Type 1 and the Type 2 error:

k <- 0.5

c <- (log(k) + n * (lambda0 - lambda1)) / log(lambda0 / lambda1)

print(c) # 9.760163

alpha <- pnorm(c, n * lambda0, sqrt(n * lambda0), lower.tail = FALSE)

print(alpha) # 0.03464381

beta <- pnorm(c, n * lambda1, sqrt(n * lambda1))

print(beta) # 0.1409683

Now let’s also do the exact calculation in R:

alpha <- ppois(floor(c), n * lambda0, lower.tail = FALSE)

print(alpha) # 0.05377747

beta <- ppois(c, n * lambda1)

print(beta) # 0.1217738

showing that the Normal approximation is accurate to about 2 percentage

points, in this case.

(d) (Another one to think about.) Produce a plot of the Type 1 error (x-axis)

versus the Type 2 error (y-axis) for a range of values for k. This curve

is known as the operating characteristics curve for this model and this

pair of hypotheses. It is obvious that operating characteristics curve goes

through (0, 1) and (1, 0), and it is fairly easy to prove that it is always

convex (follows from the Neyman-Pearson Lemma).

3



Answer.

kvals <- seq(from = -2, to = 2, length = 101)

kvals <- 10^kvals

opchar <- sapply(kvals, function(k) {

c <- (log(k) + n * (lambda0 - lambda1)) / log(lambda0 / lambda1)

alpha <- ppois(floor(c), n * lambda0, lower.tail = FALSE)

beta <- ppois(c, n * lambda1)

c(k = k, alpha = alpha, beta = beta)

})

opchar <- t(opchar) # has columns: k, alpha, beta

opchar <- rbind(c(0, 0, 1), opchar, c(Inf, 1, 0)) # always have

these endpoints

plot(opchar[, c("alpha", "beta")], type = "l", col = "black",

asp = 1, xlim = c(0, 1), ylim = c(0, 1),

xlab = expression(paste("Values for ", alpha)),

ylab = expression(paste("Values for ", beta)),

main = "Operating characteristics curve")

dev.print(pdf, "opchar.pdf")
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2. Here is an exam-style revision question about hypothesis tests. Part 2d is unseen

and a bit harder. Each part carries five marks.

(a) Describe the general framework for Hypothesis Testing, and give illustra-

tions of the types of hypotheses that might be tested.

Answer. I’ll just sketch the answers, without reference to the notes.

A hypothesis is a statement about the values of the parameters in a parametric

model for some observables. In a hypothesis test we assess the evidential support

for two competing hypotheses. So if the parametric model is Y ∼ p(·; θ) for

θ ∈ Ω, then the two hypotheses can be written, in general, as

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1
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where Ω0,Ω1 ⊂ Ω, and Ω0 ∩Ω1 = ∅. If Ωi is a single point, then Hi is a ‘simple’

hypothesis; otherwise it is a ‘composite’ hypothesis.

One illustration is for two competing models: Y ∼ p0(·) versus Y ∼ p1(·),
which can be thought of as special cases of a single more general model with

θ ∈ {0, 1}. In this case both H0 and H1 are simple.

Another common case is where some value θ0 divides the scalar parameter space

into two parts. In this case we have H0 : θ ≤ θ0 versus H1 : θ > θ0, and both H0

and H1 are composite. One special case of this is where Ω = [θ0,∞), in which

case H0 is simple and H1 is composite.

A third illustration is where a hypothesis concerns only one of the parameters,

say H0 : µ = µ0 versus H1 : µ > µ0, in the case where Y ∼ N(·;µ, σ2). In this

case both H0 and H1 are composite, because the value of σ2 is not specified.

(b) Explain how a Bayesian might choose between two simple hypotheses.

Answer. Let the simple hypotheses be

H0 : Y ∼ p0(·) versus H1 : Y ∼ p1(·).

According to Bayes’s theorem in odds form,

Pr(H0 | Y =̇ y)

Pr(H1 | Y =̇ y)
=

p0(y)

p1(y)

Pr(H0)

Pr(H1)
.

The Bayesian will typically favour the hypothesis with the larger posterior prob-

ability; i.e.H0 if the lefthand side (the posterior odds forH0 versus H1) is greater

than one, and H1 if it is less than one. The first term on the righthand side

is the likelihood ratio. If this is much larger or much smaller than one, then it

will typically dominate the second term, the prior odds. So the Bayesian will

typically favour H0 if the likelihood ratio is large, say more than 20, and H1 if

the likelihood ratio is small, say less than 1/20. In the middle, he will need to

include explicit prior probabilities: if he does not have these, then he remains

undecided.

(c) State and prove the Neyman-Pearson Lemma.

Answer. You can look this one up in the lecture notes! My proof was adapted
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from section 8.2 of M. DeGroot and M. Schervish, 2002, Probability and Statis-

tics, 3rd edn, Addison-Wesley.

(d) Consider two simple hypotheses, H0 and H1, and the rejection region

R :=

{
y :

f0(y)

f1(y)
≤ k

}
.

Let α be the Type 1 error level of R, and β be the Type 2 error level (these

are both functions of k). Show that

∆α

∆β
≈ −k,

where ∆ indicates the change that arises from a small change in k.

Answer. Imagine ordering all the values of y ∈ Y in terms of the values of

f0(y)/f1(y); denote this ordering y(1),y(2) and so on. Fix a value of k and let

y(j) be the value in Y for which

f0(y(j−1))

f1(y(j−1))
< k <

f0(y(j))

f1(y(j))
,

or f0(y(j))/f1(y(j)) ≈ k. Now slightly increase k, so that the rejection region

now includes y(j). The increase in Type 1 error is f0(y(j)), and the increase

in the Type 2 error is −f1(y(j)), i.e. the Type 2 error goes down because the

rejection region is bigger. So

∆α

∆β
=

f0(y(j))

−f1(y(j))
≈ −k

as stated.

[Comment: this is an important and useful result, but we did not prove it

in the lectures, and it is not in the notes. If you look back to the operating

characteristics picture above, the gradient of the curve is ∆β/∆α ≈ −1/k, so

you can almost read the value of k from the curve, providing that the aspect

ratio of the plot is 1, which it is, because I specified asp = 1 as an argument to

the plot function.]
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(e) Explain briefly how we might examine the hypotheses

H0 : θ = 0 versus H1 : θ > 0

in the case of the model Y ∼ p(·; θ) with θ ≥ 0.

Answer. [Note: I have corrected an ambiguity in the question, by writing

θ0 ← 0.]

Briefly, the lower bound on the likelihood ratio, over all possible prior distribu-

tions for θ with support on H1, is

p0(y)

p1(y)
≥ p(y; θ0)

p(y; θ̂1(y))

where θ̂1(y) := argmaxt>0 p(y; t). Now if this lower bound is quite large, say

above 0.3, then this rules out the possibility of strong evidence against H0, and

so, if there is a reasonable preference for H0 over H1 in the prior (say, because

H0 is the current theory and H1 is a speculative new theory), then H0 will be

chosen. On the other hand, if this lower bound is very small, say below 0.001,

then the likelihood ratio could easily be small, say about 1/20, in which case we

would want to choose H1. But it could also be large, say 20, in which case we

would want to choose H0. It depends on the prior for θ under H1, which we are

reluctant to specify. So in this case we are undecided.

This homework is not due until the first Tue of next Term (21 Apr). In the meantime

I will circulate another homework on p-values.

Jonathan Rougier

Mar 2015
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