Theory of Inference: Homework 5

Here are two exam-style revision questions, about *p*-values and confidence sets.

- 1. (a) Consider the general model in which $(X_1, \ldots, X_m) \sim p(\boldsymbol{x}; \theta)$ for $\theta \in \Omega$, with observables $Y_i := g_i(\boldsymbol{X})$ for $i = 1, \ldots, n$, where the g_i are specified functions of \boldsymbol{x} . State the general formula for $p(\boldsymbol{y}; \theta)$, and also the special case where $\boldsymbol{X} \stackrel{\text{iid}}{\sim} p(x; \theta)$ and $Y_i = X_i$ for $i = 1, \ldots, n$. [5 marks]
 - (b) (i) Consider the model Y ~ p(y; θ) for θ ∈ Ω. Under what conditions is the statistic p₀(y) a P-value for the simple hypothesis H₀ : θ = θ₀?
 (ii) Let t(y) be any statistic. Prove that

$$p_0(\boldsymbol{y}) := \Pr\left\{t(\boldsymbol{Y}) \ge t(\boldsymbol{y}); \theta_0\right\}$$

is a *P*-value for H_0 . You may take as given the Probability Integral Transform (PIT), which states that if F_X is the distribution function of X, then $F_X(X)$ has a sub-uniform distribution.

(iii) Give an example of a P-value which is completely uninformative about H_0 , and explain how this possibility affects our interpretation of P-values. [10 marks]

(c) Let $p(\boldsymbol{y}; \theta_0)$ be a *P*-value for $H_0 : \theta = \theta_0$, and suppose that this can be computed for each $\theta_0 \in \Omega_0 \subset \Omega$. Define what is meant by a *P*-value for $H_0 : \theta \in \Omega_0$, and show that

$$p_{\Omega_0}(\boldsymbol{y}) := \sup_{\theta_0 \in \Omega_0} p(\boldsymbol{y}; \theta_0)$$

is such a P-value.

[5 marks]

(d) You have computed $p_0(\boldsymbol{y}^{\text{obs}}) = 0.0135$ for some dataset $\boldsymbol{y}^{\text{obs}}$. Interpret this value for your non-statistical client in the case where p_0 is an exact *P*-value for H_0 , and the case where p_0 is not an exact *P*-value. [5 marks]

- 2. Consider a statistical model of the form $\boldsymbol{Y} \sim p(\cdot; \theta)$ for $\theta \in \Omega \subset \mathbb{R}^p$.
 - (a) Let \mathcal{C} be a function mapping from \mathcal{Y} to subsets of Ω . Define the *coverage* of \mathcal{C} at θ . Define a level- β confidence set for θ . What special property does an *exact* confidence set have? [6 marks]
 - (b) Propose an exact 95% confidence set for θ which is nonetheless entirely uninformative about θ . What do you conclude from the fact that this is possible? [6 marks]
 - (c) State and prove the marginalisation theorem for confidence sets. [6 marks]
 - (d) Describe a general-purpose approach for computing a 95% confidence set for θ , based on level sets of the form

$$C(\boldsymbol{y}) := \left\{ \boldsymbol{\theta} : \log p(\boldsymbol{y}; \boldsymbol{\theta}) \ge \log p(\boldsymbol{y}; \hat{\boldsymbol{\theta}}(\boldsymbol{y})) - k \right\},$$

where $\hat{\theta}(\boldsymbol{y})$ is the Maximum Likelihood (ML) estimator for θ . Include in your description a justification for the form given above, an explanation of *level error*, and a sampling-based approach for reducing level error. [7 marks]

If you would like to hand in this homework for marking, please do so by 5pm on Wed 6 May, in the box outside my offce.

Jonathan Rougier Mar 2015