Theory of Inference: Homework 5

Here are two exam-style revision questions, about *p*-values and confidence sets.

1. (a) Consider the general model in which $(X_1, \ldots, X_m) \sim p(\boldsymbol{x}; \theta)$ for $\theta \in \Omega$, with observables $Y_i := g_i(\boldsymbol{X})$ for $i = 1, \ldots, n$, where the g_i are specified functions of \boldsymbol{x} . State the general formula for $p(\boldsymbol{y}; \theta)$, and also the special case where $\boldsymbol{X} \stackrel{\text{iid}}{\sim} p(x; \theta)$ and $Y_i = X_i$ for $i = 1, \ldots, n$. [5 marks]

Answer. As usual in these answers, I write them independently of the notes, just for variety.

In general, applying the definition of probability and the FTP,

$$p(\boldsymbol{y}; \theta) = E\{\mathbb{1}_{\boldsymbol{Y} \doteq \boldsymbol{y}}; \theta\}$$
definition
$$= E\{\mathbb{1}_{g_1(\boldsymbol{X}) \doteq y_1 \land \dots \land g_n(\boldsymbol{X}) \doteq y_n}; \theta\}$$
$$= \sum_{\boldsymbol{x}} \prod_{i=1}^n \mathbb{1}_{g_i(\boldsymbol{x}) \doteq y_i} \cdot p(\boldsymbol{x}; \theta)$$
FTP.

In the special case $p(\boldsymbol{x}; \theta) = \prod_{j=1}^{m} p(x_j; \theta)$ and $g_i(\boldsymbol{x}) = x_i$, and substituting in gives

$$p(\boldsymbol{y};\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{i=1}^{n} \mathbb{1}_{x_i \doteq y_i} \cdot \prod_{j=1}^{m} p(x_j;\boldsymbol{\theta})$$

$$= \sum_{x_1} \cdots \sum_{x_n} \prod_{i=1}^{n} \mathbb{1}_{x_i \doteq y_i} p(x_i;\boldsymbol{\theta}) \cdot \sum_{x_{n+1}} \cdots \sum_{x_m} \prod_{i=n+1}^{m} p(x_i;\boldsymbol{\theta})$$

$$= \sum_{x_1} \cdots \sum_{x_n} \prod_{i=1}^{n} \mathbb{1}_{x_i \doteq y_i} p(x_i;\boldsymbol{\theta})$$

$$= \prod_{i=1}^{n} \sum_{x_i} \mathbb{1}_{x_i \doteq y_i} \cdot p(x_i;\boldsymbol{\theta})$$

$$= \prod_{i=1}^{n} p(y_i;\boldsymbol{\theta}).$$

[You don't need all the steps for a compelling answer, but you need most of them.]

- (b) (i) Consider the model $\mathbf{Y} \sim p(\mathbf{y}; \theta)$ for $\theta \in \Omega$. Under what conditions is the statistic $p_0(\mathbf{y})$ a *P*-value for the simple hypothesis $H_0: \theta = \theta_0$?
 - (ii) Let $t(\boldsymbol{y})$ be any statistic. Prove that

$$p_0(\boldsymbol{y}) := \Pr\left\{t(\boldsymbol{Y}) \ge t(\boldsymbol{y}); \theta_0\right\}$$

is a *P*-value for H_0 . You may take as given the Probability Integral Transform (PIT), which states that if F_X is the distribution function of X, then $F_X(X)$ has a sub-uniform distribution.

(iii) Give an example of a P-value which is completely uninformative about H_0 , and explain how this possibility affects our interpretation of P-values. [10 marks]

Answer. p_0 is *P*-value exactly when $p_0(\mathbf{Y})$ has a sub-uniform distribution under H_0 ; i.e.

$$\Pr\{p_0(\boldsymbol{Y}) \le u; \theta_0\} \le u \quad \text{for all } u \ge 0.$$

When the inequality is an equality for all u, then p_0 is an 'exact' P-value.

Let G_0 be the distribution function of $-t(\mathbf{Y})$ under H_0 , so that

$$p_0(\boldsymbol{y}) = \Pr\left\{t(\boldsymbol{Y}) \ge t(\boldsymbol{y}); \theta_0\right\} = \Pr\left\{-t(\boldsymbol{Y}) \le -t(\boldsymbol{y}); \theta_0\right\} = G_0(-t(\boldsymbol{y})).$$

Then

$$p_0(\boldsymbol{Y}) = G_0(-t(\boldsymbol{Y}))$$

and since $-t(\mathbf{Y})$ has distribution function G_0 under H_0 , the result follows by the PIT.

One can construct a completely uninformative P-value by using a test statistic which does not depend on \boldsymbol{y} , such as $t(\boldsymbol{y}) = 1$. By extention, there must be many P-values which are nearly uninformative about H_0 , and so on. So we see that the P-value needs to be carefully-chosen, in order to be informative about H_0 .

(c) Let $p(\boldsymbol{y}; \theta_0)$ be a *P*-value for $H_0 : \theta = \theta_0$, and suppose that this can be computed for each $\theta_0 \in \Omega_0 \subset \Omega$. Define what is meant by a *P*-value for

 $H_0: \theta \in \Omega_0$, and show that

$$p_{\Omega_0}(\boldsymbol{y}) := \sup_{\theta_0 \in \Omega_0} p(\boldsymbol{y}; \theta_0)$$

is such a *P*-value.

Answer. A *P*-value for the composite hypothesis $H_0: \theta \in \Omega_0$ has a subuniform distribution under all possible values of $\theta_0 \in \Omega_0$. For any \boldsymbol{y} , we have, by construction,

$$p_{\Omega_0}(\boldsymbol{y}) \leq u \implies p(\boldsymbol{y}; \theta_0) \leq u \text{ for all } \theta \in \Omega_0.$$

Hence

$$\Pr\left\{p_{\Omega_0}(\boldsymbol{Y}) \le u; \theta_0\right\} \le \Pr\left\{p(\boldsymbol{Y}; \theta_0) \le u; \theta_0\right\} \le u \text{ for all } \theta_0 \in \Omega_0$$

as was to be shown. The first inequality follows from the monotonicity property of expectation, because if $A \implies B$ then $\mathbb{1}_A \leq \mathbb{1}_B$, and the second follows because $p(\boldsymbol{y}; \theta_0)$ is a *P*-value for each $\theta_0 \in \Omega_0$.

(d) You have computed $p_0(\boldsymbol{y}^{\text{obs}}) = 0.0135$ for some dataset $\boldsymbol{y}^{\text{obs}}$. Interpret this value for your non-statistical client in the case where p_0 is an exact *P*-value for H_0 , and the case where p_0 is not an exact *P*-value. [5 marks]

Answer. Because p_0 is an exact *P*-value for H_0 ,

$$\Pr\left\{p_0(\boldsymbol{Y}) \le 0.0135; H_0\right\} = 0.0135$$

so were H_0 to be 'true', then a rare event would have occurred, one that only happens once in $1/0.0135 \approx 1/0.014 = 1000/14 = 70$ repetitions, on average. This makes us suspect that H_0 may be false, given that there may well be a competing hypothesis under which this event is much less rare. The answer is the same when the *P*-value is not exact, but the probability under H_0 is possibly even smaller.

[5 marks]

- 2. Consider a statistical model of the form $\boldsymbol{Y} \sim p(\cdot; \theta)$ for $\theta \in \Omega \subset \mathbb{R}^p$.
 - (a) Let \mathcal{C} be a function mapping from \mathcal{Y} to subsets of Ω . Define the *coverage* of \mathcal{C} at θ . Define a level- β confidence set for θ . What special property does an *exact* confidence set have? [6 marks]

Answer. The coverage of \mathcal{C} at θ is defined as

$$\operatorname{cov}(\theta) := \Pr\{\theta \in \mathfrak{C}(\boldsymbol{Y}); \theta\}.$$

A level- β confidence set has coverage of at least β for all $\theta \in \Omega$. If \mathcal{C} is an 'exact' level- β confidence set, then it coverage exactly β for every $\theta \in \Omega$.

(b) Propose an exact 95% confidence set for θ which is nonetheless entirely uninformative about θ . What do you conclude from the fact that this is possible? [6 marks]

Answer. If we allow ourselves an auxiliary uniform random variable U, then

$$\mathbb{C}(oldsymbol{y}) := egin{cases} \Omega & U \leq 0.95 \ \emptyset & U > 0.95 \end{cases}$$

has a coverage of exactly 95%, and yet it is useless, because it does not depend on \boldsymbol{Y} or $p(\cdot; \theta)$ at all. If we do not allow ourselves a U, then we use \boldsymbol{y} to seed a numerical (deterministic) random number generator, and set U equal to, say, the millionth value. Like P-values, this result indicates that confidence set \mathbb{C} needs to be carefully chosen, in order to be informative about θ .

(c) State and prove the *marginalisation theorem* for confidence sets. [6 marks]

Answer. Let $g: \theta \mapsto \phi$ be a specified function, and \mathcal{C} be a level- β confidence set for θ . Then $g\mathcal{C}$ is a level- β confidence for ϕ . By definition, $\theta \in \mathcal{C}(\boldsymbol{y})$ implies $\phi \in g\mathcal{C}(\boldsymbol{y})$ for all \boldsymbol{y} , and hence

$$\Pr\{\theta \in \mathcal{C}(\boldsymbol{Y}); \theta\} \le \Pr\{\phi \in g\mathcal{C}(\boldsymbol{Y}); \theta\}$$

for each $\theta \in \Omega$. But since \mathbb{C} is a level- β confidence set for θ , $\beta \leq \Pr\{\theta \in \mathbb{C}(\boldsymbol{Y}); \theta\}$ for all $\theta \in \Omega$, and hence $\beta \leq \Pr\{\phi \in g\mathbb{C}(\boldsymbol{Y}); \theta\}$ for all $\theta \in \Omega$, showing that $g\mathbb{C}$ is a level- β confidence set for ϕ .

[This is a good question for making sure that you really understand the difference between \boldsymbol{y} and \boldsymbol{Y} . Also make sure you always put a '; θ ' into probability statements for $\boldsymbol{Y} \sim p(\cdot; \theta)$.]

(d) Describe a general-purpose approach for computing a 95% confidence set for θ , based on level sets of the form

$$\mathcal{C}(\boldsymbol{y}) := \left\{ \boldsymbol{\theta} : \log p(\boldsymbol{y}; \boldsymbol{\theta}) \ge \log p(\boldsymbol{y}; \hat{\boldsymbol{\theta}}(\boldsymbol{y})) - k \right\}$$

where $\hat{\theta}(\boldsymbol{y})$ is the Maximum Likelihood (ML) estimator for θ . Include in your description a justification for the form given above, an explanation of *level error*, and a sampling-based approach for reducing level error. [7 marks]

Answer. Asymptotic theory suggests that, approximately,

$$2\log \frac{\mathrm{p}(\boldsymbol{Y}; \boldsymbol{\theta}(\boldsymbol{Y}))}{\mathrm{p}(\boldsymbol{Y}; \boldsymbol{\theta})} \sim \chi_p^2$$
 under the model

when size of \boldsymbol{Y} is large, where p is the dimension of Ω . Hence

$$\Pr\left\{2\log\frac{\mathrm{p}(\boldsymbol{Y};\hat{\theta}(\boldsymbol{Y}))}{\mathrm{p}(\boldsymbol{Y};\theta)} \le \chi_p^{-2}(0.95);\theta\right\} \approx 0.95 \quad \text{for all } \theta \in \Omega$$

where $\chi_p^{-2}(0.95)$ is the 95th percentile of the χ_p^2 distribution. Rearranging shows that

$$\Pr\left\{\log p(\boldsymbol{Y}; \theta) \ge \log p(\boldsymbol{Y}; \hat{\theta}(\boldsymbol{Y})) - \chi_p^{-2}(0.95)/2; \theta\right\} \approx 0.95 \quad \text{for all } \theta \in \Omega$$

i.e. C as defined above is approximately a 95% confidence set for θ , when $k \leftarrow \chi_p^{-2}(0.95)/2$.

Level error is the difference between the nominal coverage (95%) and the actual coverage, which may not be the same as the nominal coverage because the

asymptotic conditions do not hold. Therefore using $k \leftarrow \chi_p^{-2}(0.95)/2$ might induce level error: a different value for k might be better.

For given observations \boldsymbol{y} , a sampling-based approach can be used to adjust k to get coverage of 95% at the value of the MLE, $\hat{\theta}(\boldsymbol{y})$. Many datasets $\boldsymbol{Y}^{(1)}, \ldots, \boldsymbol{Y}^{(n)}$ are simulated independently from $p(\cdot; \hat{\theta}(\boldsymbol{y}))$, and after that the value of k is adjusted until exactly 95% of the resulting confidence sets contain $\hat{\theta}(\boldsymbol{y})$, i.e. we adjust k until the coverage is 95% at $\hat{\theta}(\boldsymbol{y})$. By smoothness, we also expect the coverage to be roughly 95% in the region around $\hat{\theta}(\boldsymbol{y})$, and hence that our confidence is approximately an exact confidence set for θ , at least in that region.

If you would like to hand in this homework for marking, please do so by 5pm on Wed 6 May, in the box outside my offce.

Jonathan Rougier Mar 2015