
Theory of Inference: Homework 5

Here are two exam-style revision questions, about p-values and confidence sets.

1. (a) Consider the general model in which (X1, . . . , Xm) ∼ p(x; θ) for θ ∈ Ω,

with observables Yi := gi(X) for i = 1, . . . , n, where the gi are specified

functions of x. State the general formula for p(y; θ), and also the special

case where X
iid∼ p(x; θ) and Yi = Xi for i = 1, . . . , n. [5 marks]

Answer. As usual in these answers, I write them independently of the notes,

just for variety.

In general, applying the definition of probability and the FTP,

p(y; θ) = E{1Y =̇y; θ} definition

= E{1g1(X)=̇y1∧···∧gn(X)=̇yn ; θ}

=
∑
x

n∏
i=1

1gi(x)=̇yi · p(x; θ) FTP.

In the special case p(x; θ) =
∏m
j=1 p(xj ; θ) and gi(x) = xi, and subsituting in

gives

p(y; θ) =
∑
x

n∏
i=1

1xi=̇yi ·
m∏
j=1

p(xj ; θ)

=
∑
x1

· · ·
∑
xn

n∏
i=1

1xi=̇yi p(xi; θ) ·
∑
xn+1

· · ·
∑
xm

m∏
i=n+1

p(xi; θ)

=
∑
x1

· · ·
∑
xn

n∏
i=1

1xi=̇yi p(xi; θ)

=
n∏
i=1

∑
xi

1xi=̇yi · p(xi; θ)

=

n∏
i=1

p(yi; θ).

[You don’t need all the steps for a compelling answer, but you need most of

them.]
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(b) (i) Consider the model Y ∼ p(y; θ) for θ ∈ Ω. Under what conditions is

the statistic p0(y) a P -value for the simple hypothesis H0 : θ = θ0?

(ii) Let t(y) be any statistic. Prove that

p0(y) := Pr
{
t(Y ) ≥ t(y); θ0

}
is a P -value for H0. You may take as given the Probability Integral Trans-

form (PIT), which states that if FX is the distribution function of X, then

FX(X) has a sub-uniform distribution.

(iii) Give an example of a P -value which is completely uninformative about

H0, and explain how this possibility affects our interpretation of P -values.

[10 marks]

Answer. p0 is P -value exactly when p0(Y ) has a sub-uniform distribution

under H0; i.e.

Pr{p0(Y ) ≤ u; θ0} ≤ u for all u ≥ 0.

When the inequality is an equality for all u, then p0 is an ‘exact’ P -value.

Let G0 be the distribution function of −t(Y ) under H0, so that

p0(y) = Pr
{
t(Y ) ≥ t(y); θ0

}
= Pr

{
− t(Y ) ≤ −t(y); θ0

}
= G0(−t(y)).

Then

p0(Y ) = G0(−t(Y ))

and since −t(Y ) has distribution function G0 under H0, the result follows by

the PIT.

One can construct a completely uninformative P -value by using a test statistic

which does not depend on y, such as t(y) = 1. By extention, there must be

many P -values which are nearly uninformative about H0, and so on. So we see

that the P -value needs to be carefully-chosen, in order to be informative about

H0.

(c) Let p(y; θ0) be a P -value for H0 : θ = θ0, and suppose that this can be

computed for each θ0 ∈ Ω0 ⊂ Ω. Define what is meant by a P -value for
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H0 : θ ∈ Ω0, and show that

pΩ0(y) := sup
θ0∈Ω0

p(y; θ0)

is such a P -value. [5 marks]

Answer. A P -value for the composite hypothesis H0 : θ ∈ Ω0 has a subuniform

distribution under all possible values of θ0 ∈ Ω0. For any y, we have, by

construction,

pΩ0(y) ≤ u =⇒ p(y; θ0) ≤ u for all θ ∈ Ω0.

Hence

Pr
{
pΩ0(Y ) ≤ u; θ0

}
≤ Pr

{
p(Y ; θ0) ≤ u; θ0

}
≤ u for all θ0 ∈ Ω0

as was to be shown. The first inequality follows from the monotonicity property

of expectation, because if A =⇒ B then 1A ≤ 1B, and the second follows

because p(y; θ0) is a P -value for each θ0 ∈ Ω0.

(d) You have computed p0(yobs) = 0.0135 for some dataset yobs. Interpret

this value for your non-statistical client in the case where p0 is an exact

P -value for H0, and the case where p0 is not an exact P -value. [5 marks]

Answer. Because p0 is an exact P -value for H0,

Pr
{
p0(Y ) ≤ 0.0135;H0

}
= 0.0135

so were H0 to be ‘true’, then a rare event would have occurred, one that only

happens once in 1/0.0135 ≈ 1/0.014 = 1000/14 = 70 repetitions, on average.

This makes us suspect that H0 may be false, given that there may well be a

competing hypothesis under which this event is much less rare. The answer is

the same when the P -value is not exact, but the probability under H0 is possibly

even smaller.
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2. Consider a statistical model of the form Y ∼ p(·; θ) for θ ∈ Ω ⊂ Rp.

(a) Let C be a function mapping from Y to subsets of Ω. Define the coverage

of C at θ. Define a level-β confidence set for θ. What special property does

an exact confidence set have? [6 marks]

Answer. The coverage of C at θ is defined as

cov(θ) := Pr{θ ∈ C(Y ); θ}.

A level-β confidence set has coverage of at least β for all θ ∈ Ω. If C is an ‘exact’

level-β confidence set, then it coverage exactly β for every θ ∈ Ω.

(b) Propose an exact 95% confidence set for θ which is nonetheless entirely

uninformative about θ. What do you conclude from the fact that this is

possible? [6 marks]

Answer. If we allow ourselves an auxiliary uniform random variable U , then

C(y) :=

Ω U ≤ 0.95

∅ U > 0.95

has a coverage of exactly 95%, and yet it is useless, because it does not depend

on Y or p(·; θ) at all. If we do not allow ourselves a U , then we use y to seed

a numerical (deterministic) random number generator, and set U equal to, say,

the millionth value. Like P -values, this result indicates that confidence set C

needs to be carefully chosen, in order to be informative about θ.

(c) State and prove the marginalisation theorem for confidence sets. [6 marks]

Answer. Let g : θ 7→ φ be a specified function, and C be a level-β confidence

set for θ. Then gC is a level-β confidence for φ. By definition, θ ∈ C(y) implies

φ ∈ gC(y) for all y, and hence

Pr{θ ∈ C(Y ); θ} ≤ Pr{φ ∈ gC(Y ); θ}
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for each θ ∈ Ω. But since C is a level-β confidence set for θ, β ≤ Pr{θ ∈ C(Y ); θ}
for all θ ∈ Ω, and hence β ≤ Pr{φ ∈ gC(Y ); θ} for all θ ∈ Ω, showing that gC is

a level-β confidence set for φ.

[This is a good question for making sure that you really understand the differ-

ence between y and Y . Also make sure you always put a ‘; θ’ into probability

statements for Y ∼ p(·; θ).]

(d) Describe a general-purpose approach for computing a 95% confidence set

for θ, based on level sets of the form

C(y) :=
{
θ : log p(y; θ) ≥ log p(y; θ̂(y))− k

}
,

where θ̂(y) is the Maximum Likelihood (ML) estimator for θ. Include

in your description a justification for the form given above, an explana-

tion of level error, and a sampling-based approach for reducing level er-

ror. [7 marks]

Answer. Asymptotic theory suggests that, approximately,

2 log
p(Y ; θ̂(Y ))

p(Y ; θ)
∼ χ2

p under the model

when size of Y is large, where p is the dimension of Ω. Hence

Pr

{
2 log

p(Y ; θ̂(Y ))

p(Y ; θ)
≤ χ−2

p (0.95); θ

}
≈ 0.95 for all θ ∈ Ω

where χ−2
p (0.95) is the 95th percentile of the χ2

p distribution. Rearranging shows

that

Pr
{

log p(Y ; θ) ≥ log p(Y ; θ̂(Y ))− χ−2
p (0.95)/2; θ

}
≈ 0.95 for all θ ∈ Ω

i.e. C as defined above is approximately a 95% confidence set for θ, when

k ← χ−2
p (0.95)/2.

Level error is the difference between the nominal coverage (95%) and the actual

coverage, which may not be the same as the nominal coverage because the
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asymptotic conditions do not hold. Therefore using k ← χ−2
p (0.95)/2 might

induce level error: a different value for k might be better.

For given observations y, a sampling-based approach can be used to adjust k to

get coverage of 95% at the value of the MLE, θ̂(y). Many datasets Y (1), . . . ,Y (n)

are simulated independently from p(·; θ̂(y)), and after that the value of k is

adjusted until exactly 95% of the resulting confidence sets contain θ̂(y), i.e.

we adjust k until the coverage is 95% at θ̂(y). By smoothness, we also expect

the coverage to be roughly 95% in the region around θ̂(y), and hence that our

confidence is approximately an exact confidence set for θ, at least in that region.

If you would like to hand in this homework for marking, please do so by 5pm on Wed

6 May, in the box outside my offce.

Jonathan Rougier

Mar 2015
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