## What can pollen tell us about palæo-climate?

Jonathan Rougier

Department of Mathematics University of Bristol, UK

ICAS, Leed, Oct 2010

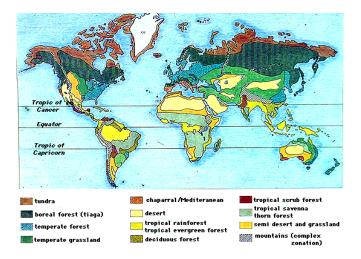
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Obligatory picture of biomes





Source: http://www.ucmp.berkeley.edu/exhibits/biomes/index.php



Source: http://www.life.illinois.edu/bio100/lectures/s97lects/04Ecosystems/BiomeMap.gif

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Biomes provide a discrete but rich summary of climate, because plants tend to occupy different subregions of (MTCO, GDD5, precip)-space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

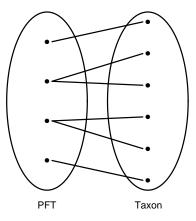
- 1. Biomes provide a discrete but rich summary of climate, because plants tend to occupy different subregions of (MTCO, GDD5, precip)-space.
- Reconstructed biomes (including measures of uncertainty) allow us to critique the performance of climate simulators 'out of sample', especially the new generation which will be run with dynamical vegetation models.
- 3. They may also allow us to calibrate climate simulators and vegetation models (i.e. to constrain the values of the uncertain parameters).

- 1. Biomes provide a discrete but rich summary of climate, because plants tend to occupy different subregions of (MTCO, GDD5, precip)-space.
- Reconstructed biomes (including measures of uncertainty) allow us to critique the performance of climate simulators 'out of sample', especially the new generation which will be run with dynamical vegetation models.
- 3. They may also allow us to calibrate climate simulators and vegetation models (i.e. to constrain the values of the uncertain parameters).

But mainly because ...

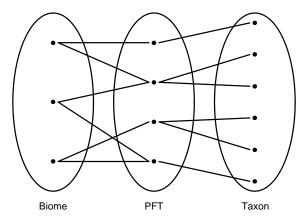
4. It's interesting and challenging!

# Biomes, PFTs, and pollen taxa



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Biomes, PFTs, and pollen taxa



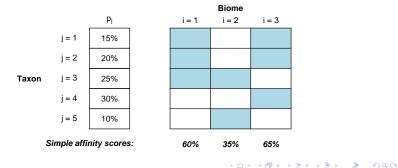
Defines a relationship between biomes and taxa, such that  $\mathcal{J}_i$  is the set of taxa that can be reached from biome *i*.

## Current approach: Affinity score

Biomisation is estimating the biome from a pollen assemblage  $\{x_j : j = 1, ..., n\}$ . The dominant method is to maximise the affinity score:

$$\operatorname{Aff}(i) := \sum_{j \in \mathcal{J}_i} \hat{p}_j \qquad \hat{p}_j := \{\max(0, p_j - \theta)\}^\gamma$$

where  $p_j$  is the proportion of taxon j in the assemblage, and typically  $\theta = 0.5\%$  and  $\gamma = 1/2$ .



# Current approach: Affinity score

### Some observations

- 1. The affinity score for biome j will be relatively high if and only if this biome contains the well-represented taxa.
- 2. The choice of  $\gamma = 0.5$  down-weights taxa with large proportions, which is probably a crude adjustment for differential rates of productivity and dispersal.
- 3. But  $\gamma = 0.5$  over-weights the contribution from the large number of taxa with small proportions, and so  $\theta = 0.5\%$  is need to squash these.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Current approach: Affinity score

### Some observations

- 1. The affinity score for biome j will be relatively high if and only if this biome contains the well-represented taxa.
- 2. The choice of  $\gamma = 0.5$  down-weights taxa with large proportions, which is probably a crude adjustment for differential rates of productivity and dispersal.
- 3. But  $\gamma = 0.5$  over-weights the contribution from the large number of taxa with small proportions, and so  $\theta = 0.5\%$  is need to squash these.

### Statistical concerns

Is  $\max_i \operatorname{Aff}(i)$  a good estimator? For example, is there a reasonable underlying statistical model from which it follows that the affinity score is the likelihood function?

- ► *If so,* we can quantify uncertainty and do hypothesis tests.
- If not, what confidence do we have in our reconstructions?

# The affinity score is not a likelihood function



This follows by considering two biomes, *i* and *i'*, for which  $\mathcal{J}_i \supset \mathcal{J}_{i'}$ .

- Consider the set of pollen taxa that are in J<sub>i</sub> but not in J<sub>i'</sub>, *J* := J<sub>i</sub> \ J<sub>i'</sub>. Suppose that the counts are zero for all the taxa in J. In this case Aff(i) = Aff(i').
- 2. But one would think that getting zero counts in  $\mathcal{I}$  was improbable if the biome was *i*, but probable if the biome was *i'*. Therefore, statistically, we would want L(i) < L(i'), where *L* is the likelihood function.
- Extending this argument, if there were small numbers of counts in J then Aff(i) > Aff(i'), but we would still want L(i) < L(i') if these could be attributed to a background process.

# Statistical model (sketch)

### Aleatory model

- 1. The pollen grains on the microscope slide follow independent Poisson processes with rates  $\theta_j$  that depend on the biome;
- 2. A background process with rates  $\lambda_j$  accounts for contamination and other errors such as misidentification and misrecording.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Statistical model (sketch)

### Aleatory model

- 1. The pollen grains on the microscope slide follow independent Poisson processes with rates  $\theta_j$  that depend on the biome;
- 2. A background process with rates  $\lambda_j$  accounts for contamination and other errors such as misidentification and misrecording.

### Epistemic model

- 1. The biome rates  $\theta_j$  are zero if  $j \notin \mathcal{J}_i$ , and otherwise Gamma $(\alpha_{ij}, \beta_{ij})$ ;
- 2. The background rates  $\lambda_j$  are Gamma $(\alpha_{ij}^{\lambda}, \beta_{ij}^{\lambda})$ ;
- 3. To account for differential productivity and dispersal, set  $\beta_{ij} = \beta_i / \hat{\alpha}_j C_j$ , likewise for  $\beta_{ij}^{\lambda}$ .

# Statistical model (sketch)

### Aleatory model

- 1. The pollen grains on the microscope slide follow independent Poisson processes with rates  $\theta_j$  that depend on the biome;
- 2. A background process with rates  $\lambda_j$  accounts for contamination and other errors such as misidentification and misrecording.

### Epistemic model

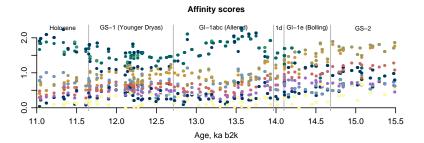
- 1. The biome rates  $\theta_j$  are zero if  $j \notin \mathcal{J}_i$ , and otherwise Gamma $(\alpha_{ij}, \beta_{ij})$ ;
- 2. The background rates  $\lambda_j$  are Gamma $(\alpha_{ij}^{\lambda}, \beta_{ij}^{\lambda})$ ;
- 3. To account for differential productivity and dispersal, set  $\beta_{ij} = \beta_i / \hat{\alpha}_j C_j$ , likewise for  $\beta_{ij}^{\lambda}$ .

#### Special vague case

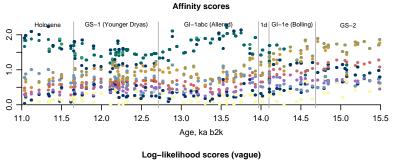
Set  $\alpha_{ij} = \alpha_{ij}^{\lambda} = 1$ . All of the  $\beta$ 's can then be set, in the very simple case, according to a single rate  $\kappa \in (0, 1)$  which represents the expected proportion that comes from the background. One intuitive tuning parameter!

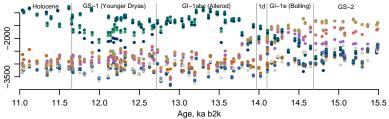


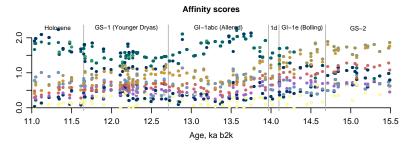




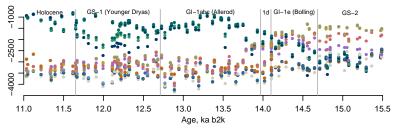
▲□▶▲圖▶▲圖▶▲圖▶ 通 のQ@



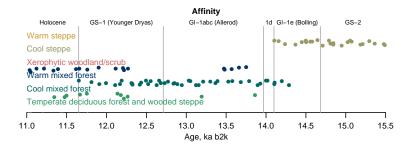






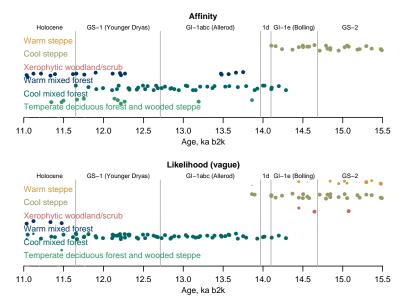


## Another visualisation, Monticchio



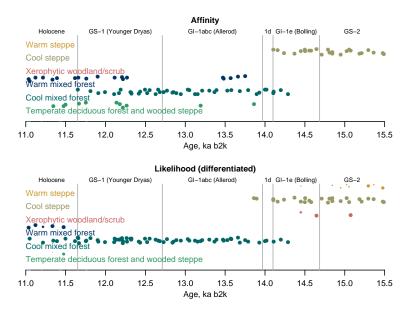
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

## Another visualisation, Monticchio



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

## Another visualisation, Monticchio



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

## Final observations

- Statistics is about doing sensible things when faced with uncertainty. In particular, how to make good estimates, like what the biome was at site x and time t BP.
- A crucial aspect of the statistical approach is its clarity. One is obliged to make explicit statements of one's judgements, that can be discussed and challenged.
- The benefit is the development, one hopes, of a consensus, and the much richer inference that is possible with more structured judgements.

Many thanks to: Prof Judy Allen, Dr Heather Binney, Dr Philip Brohan, Prof Caitlin Buck and the SUPRAnet project, Prof Mary Edwards, Prof Brian Huntley, Prof Jim Smith.