
The What, Why, and How
of Multivariate Emulation

Jonathan Rougier

Department of Mathematics

University of Bristol, UK

http://www.maths.bris.ac.uk/∼mazjcr/

May 2009, Spring Research Conference, Vancouver

http://www.maths.bris.ac.uk/~mazjcr/

Two types of experiment

System experiment

I Multiple experimental
units may not be available!

I Many uncontrolled sources
of variation

I Difficulty of doing the
experiment you want

Computer experiment

I Can do more-or-less any
experiments we want

I Have to account for
limitations in the model

I Difficulty of interpreting
the experiment you do

Two types of experiment

System experiment

I Multiple experimental
units may not be available!

I Many uncontrolled sources
of variation

I Difficulty of doing the
experiment you want

Computer experiment

I Can do more-or-less any
experiments we want

I Have to account for
limitations in the model

I Difficulty of interpreting
the experiment you do

Representing uncertainty

Taking a physical system as an example.

I Denote the system as the (possibly huge) vector Y .

I The model maps some parameters θ into a point or
distribution over possible values of Y . Typically θ might
comprise

I Coefficients in the equations;
I Initial conditions, forcing functions.

I Limitations in the model induce uncertainty about the
relationship between the system and the model. This takes
the form of a joint distribution

π(Y , θ∗) = π(Y | θ∗)︸ ︷︷ ︸
structural

× π(θ∗)︸ ︷︷ ︸
parametric

where θ∗ is the best/correct/true value of the parameters.

Representing uncertainty

Taking a physical system as an example.

I Denote the system as the (possibly huge) vector Y .

I The model maps some parameters θ into a point or
distribution over possible values of Y . Typically θ might
comprise

I Coefficients in the equations;
I Initial conditions, forcing functions.

I Limitations in the model induce uncertainty about the
relationship between the system and the model. This takes
the form of a joint distribution

π(Y , θ∗) = π(Y | θ∗)︸ ︷︷ ︸
structural

× π(θ∗)︸ ︷︷ ︸
parametric

where θ∗ is the best/correct/true value of the parameters.

Introducing the Emulator

Often, a large part of the evaluation of π(Y | θ∗) comprises the
evaluation of a deterministic function g(θ), termed the simulator.

Emulator, ηθ

An emulator is a framework for making a statistical prediction for
g(θ) at any valid θ, by conditioning g(θ) on the simulator
evaluations. Denote this prediction as the probability distribution
ηθ.

I The emulator can be used to replace evaluations of g(θ) when
these would be too expensive. For example, instead of
evaluating v = g(θ) we could use v̄ = Eηθ

(v) or ṽ ∼ ηθ.

I An emulator augments the information in the simulator
evaluations with additional judgements about smoothness,
and also, if appropriate, about monotinicity, interactions,
non-linearity, etc.

Introducing the Emulator

Often, a large part of the evaluation of π(Y | θ∗) comprises the
evaluation of a deterministic function g(θ), termed the simulator.

Emulator, ηθ

An emulator is a framework for making a statistical prediction for
g(θ) at any valid θ, by conditioning g(θ) on the simulator
evaluations. Denote this prediction as the probability distribution
ηθ.

I The emulator can be used to replace evaluations of g(θ) when
these would be too expensive. For example, instead of
evaluating v = g(θ) we could use v̄ = Eηθ

(v) or ṽ ∼ ηθ.

I An emulator augments the information in the simulator
evaluations with additional judgements about smoothness,
and also, if appropriate, about monotinicity, interactions,
non-linearity, etc.

Two approaches to computer experiments

Consider an uncertainty analysis experiment, where we want to
sample from π(Y). Suppose that π(Y | θ∗) = π(Y | g(θ∗)).

In the loop

No time to waste: let’s get
cracking!

for i = 1, . . . , n do
θ(i) ∼ π(θ∗)
v (i) = g(θ(i))
Y (i) ∼ π(Y | v (i))
Save (θ(i),Y (i))

end for

Result: an estimate of E(Y) with
an error of O(n−0.5).

Emulator

First, build an emulator ηθ using n
carefully chosen evaluations of the
simulator, (G ;R). Then

for i = 1, . . . ,N do
θ(i) ∼ π(θ∗)
ṽ (i) ∼ ηθ(i)

Y (i) ∼ π(Y | ṽ (i))
Save (θ(i),Y (i))

end for

Result (N � n): an exact
calculation of E(Y | G ;R).

Two approaches to computer experiments

Consider an uncertainty analysis experiment, where we want to
sample from π(Y). Suppose that π(Y | θ∗) = π(Y | g(θ∗)).

In the loop

No time to waste: let’s get
cracking!

for i = 1, . . . , n do
θ(i) ∼ π(θ∗)
v (i) = g(θ(i))
Y (i) ∼ π(Y | v (i))
Save (θ(i),Y (i))

end for

Result: an estimate of E(Y) with
an error of O(n−0.5).

Emulator

First, build an emulator ηθ using n
carefully chosen evaluations of the
simulator, (G ;R). Then

for i = 1, . . . ,N do
θ(i) ∼ π(θ∗)
ṽ (i) ∼ ηθ(i)

Y (i) ∼ π(Y | ṽ (i))
Save (θ(i),Y (i))

end for

Result (N � n): an exact
calculation of E(Y | G ;R).

Two approaches to computer experiments

Consider an uncertainty analysis experiment, where we want to
sample from π(Y). Suppose that π(Y | θ∗) = π(Y | g(θ∗)).

In the loop

No time to waste: let’s get
cracking!

for i = 1, . . . , n do
θ(i) ∼ π(θ∗)
v (i) = g(θ(i))
Y (i) ∼ π(Y | v (i))
Save (θ(i),Y (i))

end for

Result: an estimate of E(Y) with
an error of O(n−0.5).

Emulator

First, build an emulator ηθ using n
carefully chosen evaluations of the
simulator, (G ;R). Then

for i = 1, . . . ,N do
θ(i) ∼ π(θ∗)
ṽ (i) ∼ ηθ(i)

Y (i) ∼ π(Y | ṽ (i))
Save (θ(i),Y (i))

end for

Result (N � n): an exact
calculation of E(Y | G ;R).

Advantages of emulators

1. They allow us to augment the set of n evaluations with
additional judgements about the simulator.

2. They provide a framework in which we can explore the
behaviour of the simulator (very important for code
verification).

3. They help us to make informative choices for where to
evaluate the simulator, and free us from committing to
distribution choices for θ∗.

Advantages of emulators

1. They allow us to augment the set of n evaluations with
additional judgements about the simulator.

2. They provide a framework in which we can explore the
behaviour of the simulator (very important for code
verification).

3. They help us to make informative choices for where to
evaluate the simulator, and free us from committing to
distribution choices for θ∗.

Advantages of emulators

1. They allow us to augment the set of n evaluations with
additional judgements about the simulator.

2. They provide a framework in which we can explore the
behaviour of the simulator (very important for code
verification).

3. They help us to make informative choices for where to
evaluate the simulator, and free us from committing to
distribution choices for θ∗.

Now it gets messy!

The ‘shape’ of a MV emulator

R: n × p design matrix G : n × q output matrix

s: q-vector output index

θ(i) - g(θ(i))

The ‘shape’ of a MV emulator

R: n × p design matrix G : n × q output matrix

s: q-vector output index

θ(i) - g(θ(i))

-

6

�
�
�
�� Smoothness

in the simulator
outputs

The NIG implementation

I Emulators typically look quite a lot like regressions:

gj(θ) =
∑

k
βkhk(θ, sj) + ε(θ, sj)

where β comprises uncertain coefficients, h is specified
regressor functions, and ε is a scalar residual process.

I The standard conditionally conjugate prior is

β ⊥⊥ ε | τ
β | τ ∼ N(m, τV)

ε | τ ∼ GP
(
0, τκ(·, ·;ψ)

)
τ ∼ IG(a, d)

where this is conditional on parameters ψ in the covariance
function κ

(
(θ, s), (θ′, s ′);ψ

)
.

I Choosing h, m,V, a, d , κ and ψ is a standard Bayesian
statistical challenge, if we can build emulators quickly.

The NIG implementation

I Emulators typically look quite a lot like regressions:

gj(θ) =
∑

k
βkhk(θ, sj) + ε(θ, sj)

where β comprises uncertain coefficients, h is specified
regressor functions, and ε is a scalar residual process.

I The standard conditionally conjugate prior is

β ⊥⊥ ε | τ
β | τ ∼ N(m, τV)

ε | τ ∼ GP
(
0, τκ(·, ·;ψ)

)
τ ∼ IG(a, d)

where this is conditional on parameters ψ in the covariance
function κ

(
(θ, s), (θ′, s ′);ψ

)
.

I Choosing h, m,V, a, d , κ and ψ is a standard Bayesian
statistical challenge, if we can build emulators quickly.

Numerical cost of building an emulator

I Until recently, it was thought that the cost of building an
emulator (once all the bits were specified) was O(n3q3) flops.
On a desktop computer, this is about n = 200 runs of a
simulator with q = 50 outputs.

I But now we know that the Outer Product Emulator (Rougier,
2008) can do this calculation in O(n3) +O(q3) flops. This
allows us to go at least an order of magnitude bigger in both
n and q (or go a lot quicker). Thus it becomes possible to
emulate a spatial field of, e.g., temperatures, for the whole of
the globe.

I We can go bigger again if the output index has separable
structure, e.g. into space and time.

Numerical cost of building an emulator

I Until recently, it was thought that the cost of building an
emulator (once all the bits were specified) was O(n3q3) flops.
On a desktop computer, this is about n = 200 runs of a
simulator with q = 50 outputs.

I But now we know that the Outer Product Emulator (Rougier,
2008) can do this calculation in O(n3) +O(q3) flops. This
allows us to go at least an order of magnitude bigger in both
n and q (or go a lot quicker). Thus it becomes possible to
emulate a spatial field of, e.g., temperatures, for the whole of
the globe.

I We can go bigger again if the output index has separable
structure, e.g. into space and time.

Numerical cost of building an emulator (in pictures)

●

●

●

●

●

●

●

●

●

q = 10

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

● S
W
G

●
●

●

●

●

●

●

●

q = 20

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

●

●

●

●

●

q = 50

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

●

●

●

q = 100

50 100 250 500 1000

0.
01

0.
1

1
10

10
0

Number of evaluations (log scale)

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

The OPE in one slide

The OPE requires three conditions:

1. Rectangular outputs; i.e. the same output indices s1, . . . , sq
regardless of the value of θ.

2. A separable residual covariance function,

κ
(
(θ, sj), (θ

′, sj ′);ψ
)

= κθ
(
θ, θ′;ψθ

)
× Σs

jj ′ .

3. A set of regressors that is the pairwise product of regressors in
θ and regressors in s:

h(θ, s) = hθ(θ)⊗ hs(s).

Consequence: In the emulator implementation, the kronecker
product representation of the residual variance is conformable with
the kronecker product representation of the regression matrix,
leading to an algebraic reorganisation that is numerically very
efficient.

The OPE in one slide

The OPE requires three conditions:

1. Rectangular outputs; i.e. the same output indices s1, . . . , sq
regardless of the value of θ.

2. A separable residual covariance function,

κ
(
(θ, sj), (θ

′, sj ′);ψ
)

= κθ
(
θ, θ′;ψθ

)
× Σs

jj ′ .

3. A set of regressors that is the pairwise product of regressors in
θ and regressors in s:

h(θ, s) = hθ(θ)⊗ hs(s).

Consequence: In the emulator implementation, the kronecker
product representation of the residual variance is conformable with
the kronecker product representation of the regression matrix,
leading to an algebraic reorganisation that is numerically very
efficient.

A really messy multivariate emulation

NCAR’s TIE-GCM simulator of the upper atmosphere.

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

● ●

●
●

●
●

● ●

0 4 8 12 16 20 24

−
30

−
20

−
10

0
10

20
30

Magnetic local time, hours from midnight

U
pw

ar
ds

 d
rif

t,
m

/s

A really messy multivariate emulation

2D projections of the design matrix.

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

AMP, da m

0 2 4 6 8 10 12

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21
22

23
24

25

26

27

28

29
30

3.0 3.2 3.4 3.6 3.8 4.0

0
5

10
15

20
25

30
35

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21
22

23
24

25

26

27

28

29
30

PHZ, hr

0
2

4
6

8
10

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1617
18

19

20

21

22 23

24

25

26

27

28

29

30

3.0 3.2 3.4 3.6 3.8 4.0

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

EDN,
log10 1e−3cm

A really messy multivariate emulation

Leave-one-out predictive diagnostic.
Job 003

EDN = 3.00
Job 002

EDN = 3.06
Job 012

EDN = 3.10
Job 022

EDN = 3.13
Job 006

EDN = 3.15
Job 011

EDN = 3.20

Job 008
EDN = 3.22

Job 004
EDN = 3.25

Job 005
EDN = 3.28

Job 009
EDN = 3.32

Job 014
EDN = 3.35

Job 029
EDN = 3.39

Job 007
EDN = 3.42

Job 021
EDN = 3.45

Job 013
EDN = 3.47

Job 017
EDN = 3.52

Job 016
EDN = 3.55

Job 023
EDN = 3.59

Job 028
EDN = 3.62

Job 018
EDN = 3.65

Job 019
EDN = 3.69

Job 027
EDN = 3.73

Job 015
EDN = 3.75

Job 024
EDN = 3.78

Job 025
EDN = 3.81

Job 030
EDN = 3.84

Job 001
EDN = 3.89

Job 026
EDN = 3.90

Job 020
EDN = 3.94

Job 010
EDN = 3.98

A really messy multivariate emulation

LOO: zoom in on last twelve.

Job 003
EDN = 3.00

Job 002
EDN = 3.06

Job 012
EDN = 3.10

Job 022
EDN = 3.13

Job 006
EDN = 3.15

Job 011
EDN = 3.20

Job 008
EDN = 3.22

Job 004
EDN = 3.25

Job 005
EDN = 3.28

Job 009
EDN = 3.32

Job 014
EDN = 3.35

Job 029
EDN = 3.39

Job 007
EDN = 3.42

Job 021
EDN = 3.45

Job 013
EDN = 3.47

Job 017
EDN = 3.52

Job 016
EDN = 3.55

Job 023
EDN = 3.59

Job 028
EDN = 3.62

Job 018
EDN = 3.65

Job 019
EDN = 3.69

Job 027
EDN = 3.73

Job 015
EDN = 3.75

Job 024
EDN = 3.78

Job 025
EDN = 3.81

Job 030
EDN = 3.84

Job 001
EDN = 3.89

Job 026
EDN = 3.90

Job 020
EDN = 3.94

Job 010
EDN = 3.98

A really messy multivariate emulation

Exploring the simulator behaviour.

0 4 8 12 16 20 24

−
20

−
10

0
10

20

EDN = 3.00

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

0 4 8 12 16 20 24

−
20

−
10

0
10

20

EDN = 3.33

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

0 4 8 12 16 20 24

−
20

−
10

0
10

20

EDN = 3.66

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

0 4 8 12 16 20 24

−
20

−
10

0
10

20

EDN = 4.00

●

●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

The simulator’s response to different values of the three inputs (mean function, interpolated with a periodic B-spline).
Line styles denote values of AMP: solid = 0, dashed = 18, dot-dashed = 36. Plotting characters denote values of
PHZ: open circle = 3, filled triangle = 9. The two solid lines are coincident, because there is no PHZ effect when
AMP = 0.

Summary

1. Emulators are useful whenever the cost of spanning the
simulator parameter space with evaluations exceeds the
computational budget.

2. This often happens with simulators of complex physical
systems, like global climate. Such simulators have multivariate
outputs with lots of structure (e.g. space and time).

3. A multivariate emulator is a complicated object, and requires
detailed diagnostic checking. But multivariate emulation, in
general, is plagued by O(n3q3) computations.

4. The Outer Product Emulator offers an O(q3) solution:
emulators of complex simulators with high-dimensional
outputs that can be computed in seconds.

5. This makes it possible to use traditional approaches to
statistical model choice and model criticism, based on
predictive diagnostics like Leave-One-Out and
One-Step-Ahead.

Some references
Bastos, L. and A. O’Hagan (2008). Diagnostics for gaussian process emulators.

Technical Report No. 574/07, Department of Probability and Statistics, University
of Sheffield. Currently available at http:
//mucm.group.shef.ac.uk/Pages/Downloads/Technical Reports/08-02.pdf.

Craig, P., M. Goldstein, J. Rougier, and A. Seheult (2001). Bayesian forecasting for
complex systems using computer simulators. Journal of the American Statistical
Association 96, 717–729.

Goldstein, M. and J. Rougier (2006). Bayes linear calibrated prediction for complex
systems. Journal of the American Statistical Association 101, 1132–1143.

Goldstein, M. and J. Rougier (2009). Reified Bayesian modelling and inference for
physical systems. Journal of Statistical Planning and Inference 139, 1221–1239.
With discussion.

Rougier, J. (2008a). Discussion of ‘Inferring climate system properties using a
computer model’ by Sansó et al. Bayesian Analysis 3(1), 45–56.

Rougier, J. (2008b). Efficient emulators for multivariate deterministic functions.
Journal of Computational and Graphical Statistics 17(4), 827–843.

Rougier, J., S. Guillas, A. Maute, and A. Richmond (2009). Expert knowledge and
multivariate emulation: The Thermosphere-Ionosphere Electrodynamics General
Circulation Model (TIE-GCM). Forthcoming in Technometrics, currently available
at http://www.maths.bris.ac.uk/∼mazjcr/TIEGCM.pdf.

See also http://mucm.group.shef.ac.uk/

http://mucm.group.shef.ac.uk/Pages/Downloads/Technical_Reports/08-02.pdf
http://mucm.group.shef.ac.uk/Pages/Downloads/Technical_Reports/08-02.pdf
http://www.maths.bris.ac.uk/~mazjcr/TIEGCM.pdf
http://mucm.group.shef.ac.uk/

	References

