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Two types of experiment

System experiment

I Multiple experimental
units may not be available!

I Many uncontrolled sources
of variation

I Difficulty of doing the
experiment you want

Computer experiment

I Can do more-or-less any
experiments we want

I Have to account for
limitations in the model

I Difficulty of interpreting
the experiment you do
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Representing uncertainty

Taking a physical system as an example.

I Denote the system as the (possibly huge) vector Y .

I The model maps some parameters θ into a point or
distribution over possible values of Y . Typically θ might
comprise

I Coefficients in the equations;
I Initial conditions, forcing functions.

I Limitations in the model induce uncertainty about the
relationship between the system and the model. This takes
the form of a joint distribution

π(Y , θ∗) = π(Y | θ∗)︸ ︷︷ ︸
structural

× π(θ∗)︸ ︷︷ ︸
parametric

where θ∗ is the best/correct/true value of the parameters.
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Introducing the Emulator

Often, a large part of the evaluation of π(Y | θ∗) comprises the
evaluation of a deterministic function g(θ), termed the simulator.

Emulator, ηθ

An emulator is a framework for making a statistical prediction for
g(θ) at any valid θ, by conditioning g(θ) on the simulator
evaluations. Denote this prediction as the probability distribution
ηθ.

I The emulator can be used to replace evaluations of g(θ) when
these would be too expensive. For example, instead of
evaluating v = g(θ) we could use v̄ = Eηθ

(v) or ṽ ∼ ηθ.

I An emulator augments the information in the simulator
evaluations with additional judgements about smoothness,
and also, if appropriate, about monotinicity, interactions,
non-linearity, etc.
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Two approaches to computer experiments

Consider an uncertainty analysis experiment, where we want to
sample from π(Y ). Suppose that π(Y | θ∗) = π(Y | g(θ∗)).

In the loop

No time to waste: let’s get
cracking!

for i = 1, . . . , n do
θ(i) ∼ π(θ∗)
v (i) = g(θ(i))
Y (i) ∼ π(Y | v (i))
Save (θ(i),Y (i))

end for

Result: an estimate of E(Y ) with
an error of O(n−0.5).

Emulator

First, build an emulator ηθ using n
carefully chosen evaluations of the
simulator, (G ;R). Then

for i = 1, . . . ,N do
θ(i) ∼ π(θ∗)
ṽ (i) ∼ ηθ(i)

Y (i) ∼ π(Y | ṽ (i))
Save (θ(i),Y (i))

end for

Result (N � n): an exact
calculation of E(Y | G ;R).



Two approaches to computer experiments

Consider an uncertainty analysis experiment, where we want to
sample from π(Y ). Suppose that π(Y | θ∗) = π(Y | g(θ∗)).

In the loop

No time to waste: let’s get
cracking!

for i = 1, . . . , n do
θ(i) ∼ π(θ∗)
v (i) = g(θ(i))
Y (i) ∼ π(Y | v (i))
Save (θ(i),Y (i))

end for

Result: an estimate of E(Y ) with
an error of O(n−0.5).

Emulator

First, build an emulator ηθ using n
carefully chosen evaluations of the
simulator, (G ;R). Then

for i = 1, . . . ,N do
θ(i) ∼ π(θ∗)
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Advantages of emulators

1. They allow us to augment the set of n evaluations with
additional judgements about the simulator.

2. They provide a framework in which we can explore the
behaviour of the simulator (very important for code
verification).

3. They help us to make informative choices for where to
evaluate the simulator, and free us from committing to
distribution choices for θ∗.
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Now it gets messy!



The ‘shape’ of a MV emulator

R: n × p design matrix G : n × q output matrix

s: q-vector output index

θ(i) - g(θ(i))



The ‘shape’ of a MV emulator

R: n × p design matrix G : n × q output matrix

s: q-vector output index

θ(i) - g(θ(i))

-

6

�
�
�
�� Smoothness

in the simulator
outputs



The NIG implementation

I Emulators typically look quite a lot like regressions:

gj(θ) =
∑

k
βkhk(θ, sj) + ε(θ, sj)

where β comprises uncertain coefficients, h is specified
regressor functions, and ε is a scalar residual process.

I The standard conditionally conjugate prior is

β ⊥⊥ ε | τ
β | τ ∼ N(m, τV)

ε | τ ∼ GP
(
0, τκ(·, ·;ψ)

)
τ ∼ IG(a, d)

where this is conditional on parameters ψ in the covariance
function κ

(
(θ, s), (θ′, s ′);ψ

)
.

I Choosing h, m,V, a, d , κ and ψ is a standard Bayesian
statistical challenge, if we can build emulators quickly.
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Numerical cost of building an emulator

I Until recently, it was thought that the cost of building an
emulator (once all the bits were specified) was O(n3q3) flops.
On a desktop computer, this is about n = 200 runs of a
simulator with q = 50 outputs.

I But now we know that the Outer Product Emulator (Rougier,
2008) can do this calculation in O(n3) +O(q3) flops. This
allows us to go at least an order of magnitude bigger in both
n and q (or go a lot quicker). Thus it becomes possible to
emulate a spatial field of, e.g., temperatures, for the whole of
the globe.

I We can go bigger again if the output index has separable
structure, e.g. into space and time.
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Numerical cost of building an emulator (in pictures)
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The OPE in one slide

The OPE requires three conditions:

1. Rectangular outputs; i.e. the same output indices s1, . . . , sq
regardless of the value of θ.

2. A separable residual covariance function,

κ
(
(θ, sj), (θ

′, sj ′);ψ
)

= κθ
(
θ, θ′;ψθ

)
× Σs

jj ′ .

3. A set of regressors that is the pairwise product of regressors in
θ and regressors in s:

h(θ, s) = hθ(θ)⊗ hs(s).

Consequence: In the emulator implementation, the kronecker
product representation of the residual variance is conformable with
the kronecker product representation of the regression matrix,
leading to an algebraic reorganisation that is numerically very
efficient.
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A really messy multivariate emulation

NCAR’s TIE-GCM simulator of the upper atmosphere.
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A really messy multivariate emulation

2D projections of the design matrix.
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A really messy multivariate emulation

Leave-one-out predictive diagnostic.
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A really messy multivariate emulation

LOO: zoom in on last twelve.
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A really messy multivariate emulation

Exploring the simulator behaviour.
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The simulator’s response to different values of the three inputs (mean function, interpolated with a periodic B-spline).
Line styles denote values of AMP: solid = 0, dashed = 18, dot-dashed = 36. Plotting characters denote values of
PHZ: open circle = 3, filled triangle = 9. The two solid lines are coincident, because there is no PHZ effect when
AMP = 0.



Summary

1. Emulators are useful whenever the cost of spanning the
simulator parameter space with evaluations exceeds the
computational budget.

2. This often happens with simulators of complex physical
systems, like global climate. Such simulators have multivariate
outputs with lots of structure (e.g. space and time).

3. A multivariate emulator is a complicated object, and requires
detailed diagnostic checking. But multivariate emulation, in
general, is plagued by O(n3q3) computations.

4. The Outer Product Emulator offers an O(q3) solution:
emulators of complex simulators with high-dimensional
outputs that can be computed in seconds.

5. This makes it possible to use traditional approaches to
statistical model choice and model criticism, based on
predictive diagnostics like Leave-One-Out and
One-Step-Ahead.
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