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Simplest interesting example

Conditional on θ:

x0 ∼ πx0(θ) (init. cond. unc.)

xt = g(xt−1; θ) + Q(xt−1; θ) ωt (state eqn.)

yt = f (xt ; θ) + νt (obs. eqn.)

where

ωt
iid∼ N(0, I ) (structural uncertainty)

νt
iid∼ N(0, v2) (measurement unc.)

and then let θ ∼ πθ, to account for parametric uncertainty. The
functions f , g , and Q are given, likewise the measurement
uncertainty standard deviation, v .

Sampling from {x0:T , θ} | y1:T “intractable and unsolved”
(C. Andrieu)



Particle filters, for given θ
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Particle filters, for given θ
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Particle filters, for given θ
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Particle filters, for given θ
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Particle filters, for given θ
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Particle filters, for given θ
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Particle filters, for given θ
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Particle filters, for given θ
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The difficulties with uncertainty θ

I One simple idea is to attach a realisation from πθ to each
particle, in order to sample jointly from {x0:T , θ} | y1:T .

However, static parameters do not evolve in time, so every
interaction that culls particles reduces the resolution of the θ
distribution. Too many observations, and the θ distribution
becomes degenerate, unless we have <DrEvil>one
million</DrEvil> particles.

I The solution is to ‘integrate out’ the state vector in some
form. The two approaches are

1. Gaussian (Laplace) approximation for x1:T | {θ, y1:T} turning a
high-dimensional integration into a high-dimensional
optimisation;

2. Particle Markov chain Monte Carlo (P-MCMC), which uses a
Gibbs sampler to swap between sampling x1:T | {θ, y1:T} and
θ | {x1:T , y1:T}.
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Candidate’s formula

For integrating out nuisance parameters; in our case, the state
vector x = x0:T . ‘Discovered’ by a Durham undergraduate during a
Bayesian Modelling exam; recorded by Julian Besag:

π(θ) = π(θ)
π(θ, x)

π(θ, x)
for all x

= π(θ)
π(θ, x)

π(x | θ)π(θ)
for all x

=
π(θ, x)

π(x | θ)
for all x.

In our case, writing y = y1:T ,

π(θ | y) ∝ π(θ, x, y)

π(x | θ, y)
for all x,

where the constant of proportionality is 1/π(y).
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‘Cool’ derivation of Laplace approximation

We start with Candidate’s formula, use a Gaussian approximation
in the denominator, and then plug in for x:

π(θ | y) ∝ π(θ, x, y)

π(x | θ, y)
for all x

≈ π(θ, x, y)

φ(x;µ(θ),Σ(θ))
for all x (?), Gaussian approx.

=
π(θ, µ(θ), y)

|2πΣ(θ)|−1/2
plug in x = µ(θ),

where

µ(θ) = argmin
x

{− log π(x | θ, y)}

Σ(θ) =
[
−∇2 log π(x | θ, y)

]−1
at x = µ(θ).

Crucial for large problems:

Must use exact gradient function in the optimisation. And must
not be sanguine about finding an optimum value.
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In practice . . .

Recollect:

xt = g(xt−1; θ) + Q(xt−1; θ) ωt t = 1, . . . ,T .

I One does not optimise over x. Instead, put x0 into θ, in which
case x is completely determined by ω1:T and θ. Thus
ω = ω1:T becomes the nuisance parameter.

I Computing the gradient function of

log π(ω | θ, y) = c + log π(y | x(ω, θ), θ) + log π(ω)

is brutal, because of the recursive structure of the state
equation. But it can be done, in terms of the gradient matrix
of g and the gradient tensor of Q.
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Proof of concept
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Summary

I In inference for environmental systems, model limitations
require us to account for both parametric and structural
uncertainty.

I The generic problem for dynamical systems is therefore
non-linear data assimilation with uncertain static parameters.

I Only approximate solutions are available to this notoriously
intractable problem. They involve integrating out the state
vector x, to focus attention on the parameter θ.

I ‘Quick and dirty’ is to use a Laplace approximation. This may
or may not work. An explicit and exact value for the gradient
function is strongly recommended.


