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Abstract

An emulator is a statistical model of a deterministic function, to be used

where the function itself is too expensive to evaluate within-the-loop of

an inferential calculation. Typically, emulators are deployed when deal-

ing with complex functions that have large and heterogeneous input and

output spaces: environmental models, for example. In this challenging

situation we should be sceptical about our statistical models, no matter

how sophisticated, and adopt approaches that prioritise interpretative

and diagnostic information, and the flexibility to respond. This paper

presents one such approach, candidly rejecting the standard Smooth

Gaussian Process approach in favour of a fully-Bayesian treatment of

multivariate regression which, by permitting sequential updating, al-

lows for very detailed predictive diagnostics. It is argued directly and

by illustration that the incoherence of such a treatment (which does not

impose continuity on the model outputs) is more than compensated for

by the wealth of available information, and the possibilities for general-

isation.
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1 Introduction

An emulator is a stochastic representation of a deterministic function f , con-

structed using function evaluations; the term surrogate has also been used,

although recent practice has been to reserve this term for fast deterministic

approximations of f , e.g., from using a lower-resolution solver. Emulators are

useful wherever the function itself is costly to evaluate. A typical example is

a solver for a system described by a set of differential equations and equations

of state. The input vector x might simply be the initial value of the state

vector, but it might also include unknown system parameters. Even an eval-

uation time of just a few seconds would make this a costly function were it

necessary to explore a large input space. Thus emulators are useful in this

situation for optimisation calculations designed to choose ‘good’ values for x,

and also for inferential calculations designed to account for uncertainty in the

‘true’ x. Both of these activities fall under the general heading of computer

experiments ; see, e.g., Sacks et al. (1989), Koehler and Owen (1996) and Sant-

ner et al. (2003). Computer experiments for system inference, particularly

within a Bayesian framework, are discussed in Currin et al. (1991), Kennedy

and O’Hagan (2001), Craig et al. (1997, 2001), Goldstein and Rougier (2004,

2006a,b), Higdon et al. (2004), and Williams et al. (2006).

The challenge with building emulators is to find a parsimonious yet flexible

representation for our initial beliefs about f . This is hard when f is multi-

variate, particularly when the components of f(x) correspond to quantities

with quite different characteristics. For example, f might be a computer sim-

ulator for weather, where x denotes a particular value for the initial value of

the weather state-vector, and f(x) computes the evolution of that state-vector

in time. Thus f(x) comprises collections of space- and time-indexed values,

where each collection is a different type of quantity: pressure, temperature,

humidity, and so on. In the physics these values are all related in compli-

cated ways, and so our initial beliefs about f may be quite vague, possibly not

extending much beyond simple transformations of components of f(x) which

might be thought to make the resulting marginals more Gaussian.

It should go without saying that where the actions that follow from an anal-

ysis based on f will be costly or irreversible, then the emulator for f ought

to be carefully constructed. But not all computer experiments are so critical,

and even in those that are, an initial cheap emulator can still be informative
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both in choosing the evaluation points, and in refining our knowledge about

f , in order that we might subsequently construct a more detailed and more

accurate emulator. Therefore there is certainly a case for a lightweight em-

ulator that runs out-of-the-box, which is easily tunable to quite vague prior

beliefs about f , and which is generalisable should the need arise. This pa-

per presents such an emulator. Section 2 describes its general principles; the

notation is given in Table 1. Section 3 considers an implementation for the

common situation where all inputs are continuous. Section 4 describes predic-

tive diagnostics. Section 5 compares the lightweight emulator proposed here

with its more heavy-weight alternative, the Smooth Gaussian Process. Sec-

tion 6 provides a simple illustration, including specifying an informative prior.

Section 7 describes and illustrates a tractable approach for generalising the

emulator, by mixing over priors. Section 8 concludes. An Appendix describes

the conjugate analysis used to construct the emulator, and the notation for

the various distributions.

2 The function and the emulator

2.1 The function

We write our vector-valued function as

fi(x) i ∈ I, x ∈ X

where X is a set of d-tuples and I is a discrete set with k components. We term

a value x an input, i an index variable, and fi(x) an output. An alternative

notation (e.g., as adopted by Kennedy and O’Hagan, 2001), is to write f(x; i),

particularly if i indexes a continuous set, such as spatial locations, or times.

In a predictive inference we typically have a well-specified index variables,

matching (a) the system observations we want to calibrate against, and (b) the

system quantities we wish to predict. In this case, there seems little need

to permit the set I to be continuous. In situations where we would like to

optimise over i, however (e.g., to find the best spatial location for a measuring

instrument), there may be advantages to the continuous formulation when it

is not possible to span the index-space with a high-resolution lattice, usually

because I is too large. Nevertheless, this is simply a notational matter, so

far as this paper is concerned. In our notation we drop the index variable
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subscript to denote the full collection of outputs at any given input, and write

f(·) to refer to the function in full generality.

One fruitful source of functions such as f(·) is the Natural Sciences, where

models are constructed to represent complex systems, such as physical or envi-

ronmental systems, or biological systems. Perhaps the most popular approach

is the compartmental model, in which the behaviour of the state of the system

across a number of different compartments is described by ordinary differential

equations. One possible treatment (with a scalar state-vector, for simplicity)

is to take i to index the compartment, x to be the values of model parameters,

such as coefficients in the equations, and fi(x) to describe the equilibrium value

of the state quantity in compartment i with parameters x. Another treatment

is to specify a particular form of dynamic forcing, for example in the boundary

conditions, in which case i represents a tuple of compartment index and time

(or whatever the derivative is with respect to). In the more general setting

of a vector-valued state, or of partial differential equations, i may represent a

tuple of type, location and time. For example, in a climate model the value

fi(x) might denote sea-surface temperature in the Azores in the year 2050,

with model parameters x.

2.2 Emulating the function

These types of models can be extremely expensive to evaluate, and it is for

this reason that we need emulators. An emulator is synomymous with a dis-

tribution function

Πf (v, v′, . . . ; x, x′, . . . ) , Pr
(
f(x) ≤ v, f(x′) ≤ v′, . . .

)
for any finite collection of xs and vs, where ‘,’ denotes ‘defined as’. Emulators

are distinguished from other types of functional interpolator, for example a

neural network, by providing a probabilistic assessment of uncertainty about

f(·). In inferences based on the function, the emulator allows us to account

for the uncertainty that arises from having only a limited number of function

evaluations, what O’Hagan and Oakley (2004) term code uncertainty. For

experimental design, emulators allow us to select a set of evaluations that is

expected to be highly informative about function behaviour over a range of

input values, both starting from scratch, and when augmenting an existing

design.
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It is usually convenient to express an emulator implicity through the spec-

ification of more primitive uncertain quantities. We adopt the general form

f(x)T ≡ g(x)TB + u(x)T (1)

where g(·) is a q-vector of known regressors, B is a q × k matrix of uncertain

regression coefficients, and u(·) is a k-vector random field, termed the residual.

In our Lightweight Emulator (LWE) we hope to capture most of the vari-

ation in f(·) in terms of the fixed-length coefficient matrix B, allowing a rel-

atively simple specification for u(·). We adopt a Bayesian approach, where

we impose both structural and distributional restrictions on B and u(·), for

tractability. Our LWE emulator can be seen as a fully Bayesian conjugate

treatment of multivariate regression, or of multivariate kriging. A brief expla-

nation is given here, with more details in the Appendix. The focus of the paper

is not on this treatment per se, but on how we can use it when constructing

emulators.

We start by introducing an additional uncertain quantity Σ, a k×k variance

matrix. The structural restriction is that Σ separates B, u(x) and u(x′) when

x 6= x′, and consequently we must treat u(·) as a ‘nugget’, i.e. a process for

which

u(x) ⊥⊥ u(x′) | Σ x 6= x′. (2)

This restriction allows us to do sequential updating of {B, Σ} using model

evaluations, because it implies that

f(x) ⊥⊥ f(x′) | {B, Σ} x 6= x′. (3)

This can be summarised in the graphical model
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(4)

An evaluation of f(x) is an observation on a set of known linear combinations

of B and u(x). This observation updates the joint distribution {B, Σ}. This
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updated distribution feeds into our prediction of f(x′), where x′ 6= x, through

the updated joint distribution {B, u(x′)}. Restricting u(·) to be a nugget is

contentious, and is discussed in section 5.

To make the updating of {B, Σ} tractable we impose further parametric

restrictions, all of which are specified with respect to our choice of regressors,

g(·):

1. The prior conditional distribution for the residual is stationary and Gaus-

sian

u(x) | Σ ∼ Nk (0, Σ) (5)

for all x ∈ X ;

2. The prior conditional distribution of the regression coefficients is Matrix

Normal:

B | Σ ∼ MNq×k (M, Ω, Σ) (6)

where the matrices M (q × k) and Ω (q × q) are hyperparameters;

3. The prior marginal distribution of Σ is Inverse Wishart

Σ ∼ IWk (S, δ) (7)

where S (k × k) and δ (scalar) are hyperparameters.

Taking (6) and (7) together, we say that {B, Σ} has a Matrix Normal Inverse

Wishart (MNIW) distribution, from which it follows that our emulator for

f(x) has a multivariate Student-t distribution. Furthermore, this emulator is

conjugate in the sense that updating by evaluations of the model just modifies

the hyperparameters {M, Ω, S, δ}. Prior or updated, the emulator mean and

variance functions, expressed in terms of the hyperparameters, are

E
(
f(x)

)
= MTg(x) (8a)

cov
(
f(x), f(x′)

)
=

w(x, x′)

δ − 2
S, (8b)

provided that δ > 1 and δ > 2, respectively, where

w(x, x′) , g(x)TΩg(x′) + δ(x− x′); (8c)

where in (8c) the function δ(·) is the Dirac delta function (not to be confused
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with δ, the hyperparameter of the Invese Wishart, or, below, δij, the Kronecker

delta function). The notation in this paper is summarised in Table 1.

One notable feature of (8) is that the variance function separates into a

part attributable to x and a part attributable to i. This separability is a

cornerstone of tractable statistical modelling over products of different types

of spaces: the implications have to be fairly brutal, in the light of the huge

reduction in complexity that results. In this case we can see that the ratio

cov
(
fi(x), fi′(x

′)
)

cov
(
fi(x′′), fi′(x′′′)

) =
w(x, x′)

w(x′′, x′′′)

is dependent only on the four model-input values, and not on {i, i′}, the pair

of outputs we are selecting. For example, if we fix i = i′, x = x′ and x′′ = x′′′

and find that the variance of salinity at input x is exactly twice that at x′′,

then we must conclude that the variance of temperature at x is also exactly

twice that at x′′. Note that this is a feature of the emulator predictions, but

it does not constrain the way in which the emulator updates. That is to say,

if we considered a second emulator in which we partitioned the outputs and

treated them as block independent, then the predictive distributions within

each block would be the same in both emulators. Partitioning the outputs in

this way is beneficial only if we also allow our choices for the regressors or for

the prior hyperparameters to vary by block.

A discussion of this emulator is deferred until section 5, where it is con-

trasted with the more standard approach. A simple way to generalise the

emulator and ‘defeat’ the separability is discussed and illustrated in section 7.

2.3 Assessing the hyperparameters

The prior is summarised in terms of initial choices for the hyperparameters

Ψ , {M, Ω, S, δ}. But since the updating is conjugate, the following consider-

ations may also be applied to the updated hyperparameters, to derive summary

descriptions of the emulator at any stage of the process. To distinguish the

different choices, the prior values of the hyperparameters are labelled Ψ0.

As described in the Appendix, there exist ‘default’ choices for Ψ0 that

result in the expected values of the updated B and Σ being the Maximum
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Table 1: Notation used in the paper.

Symbol Size Definition

Function quantities

x p Vector of function inputs, index j

f(x) k Vector of function outputs, index i

F ; X n× (k + p) Ensemble of function evaluations

Emulator quantities

g(x) q Vector of regressors, index r

B q × k Matrix of regressor coefficients

u(x) k Vector of residuals

Σ k × k ‘Column’ variance matrix

Hyperparameters, Ψ

M q × k Mean of B

Ω q × q ‘Row’ variance matrix

S k × k Scale matrix for Σ

δ scalar Degrees of freedom for Σ

Ψ0 Collection Prior hyperparameters

Other

`v(·) Legendre polynomial of order v

δ(·) Dirac delta function

δij Kronecker delta function
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Likelihood (ML) estimators in multivariate regression, namely

Ω−1 = 0q×q, S = 0k×k, δ = 2, (9)

for all M , so we might add M = 0q×k. Where there are a very large number of

evaluations of the model these default choices may be acceptable, even though

S = 0 is very unlikely to be a reasonable summary of well-informed judgements

about f(·). In general, however, we should consider how to make informative

choices based on our (expert’s) judgements about the model.

One possibility is to make judgements about the conditional behaviour of

f(x), and how it varies for different x. Reasonable choices for Ψ0 can then

be inferred from (8). However, this is a very large collection of assessments,

unless it is judged that our prior for f(·) has quite simple structure.

An alternative approach is to treat the input itself as an uncertain quantity.

In many applications where f(·) is a model of a complex system, it is natural

to think of a ‘best’ or ‘correct’ input x∗: that input for which f(x∗) is the

best representation of the underlying system (see, e.g., Rougier, 2007, for a

discussion of this approach in climate modelling). Tracing uncertainty about

x∗ through to uncertainty about f(x∗) is known as uncertainty analysis, an

application where emulators have proved very useful for expensive functions

(O’Hagan et al., 1999; Oakley and O’Hagan, 2002). Then judgements about

f(x∗) can be used to augment those about {f(x); x ∈ X}. Reasonable choices

for Ψ0 can be inferred in conjunction with a distribution Πx∗ .

An effective way of simplifying this process is to use regressors g(·) that

are orthonormal with respect to Πx∗ , i.e.,

〈gr, gr′〉 ,
∫

gr(x) gr′(x) dΠx∗(x) = δrr′ (10)

where δrr′ is the Kronecker delta, and r will be used to index the regressors.

We can take g1(x) = 1. Partitioning M as

M =

(
M1

M2:

)
1× k

(q − 1)× k,
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we have, for orthonormal regressors,

E
(
f(x∗)

)
= M1

T (11a)

var
(
f(x∗)

)
= M2:

TM2: +
tr Ω + 1

δ − 2
S, (11b)

where x∗ ∼ Πx∗ , which follows directly from (8). Note that orthonormal

regressors are unitless, so that the columns of M have the same units as the

model-outputs, and Ω is unitless. The prior for M1 should be set according

to our judgements about the aggregate means. We may choose to treat the

prior for Ω as a diagonal matrix, because we have no opportunity to discern

the impact of its off-diagonal structure in these summaries.

Another way of summarising the hyperparameters for an uncertain x∗ is

through an ‘R2’ value for each output. We can think of R2 as the squared

correlation between the predicted and actual values, or

R2
i ,

cov
(
µi(x

∗), fi(x
∗)
)2

var
(
µi(x∗)

)
var
(
fi(x∗)

) (12)

for output i, where µ(x) is the mean function given in (8a). For orthonormal

regressors, this simplifies to

R2
i =

m2
i

m2
i + ξ2

i

ξ2
i ,

tr Ω + 1

δ − 2
Sii, (13)

where m2
i is defined as the ith term on the diagonal of M2:

TM2:. Obviously

if the prior for M2: is 0, then the prior R2 values will also be 0. We can

extract more information out of the R2 calculation by focusing on subsets of

the regressors, such as the first r according to some ordering; in this case

the ‘R2
i ’ value is m2

ir/(m
2
i + ξ2

i ), where m2
ir is the ith term on the diagonal of

M2:r
TM2:r. If these regressors were monomial terms, for example (section 3), it

might be interesting to compute the R2 values for the linear terms, and think

of all higher-order terms as being relegated to a generalised (non-stationary)

residual.

For Ψ0, we might hope to be able to assess reasonable values for M and for

the lumped parameters ξi, i = 1, . . . , k, by considering the unconditional mean

and variance, and possibly the R2 values (if we choose M2: 6= 0). To decompose

ξi into values for the hyperparameters diag Ω, δ and S, we might start with the

10



cautious choice δ = 3, which would represent minimal prior information with

a finite second moment. More generally, δ reflects our confidence in our prior

assessment in terms of the number of function evaluations that it might be

considered equivalent to. The value tr Ω/(tr Ω + 1) represents the proportion

of the expected conditional variance that is attributable to uncertainty in the

coefficients. If this can be fixed, and δ is chosen, then the diagonal of S

can be determined to give appropriate values for Sd(fi(x
∗)). The off-diagonal

components of S can be parameterised through a correlation matrix capturing

simple structure in the model outputs, such as block independence, or spatio-

temporal effects.

All this might seem rather hit-or-miss, both in terms of our ability to

provide detailed quantification of our prior judgements about the model, and

in terms of how the particular choices for the hyperparameters can be settled

on. But this really misses the point: the real issue is the extent to which we do

better than the default ML choices for the hyperparameters, as given in (9),

if we are willing to make more detailed judgements. At the very least we can

take the ML choices as bounds, and investigate whether we feel comfortable

moving away from the bounds. We also have the possibility of generalising our

choice for Ψ0, if we judge that to be appropriate (section 7).

3 Continuous inputs

When all of the inputs are continuous, we can make some further suggestions

about the choice of regressors. A generalisation of the probability integral

tranform can be used to map the domain of f(·) onto the unit cube, on which

the transformed Πx∗ is independent and uniform (Rosenblatt, 1952). Often,

this extra mapping will not to be required, as it is a common judgement to

treat the components of x∗ as independent, bounded and uniform (possibly

after marginal transformations). But note also that in some applications we

will discover, during the experiment, that the model does not evaluate for

certain choices of inputs. Even if we are prepared to attach zero probability

to these ‘unsuccessful’ input values, we are still left with the problem that the

region of successful choices is not well-defined, nor is it easy to summarise.

This situation is not treatable using the methods of this section.

We will restrict attention to the case where Πx∗ is absolutely continu-

ous, and treat the domain of f(·) as [0, 1]d. The main thing this rules out
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is ‘switches’ in x, which sometimes occur in physical models where we can

selectively activate subprocesses (see, e.g., the climate model in Murphy et al.,

2004). In this case we must think of f(·) as conditional on a given setting of

the various switches. If we so choose, we can build the bigger emulator which

includes both the continuous and discrete inputs, in which case the follow-

ing analysis holds for the continuous inputs only, expressed as a function of

the discrete ones. Regression-type approaches are natural for these types of

emulators: see, for example, Rougier et al. (2006).

3.1 Choice of regressors

Where f(·) is continuous and bounded on [0, 1]d we can use a tensor product

of Legendre polynomials for g(·), shifted from their usual domain of [−1, 1]

to [0, 1]. Each component gr(·) is a monomial that can be identified by the

exponent of each of the d input components, so that, if d = 2, (0, 0) would be

the constant, (1, 0) would be a linear term in x1, (0, 2) would be a quadratic

term in x2, (1, 1) would be a bilinear interaction term between x1 and x2, and

so on. If r is now generalised to be a d-vector of exponents, r ∈ Zd, then an

individual monomial can be represented as

gr(x) =
d∏

j=1

`rj
(xj)

where `v(·) is the Legendre polynomial of order v, shifted onto [0, 1], and j will

be used to index the model-inputs.

This structure generalises immediately to any situation where we construct

the regressors as tensor products, in such a way that we can index the individ-

ual terms: the rj do not have to be exponents. One very flexible approach is to

augment a small collection of global regressors for each input (e.g., a constant

and a linear term) with additional regressors from a given covariance function,

which gives rise to a set of approximately orthonormal prinicpal kriging func-

tions (see, e.g. Sahu and Mardia, 2005). These will be explored elsewhere; this

paper focusses on monomials.

An and Owen (2001) provide a convenient way of specifying collections of
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monomials in terms of a triplet κ = (κ1, κ2, κ3). The constraints

d∑
j=1

rj ≤ κ1

d∑
j=1

(1− δ0rj
) ≤ κ2 max

j∈{1,...,d}
rj ≤ κ3 (14)

define a collection of monomials. In words, κ1 is the maximum sum of the

exponents, κ2 is the maximum number of non-zero exponents, and κ3 is the

maximum single exponent. Thus κ = (2, 2, 2) would define a collection of

constant, linear, quadratic and bilinear interaction monomials: 21 altogether

if d = 5. It is straightforward to generate the complete set of monomials for

any given κ, using recursion. Using this approach, we can easily specify a large

collection of monomials for g(·), which we can hand-edit if we require more

control.

3.2 Specifying the prior for Ω

We can also use this monomial structure to simplify the task of specifying

ω , diag Ω in the prior (section 2.3). It is natural to follow the structure

in the monomial terms, and to take advantage of the orthonormality of the

regressors to relate coefficient uncertainty directly to output uncertainty. One

possibility is to use the parameterisation

ωr = τ0

d∏
j=1

(τj)
rj τ , (τ0, τ1, . . . , τd) � 0, (15)

where we choose tau. The multiplier τ0 allows for scale differences between the

variances of BTg(x) and u(x), because the d-fold product in (15) is normalised

in the sense that its value for the intercept (r = 0) is always one.

There are other ways we might have specified ωr, for example in terms of

the values of the κ(r)-triple inferred from (14). The attraction of (15) is that

it allows us to duplicate values for τj across similar model-inputs. It often

happens in models of physical processes that a subset of the model-inputs

corresponds to the same type of quantity. In fact when d is large, it is usually

because x contains collections of quantities of the same type, often sub-indexed

by location and/or time. A model of a hydrocarbon reservoir, for example,

will have spatial fields of porosity and permeability as model-inputs (see, e.g.,

Craig et al., 1997). In this case we may choose to use a common value for τj
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across all xj of the same type, leading to a large reduction in the number of

hyperparameters required in τ .

3.3 Emulator summaries

We can take advantage of the product structure of each gr(·) and the or-

thonormality of the legendre polynomials to derive simple expressions for low-

dimensional summaries of f(x∗), expressed in terms of main effects, two-way

interactions, and so on; Oakley and O’Hagan (2004) adopt a similar type of

approach in their treatment of sensitivity analysis. Consider conditioning on

some of the components of x∗, say those in the subset J ⊆ {1, . . . , d}; for the

fully-aggregated case we would have J = ∅, while for the main effect with

respect to x∗j =xj we would have J = {j}. To reduce clutter we write (· | xJ)

for (· | x∗J =xJ) in what follows.

For the conditional expectation we have, starting from (8a),

E(f(x∗) | xJ) = E
(
E(f(x∗) | x∗) | xJ

)
= MTh(xJ) (16a)

where

hr(xJ) , E
(
gr(x

∗) | xJ

)
=
∏
j∈J

`rj
(xj)×

∏
j /∈J

δ0rj
. (16b)

In words, the component hr(xJ) will be zero unless all of the not-conditioned-

on inputs are represented as constants, in which case it will be
∏

J `rj
(xj). In

the limits J = ∅ and J = {1, . . . , d} we recover (11a) and (8a), respectively,

where we adopt the standard convention that products over the empty set

evaluate to 1.

For the conditional variance of the emulator expected value we have

var
(
E(f(x∗) | x∗) | xJ

)
= MTvar

(
g(x∗) | xJ

)
M (17a)

where the variance may be computed from (16b) and the q× q matrix H(xJ),

where

Hrr′(xJ) , E
(
gr(x

∗) gr′(x
∗) | xJ

)
=
∏
j∈J

`rj
(xj) `r′j

(xj)×
∏
j /∈J

δrjr′j
. (17b)

Where J = ∅ we will have H(xJ) = Iq, the q × q identity matrix. For the
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conditional expectation of the emulator variance we have

E
(
var(f(x∗) | x∗) | xJ

)
=

tr H(xJ)Ω + 1

δ − 2
S (18)

using (8b) and (17b). Adding (17a) and (18) gives the variance matrix var
(
f(x∗) | xJ

)
.

Again, in the limits J = ∅ and J = {1, . . . , d} we recover (11b) and (8b). The

product structure in each gr(·) is useful in simplifying the expressions that

come between these two limiting cases. It is informative to contrast the two

sources of variance, since in some outputs the total variance may be dominated

by a sensitive mean function, while in others it may be dominated by a large

variance function.

4 Diagnostics

This paper advocates a fully-Bayesian approach with proper priors informed by

judgements about f(·). Even so, there are two compelling reasons for produc-

ing detailed diagnostic information. First, diagnostics are vital in selling the

emulator to the expert who constructed f(·), who may be suspicious about

a statistical framework that appears to replace the model he spent several

months constructing (this is a misconception, but a common and stubborn

one). Second, in the interests of tractability, our judgements about f(·) have

been structurally constrained and then shoe-horned into a MNIW prior. The

adoption of a prior we do not necessarily subscribe to compromises our quan-

tification of Ψ0, and we would want to perform a detailed sensitivity analysis

regarding our choices, and, possibly, generalise those choices somewhat.

The tractability of the LWE cuts both ways. It constrains our judgmements

about f(·), but it also ensures that an emulator is very simple to construct

for any given ensemble of evaluations. This means that we can use predictive

diagnostics to validate our prior judgements, and the structural and parametric

restrictions we have imposed. Predictive diagnostics are expensive, but very

valuable in situations where we expect our prior judgements to be influential

in the posterior. For example, in the illustration in section 6 we have 30

evaluations, but would like to use many more regressors in order to capture the

non-linearity and interactions we anticipate from our function. Consequently

the ensemble of evaluations will constrain certain linear combinations of the

regression coefficients, but will leave other combinations at their prior settings:
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exactly what is constrained and what is not will depend in a subtle way on the

experimental design (see, e.g., Pistone et al., 2000). A predictive diagnostic

such as leave-one-out is informative about the model-specification, but also

gives us a clear visual picture of the predictive uncertainty that arises in the

updated emulator, n− 1 being close to n.

One limitation of leave-one-out, and its generalisations, is that it is hard to

construct simple summary measures across the whole ensemble. A diagnostic

which does provide such a summary uses the prequential approach (Dawid,

1984; Cowell et al., 1999). This is closely related to one-step-ahead, and so it

has the weakness that we cannot visualise our updated emulator’s predictive

uncertainty over a range of x values, since for much of the diagnostic we will be

updating with many less than n evaluations. So in practice, both diagnostics

are useful.

The prequential (‘predictive sequential’) approach is based on a sequential

analysis using increasing numbers of evaluations from the ensemble. Denote by

πm(·) the probability density function for predicting f(Xm) using evaluations

1, . . . ,m−1 from the ensemble. We can use this density to evaluate the actual

outcome Fm in terms of the logarithmic scoring rule

Sm , − ln πm(Fm) m = 1, . . . , n. (19)

Summing these scores gives

n∑
m=1

Sm = − ln
n∏

m=1

πm(Fm) = − ln π(F ; X, Ψ0) (20)

where π(F ; X, Ψ0) is the marginal density of the ensemble, showing that this

sum is invariant to the ordering of the evaluations in the ensemble. To compute

the full set of scores involves having a proper Ψ0 and then building n − 1

emulators of increasing size using the ensemble of evaluations. For an improper

Ψ0 e.g., the ML-prior given in (9), some of the evaluations would need to be

reserved.

We can calibrate any individual score in terms of its mean and variance

under the vaguely-specified null hypothesis

H0 : The statistical modelling choices are appropriate.
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The predictive distribution of the emulator is a multivariate Student-t, denoted

Tk (v; µ, Σ, δ) in the standard parameterisation. Thus

Sm = −c +
δ + k

2
ln
(
1 + (k/δ) y

)
, (21a)

where c is the logarithm of the Student-t normalising constant and

y , k−1(v − µ)TΣ−1(v − µ). (21b)

Under the null hypothesis, y has a Fisher Fk,δ distribution; see, for example,

Bernardo and Smith (1994, p. 140, p. 123), although note there is a missing

k−1 in their definition of y.1 Therefore the mean and variance of Sm under

H0 can easily be computed using a one-dimensional numerical integration.

An alternative, when δ � k so that ln(1 + (k/δ)y) ≈ (k/δ)y, is to use an

approximation based on the mean and variance of Fk,δ.

For sequential analysis, we can compute the mean and variance of
∑i

m=1 Sm

in exactly the same way, although this would involve the inversion of an n×n

variance matrix. An alternative is to construct a prequential monitor,

Zi ,

∑i
m=1 Sm −

∑i
m=1 E(Sm)√∑i

m=1 var(Sm)
i = 1, . . . , n. (22)

Under fairly broad conditions (Seillier-Moiseiwitsch and David, 1993), this

diagnostic has the property that as i → ∞ so the distribution of Zi tends to

the standard Gaussian under H0. This alternative has the advantage of being

‘free’, as it reuses quantities we have already computed; it also provides a more

precise calibration than standardised deviations from the mean, for large n.

1Proof: the k-vector v is a multivariate Student-t quantity with mean µ, scale matrix Σ,
and degrees of freedom δ: it can be represented as

v − µ =
(x− µ)√

w/δ

where the k-vector x is Gaussian with mean µ and variance Σ, w is χ2
δ , and x and w are

independent. Hence

k−1(v − µ)T Σ−1(v − µ) =
k−1(x− µ)T Σ−1(x− µ)

w/δ
=

w′/k

w/δ

where w′ is χ2
k and w′ and w are independent. This is the characterisation of the Fk,δ

distribution. Note that (3) in Mardia et al. (1979, p. 43) is incorrect.
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Finally, a brief comment on the interpretation of diagnostic information,

particularly one-step-ahead and prequential. In the Bayesian approach it is

quite acceptable knowingly to hold prior judgements that are different from

those in the likelihood. In this situation the early values of the diagnostics will

be aberrant, while the likelihood is gradually asserting itself over the prior.

Crudely, we might expect this to take at least q evaluations, at which point ev-

ery linear combination of the regression coefficients has been updated. But dur-

ing this initialisation we are unable to distinguish between a prior/likelihood

conflict and a deeper problem arising from the our structural choices. One

solution is to contrast the diagnostics from our Ψ0 with those that arise when

we set Ψ0 equal to the tuned value

Ψ̂0 , argmax
Ψ∈Γ

π(F ; X, Ψ) (23)

for some set Γ of our choosing. If this tuning does not improve the diagnostics

then we might reasonably conclude that there are inappropriate structural

restrictions in our emulator. An alternative tuning, which may be more robust,

is to maximise the ‘cross-validation density’ in place of the marginal density,

n∏
i=1

π(Fi | F(i); X, Ψ) (24)

where F(i) denotes all but the ith evaluation (see, e.g., ?Gelfand and Dey,

1994). This can be computed directly from the leave-one-out diagnostic.

5 Comparison with standard methods

It is informative at this point to compare our treatment of the emulator with

the more standard approach using a Smooth Gaussian Process (SGP) prior

for f(·), as exemplified by, for example, Currin et al. (1991), Haylock and

O’Hagan (1996), and Kennedy and O’Hagan (2001). The first point to note is

that, as yet, the SGP has not been effectively generalised to multiple output

types, although it can handle mutiple indices (e.g., location) for a given type.

Therefore different output types have to be treated independently for any given

x. The LWE handles multiple types, within the constraints of the separable

covariance function (section 2.2).

Now focus on the case where f(x) is a scalar. In principle, the difference
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between the LWE and the SGP is that the former represents the residual

as a nugget, while the latter uses a Gaussian process with continuous sample

paths (hence, ‘smooth’). The SGP requires the specification of a prior variance

function

κ(x, x′) , var
(
u(x), u(x′)

)
;

the LWE requires only the specification of a scalar prior variance. However,

it is important to distinguish between what may be done in principle, and

what is actually done in practice. With the SGP it appears to be difficult to

make an informed choice for the variance function κ(·, ·); the approach of Craig

et al. (1997, 2001) is an exception. Thus a parametric form is chosen, and then

the hyperparameters, typically controlling variance, roughness (differentiabil-

ity) and correlation length, are estimated from the ensemble, and plugged in.

Typically this choice of variance function follows well-trodden lines: the vari-

ance function is restricted to be stationary, and the correlation function to be a

product of (univariate) Matérn correlation functions, and the hyperparameters

are estimated by maximising the marginal density or the cross-validation den-

sity (see, e.g., Santner et al., 2003). This separability across inputs is a very

strong structural restriction; it is discussed by O’Hagan (1998).

The estimation of the hyperparameters in the SGP emulator has important

implications for the choice of regressors. The residual has a representation in

terms the regressors, and so there is an identification problem between the

variance function hyperparameters and the regression coefficients. This prob-

lem has bedeviled the technique of universal kriging in Spatial Statistics (see,

e.g., Cressie, 1991, sec. 3.4). One solution, commonly adopted with the SGP,

is to limit the number of regressors, often to just a constant (possibly extended

to linear terms): this is akin to ordinary kriging in Spatial Statistics (Cressie,

op. cit.); a more sophisticated estimation method for the hyperparameters can

also help. Another is to keep the regressors but dispense with the structured

residual, as done by the LWE: this is trend surface prediction. Another is to

adopt a fully Bayesian hyperarchical approach, avoiding the problem of directly

quantifying the hyperparameters (see, e.g., Banerjee et al., 2004). However,

this typically involves Markov chain Monte Carlo (MCMC), and does not scale

well to applications with large numbers of inputs, or where large numbers of

emulators are to be constructed, for diagnostic purposes.

Now let’s examine the strengths and weaknesses of the nugget residual. The
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weakness is easy to spot. The LWE will not, by default, perfectly interpolate

the ensemble. If f(·) is a smooth deterministic function then this is simply

wrong, because if f(x) is known then we ought to have

lim
x′→x

E
([

f(x′)− f(x)
]2)

= 0.

O’Hagan (2006) defines perfect interpolation as a key desideratum of emula-

tors. Now the case for the defence. First, if the residual variance is small then

this failure to interpolate perfectly will make little difference in practice, when

using the emulator to predict the behaviour of the function over a range of

possible input values. We can investigate the size of the residual and compare

it to var
(
f(x)

)
for different x, and also to E

(
var(x∗)

)
, so that we can satisfy

ourselves that it is small. Where it is not, we have the option of refining our

choice of regressors. Second, in many applications we will choose not to model

f(x) as a function of all of its inputs, but to focus on a subset. This has been

a common theme since the inception of the field of computer experiments (see,

e.g., Owen et al., 1989); Craig et al. (1996, 1997) refer to the components of

this subset as the active inputs. Treating f(·) as an explicit function only of

the active inputs, there will be unattributable variation from the non-active

inputs, which necessitates the inclusion of a nugget such as the LWE residual.

Now to the benefit of the nugget residual. The LWE is fast to fit, and its

computational cost scales linearly in n, in the sense that the emulator can be

updated sequentially, one evaluation at a time. The cost of the SGP, though,

scales as n3, this being the cost of the Choleski decomposition required to

invert an n×n variance matrix (see, e.g., Golub and Van Loan, 1989, p. 142).

With single-type multivariate output, this cost scales as (kn)3, unless an outer

product design has been used (scales as n3), which has its own drawbacks; see

Kennedy and O’Hagan (2001) and the discussion in Rougier (2001). As noted

by Koehler and Owen (1996, p. 265), the cost of even one inverse will rapidly

become prohibitive as the ensemble grows. The challenge of approximating this

calculation has been much studied in Spatial Statistics, using both subsets of

the ensemble (see, e.g., Besag, 1975; Jones and Vecchia, 1993) or sparse matrix

methods (Cornford et al., 2004). This is an extra layer of complexity that is

completely absent in the LWE. Another complication with the SGP when n

is large is that the variance matrix can be ill-conditioned, in which case one

solution is to inflate the diagonal (Higdon et al., 2004): of course this means

20



that that the emulator no longer interpolates perfectly.

So lack of speed is the drawback of the SGP. This should be measured not

in clock-time, though, but in the opportunity to perform detailed diagnostics.

There is no sense in which a SGP requires less diagnostic checking than a LWE:

in practice both approaches make strong structural choices, and both may be

expected to extrapolate badly even in some of the cases where they interpolate

well. On this basis, predictive diagnostics are vital for building confidence in

the emulator. These predictive diagostics require us to build many emulators.

The slowness of the SGP becomes much more acute, and corners may have

to be cut, e.g. by not re-estimating the variance function hyperparameters for

each different subset of the ensemble. Exactly the same comments apply in

situations where we would like to experiment with different transformations of

the model-inputs and model-outputs, and different choices of regressors.

To summarise, consider the following question: if you discovered that a

LWE did not perform well, would you then be happy to switch to a SGP? I

for one would be wary. The same applies the other way around, of course,

but the difference is that the LWE costs almost nothing to fit and can be

extensively audited, so is the natural candidate to try first.

6 Illustration

This illustration is based on the Atlantic Ocean compartmental model of Zick-

feld et al. (2004), and uses an ensemble constructed for Goldstein and Rougier

(2006b). This comprises n = 30 evaluations designed as a maximin latin hy-

percube over d = 5 continuous inputs, with k = 7 outputs. This small number

of evaluations highlights the role of the prior.

The calculations were performed in the R statistical programming environ-

ment (R Development Core Team, 2004).

6.1 Specifying the prior

Section 2.3 discusses how we might specify informative priors for the emulator.

Here I outline some simple choices based on my experiences of this model, and

of the system it is designed to represent. These choices are genuine attempt

to describe my judgements, although the values have been tweaked a little to

make the illustration more informative.
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Regressors. The inputs are continuous, and I choose to use monomial re-

gressors up to cubics and three-way interactions. In the scheme of An and

Owen (2001), this is described by the triplet κ = (3, 3, 3); see section 3.1. This

gives q = 56 regressors in all. (I tried more regressors, including quartics, but

it appeared to make no difference.)

Coefficient means. The prior values for the first row of M are set according

to my judgements about the unconditional mean of f(x∗), where x∗ is uniform

on the range of possible values for x, which is [0, 1]5, after transforming the

inputs. The first three model-outputs are Atlantic Ocean temperatures in

Centigrade, for which I chose 10, 5, 15 (South, North, Tropical). The fourth

and fifth are salinity differences in Practical Salinity Units, for which I chose

0 and 0. The sixth is meridional overturning in Sverdrups (Sv, 106 m3 s−1), for

which I chose 20, and the seventh is critical freshwater forcing in Sv, for which

I chose 0.1. This final output is likely to have the most complex relationship

with the inputs, as it is the solution of an inverse problem.

I have strong prior judgements about the relationship between the first

three inputs and the first three outputs. Let v1:3 , (v1, v2, v3) be atmospheric

temperature forcing in the South, North and Tropical compartments. Then,

to first order, I judge that

∆f1:3 ∝ ∆v1:3. (25)

The inputs x1:3 are related to v1:3 by

x1:3 =

 0 1 0

1 −1 0

−1 0 1

 v1:3, or x1:3 ≡ A v1:3 ; (26)

this was to ensure that the ordering v2 ≤ v1 ≤ v3 was preserved in the choices

of x1:3 ∈ [0, 1]3. Therefore, in terms of model-inputs and model-outputs,

∆f1:3 ∝ ∆(A−1x1:3). (27)

I chose the proportionality constant to be 3, because the model-inputs are

rescaled, but the model-outputs are not. Thus the values 3A−1 are used in M

to relate the linear regressors in the first three model-inputs to the first three

model-outputs. All the other prior values of M are set to zero.
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Variances. Appropriate values for the variance var
(
f(x∗)

)
can now be in-

ferred from choices for the lumped parameters ξ2
i , defined in (13). My choices

and the resulting implied values are

ξi: 3 3 3 0.2 0.2 5 0.1

Sd
(
fi(x

∗)
)
: 5.2 4.2 6 0.2 0.2 5 0.1

R2
i (%): 67 50 75 0 0 0 0

where the difference between the first three outputs (columns) and the others

four is due to non-zero values in M .

Finally, I must represent the value of ξ2
i in terms of choices for diag Ω, δ,

and S, where I choose to treat the prior Ω as diagonal. I choose δ = 3. I expect

the residual variance to be quite small, so I choose tr Ω = 9, which implies that

Sii = ξ2
i /10. I choose to zero the off-diagonal elements in S. For the actual

values of diag Ω, I use the approach in section 3.2, and choose τj = 0.1 for

j = 1, 2, 3, so that the standard deviation of a cubic coefficient is 0.1 that of a

linear coefficient: I expect the response to the three temperature inputs to be

mainly linear. I choose τj = 1 for j = 4, 5: I expect the response to these two

inputs to be more complicated. It follows that τ0 = 0.75, to satisfy tr Ω = 9.

Prior and posterior. Samples from this prior emulator are shown in Fig-

ure 1, showing how the 7 outputs respond to x2 (11 values across the range

[0, 1]), with the other inputs held at their central values. Each of these samples

(10 in all) has a (11 × 7)-dimensional Student-t distribution. Note that the

roughness in each sampled path in x2 is due to the treatment of the residual

as a nugget: this roughness would have been smaller had I chosen tr Ω larger,

which I might have done had I chosen to include more regressors.

The prior emulator is updated with the ensemble of 30 evaluations. Samples

from the updated emulator are given in Figure 2: this is comparable with

Figure 1. My prior judgements about the three temperatures seem to have

been well-founded.
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Figure 1: 10 samples from the prior emulator, for f as a function of x2 with
the other inputs set at their central values.
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Figure 2: 10 samples from the updated emulator, comparable to those in
Figure 1.
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6.2 Diagnostics

Section 4 discusses diagnostics for the emulator. Figure 3 shows the leave-one-

out prediction errors. This Figure also provides a clear picture of the impact of

the separability of the emulator variance function (section 2.2). Treating the

ensembles in each of the 30 cases as almost the same, the pattern of relative

uncertainty is nearly duplicated across the 7 panels. For example, the ratio of

the predictive uncertainty between evaluations 9 and 10 is always about 0.8,

no matter what output.

Figure 4 shows the prequential diagnostics, based on one-step-ahead: while

these are not terrible, neither are they very encouraging. To investigate the

effect of my prior choices, the prior hyperparameters were tuned to maximise

the marginal density of the evaluations. This tuning was not unconstrained:

the ξ2
i quantities were permitted to vary by output type (four multipliers),

the τj were permitted to vary by input type (three multipliers), and the trace

of Ω was allowed to vary (one multiplier). The tuning process reduced the

summed prequential scores from 157.0 to 41.1. The effect on the prequential

diagnostics is shown in Figure 5; these are now acceptable (evaluation 21

has an extremely low value of x5). The aberrant prequential diagnostics in

Figure 4 would seem to have resulted from a disagreement between my prior

and my likelihood, rather than the structural constraints of the LWE. For the

remainder of this section, though, I continue with my original prior choices; in

practice a reconsideration of my prior in the light of the tuned values might

be advisable, possibly including some higher-order x5 regressors.
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Figure 3: Leave-one-out prediction errors. The horizontal axis shows the eval-
uations. The grey bars and dots show the predicted 2.5th, 50th, and 97.5th
percentiles using all but the indexed evaluation; the black dots show the actual
values.
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Figure 4: Prequential analysis, based on the one-step-ahead diagnostic. The
prequential scores are shown with a bar indicating the mean± two standard de-
viations, derived under the null hypothesis that the emulator is well-specified.
The prequential monitor should asymptote (in n) to a standard Gaussian under
the null-hypothesis.
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Figure 5: Prequential analysis, after tuning the prior hyperparameters to max-
imise the marginal density of the ensemble. See Figure 4 for details.
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6.3 Summaries

Section 3.3 describes how we can summarise the emulator reponse to a subset

of the inputs in terms of the conditional mean and variance, integrating out

other inputs according to some distribution x∗ as though they were nuisance

parameters. I choose x∗ to be uniform on [0, 1]5. Figure 6 shows the function

responses to x2, represented in this way. Note that the difference between

Figure 2 and Figure 6 is that in the former the other four inputs are set to 0.5,

while in the latter they are integrated out.

Figure 6 shows a clear difference between the three temperature outputs,

T1, T2, and T3, and the other outputs, e,g., F1crit, conditionally on x2. In the

temperatures almost all of the variance is attributable to the mean function.

In F1crit much of the variance is attributable to the variance function. We

can infer that the mean functions of the temperatures are highly sensitive to

the other four inputs, while the mean function of F1crit is not. In fact, we

know this to be the case, because the temperatures depend strongly on x1 and

x3 as well.

Figure 7 shows how x2 and x5 interact to determine one of the salinity

differences, output 5, with the other three inputs integrated out.

Section 2.3 also discussed numerical summaries, such as ‘R2’ values. These

are shown in the top panel of Figure 8, plotted against increasing sets of

regressors in the grevlex ordering. We can see that the three temperatures

are well-explained by linear regressors alone with no interactions; i.e. f1:3(x) is

effectively linear in x. The other outputs are poorly explained by linear terms

alone; including higher-order terms helps, but not much. The bottom panel

shows the absolute sizes of the coefficients, indicating the greater non-linearity

of the responses of the non-temperature outputs. Within each degree-block,

the ordering favours the non-temperature inputs; the preponderance of sizeable

coefficients in the region starting from regressor 22 indicates that these inputs

are the more important contributors to the non-linear responses.
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7 Mixing over the hyperparameters

We would like to break out from the structural restrictions of the LWE with its

MNIW structure to a more general emulator, but without sacrificing tractabil-

ity. We would also like to account for difficulties in quantifying the prior hyper-

parameters, Ψ0. The simplest way to achieve both of these goals is to mix over

m different choices of Ψ0, i.e. to generalise our prior to

{B, Σ} | ω= i ∼ MNIWk

(
Ψ

(i)
0

)
Pr(ω= i) = λi i = 1, . . . ,m

(28)

where λ , (λ1, . . . , λm) is a hyperparameter of probabilities.

The crucial quantity for computing the posterior mixture distribution is

the marginal density of the ensemble, π(F ; X, Ψ0), which is computed ‘for

free’, along with the prequential diagnostics, see (20). After updating us-

ing the ensemble, the posterior emulator is a mixture of the emulators from

each of the prior choices for Ψ0, with the weights themselves updated to

λi π
(
F ; X, Ψ

(i)
0

)
and renormalised so that

∑m
i=1 λi = 1. Thus with a mixture

prior, we have an extended conjugate analysis over the set of hyperparameters{
Ψ(1), . . . , Ψ(m), λ

}
.

Berger and Berliner (1986) provide a different take on the same type of

calculation, in which the prior hyperparameters may be partly or completely

tuned using the ensemble. In the simplest case, this involves mixing over

two choices of hyperparameters: the elicited prior Ψ
(1)
0 = Ψ0, and a data-

determined prior Ψ(2) = Ψ̂0, given in (23). In the extreme choice of λ1 = 0,

λ2 = 1, and Γ unconstrained, this gives rise to the standard parametric em-

pirical Bayes approach (see, e.g., Carlin and Louis, 2000), where the hyper-

parameters for the prior are determined by maximising the marginal density

of the ensemble, and then plugged in. Berger and Berliner themselves suggest

using a small value for λ2, in order to ‘robustify’ the prior, although they are

understandably cautious about whether this genuinely promotes robustness.
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The mean and variance with the mixture prior are

E
(
f(x)

)
= M̄Tg(x) (29a)

cov
(
f(x), f(x′)

)
=

m∑
i=1

λi

[
M (i) − M̄

]
Tg(x)g(x′)T

[
M (i) − M̄

]
+

m∑
i=1

λi
w(i)(x, x′)

δ(i) − 2
S(i) (29b)

where

M̄ ,
m∑

i=1

λi M
(i) (29c)

w(i)(x, x′) , g(x)TΩ(i)g(x′) + dirac(x− x′) (29d)

(cf. eq. (8)). By inspection of (29b) we can see that a separable variance

function is only preserved when mixing if M (i) = M and S(i) ∝ S, for all i, in

which case we have

cov
(
f(x), f(x′)

)
=

[
m∑

i=1

λi ci
w(i)(x, x′)

δ(i) − 2

]
S (30)

for some given scalars ci satisfying S(i) = ci S. Therefore a mixture prior gives

us an easy way to ‘defeat’ separability, if we so choose, and the degree to which

we defeat it will depend on the range of values we select for M (i), and the way

in which we allow the components of S(i) to vary independently of one another.

Note, though, that all of this comes to naught if after updating we find that

the λ values concentrate onto a single i; but at least in this case we have given

non-separability a chance to emerge, should it want to.

For inference and diagnostics, it is incovenient that the mixture prior does

not give rise to a readily-available predictive distribution (i.e., one that is al-

ready inplemented in standard statistical software). A simple alternative for

prediction is to use sampling. Each of the m emulators is built and updated

marginally, and then a draw is made from the predictive distribution after first

selecting one of the emulators according to the probabilities λ, also updated.

This allows us to compute leave-one-out and one-step-ahead diagnostics, with

appropriate credible intervals under H0. For the prequential diagnostics, the

statistic Sm can still be calculated easily, as can its mean and variance un-
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der H0.

7.1 Illustration (cont)

As a simple illustration of the effect of a mixture prior, I consider a more gen-

eral specification for ξ2, which was defined in (13). In particular, I consider

a range of candidate values for ξ4:5, the value pertaining to the salinity dif-

ferences, which I initially set at 0.2. I now use 21 values {α1ξ
2
4:5, . . . , α21ξ

2
4:5},

where the log4 αi are equally-spaced between −1 and 1, all with equal prior

probability. After updating, the modal value for ξ4:5 has increased to 0.5,

which has posterior probability 0.29.

The leave-one-out diagnostic is shown in Figure 9. Choosing to mix over an

element of ξ2 defeats separability, because the candidate values for S(i) that are

inferred from the various choices of (ξ2)(i) are not proportional. This is evident

in the Figure, which if closely inspected shows that the ratio of predictive un-

certainties between different pairs of evalutions does vary by output (compare,

e.g., evaluations 9 and 10 across the 7 panels). The prequential diagnostics are

shown in Figure 10. Not surprisingly, the mixture prior here provides another

route to a well-specified posterior emulator. I confess to choosing ξ4:5 because

the tuning discussed in section 6.2 indicated that my initial choice was low,

relative to that inferred from the ensemble.

Note that these calculations took just a few seconds on a standard desktop

computer: mixtures over hundreds of candidates would take perhaps a minute.
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Figure 9: Leave-one-out diagnostic, after mixing over 21 candidate values for
ξ2
4:5. Shown on the same scale as Figure 3: the dashed lines indicate predictive

intervals that exceed the vertical limits.
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ξ2
4:5.
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8 Conclusion

This paper advocates a fully-Bayesian treatment of multivariate regression as

an appropriate framework for building multivariate emulators of complex de-

terministic functions, such as environmental models. This runs counter to

current practice, which favours Smooth Gaussian Processes: I have addressed

this directly in section 5. I hope I have also addressed this indirectly, by

showing the wealth of interesting features that follow from adopting what I

term a ‘lightweight’ framework. Much of what is proposed is ‘standard’ statis-

tics, although some care must be taken to work out all the details. Software

can largely automate the calculations, leaving the statistician and the model-

expert to focus on prior choices, the diagnotic and interpretive information,

and walking the fine line between Bayesian purity and aggressive tuning of the

model structure (e.g., choice of regressors) and the prior hyperparameters.

If nothing else I hope this paper has raised the bar on emulator diagnostics:

these are seldom discussed or displayed in papers that construct emulators.

One trusts that they are always pored over during construction; anyhow, I

would encourage the model-expert to start off highly sceptical, and to wait to

be won-over by the statistician.
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A Appendix

1 Notation for distributions

The origin of this paper’s conjugate analysis is the remarkable article by Dawid

(1981). Some clarification may be helpful, because of notational differences be-

tween authors (notably for the Inverse Wishart distribution), because Dawid’s

derivations are implicit, and because the key distribution, the Matrix Normal

Inverse Wishart, has been little used in practice.

This Appendix can also be seen as a description of a fully-Bayesian treat-

ment of Multivariate Regression, generalising the non-informative prior treat-

ment in Box and Tiao (1973, ch. 8).

Inverse Wishart distribution. The k× k non-singular variance matrix Σ

has an Inverse Wishart distribution Σ ∼ IWk (S, δ) iff

p(Σ) ∝ |S|(δ+k−1)/2|Σ|−(k+δ/2) exp {−(1/2) tr SΨ} , Ψ , Σ−1 (A1)

(neglecting proportionate terms not involving S) where ‘,’ denotes ‘defined’,

and ‘tr’ denotes the trace, under the convention that ‘tr’ has lower priority than

matrix multiplication. It follows that E(Σ) = S/(δ − 2) for δ > 2. Different

authors have used different parameterisations of the IW: all four permutations

of S or S−1, and δ or ν , δ + k − 1 have been suggested. This reflects the

origins of the IW in the Wishart distribution, for which S−1 and ν are the more

natural parameters. In this paper the IW is the primitive distribution, and S

may be referred to as the scale parameter, and δ as the degrees of freedom;

the latter term is not consistently applied, with ν also being so-termed.

Normal Inverse Wishart distribution. The k-vector x has a Normal

Inverse Wishart distribution x ∼ NIWk (µ, w, S, δ) iff x | Σ ∼ Nk (µ, wΣ) and

Σ ∼ IWk (S, δ). After integrating out Σ using (A1), the marginal distribution

of x has a Student-t distribution:

p(x) ∝
[
1 + δ−1(x− µ)T (wS/δ)−1(x− µ)

]−(δ+k)/2
(A2)

or x ∼ Tk

(
µ, wS/δ, δ

)
, in the usual parameterisation of the Student-t distri-

bution. It follows that E(x) = µ and var(x) = wS/(δ−2), provided that δ > 1

and δ > 2, respectively.
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Matrix Normal distribution. This distribution was introduced by Dawid

(1981). Let B , (bij) be a q× k matrix, and denote by (·)V the vector created

by stacking the columns of a matrix; define b , BV . Then B has a Matrix

Normal distribution B ∼ MNq×k (M, Ω, Σ) iff b ∼ Nqk (m, Σ⊗ Ω), where the

matrix M is q × k and m , MV , and Ω and Σ are variance matrices with

dimensions q × q and k × k. It is straightforward to show that

p(B) ∝ |Σ|−q/2 exp
{
−(1/2) tr(B −M)TΩ−1(B −M)Ψ

}
,

(neglecting proportionate terms not involving Σ) where Ψ , Σ−1, as before.

Proof. Start from the density function of b. Outside the exponent we have the

scalar |2π Σ⊗ Ω|−1/2, which can be written (2π)−qk/2|Ω|−k/2|Σ|−q/2 ∝ |Σ|−q/2,

as required. The quadratic form inside the exponent has the form (taking

M = 0, for simplicity)

bT (Σ⊗ Ω)−1b = bT (Ψ⊗ Ω−1)b

= bT
(
Ω−1BΨ

)
V

= tr BTΩ−1BΨ

as required, using the general relation (XY Z)V = (ZT ⊗X)Y V .

Matrix Normal Inverse Wishart distribution. This matrix generalisa-

tion of the NIW was suggested by Dawid (1981), see also Press (1982, sec. 8.6)

and West and Harrison (1997, sec. 16.4). The set of parameters {B, Σ} has a

Matrix Normal Inverse Wishart distribution {B, Σ} ∼ MNIWq×k (M, Ω, S, δ)

iff B | Σ ∼ MNq×k (M, Ω, Σ) and Σ ∼ IWk (S, δ). Note how Ω in the MNIW

plays the role of the scalar w in the NIW distribution. For later reference,

p(B, Σ) ∝ |Σ|−[k+(δ+q)/2] exp
{
−(1/2) tr [(B −M)TΩ−1(B −M) + S]Ψ

}
,

(A3)

Ψ , Σ−1, as before.

2 The emulator

We focus on the marginal emulator, in particular the mean and variance of

the k-vector f(x); generalisation to an arbitrary finite set {fi(x), fi′(x
′), . . .}
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is straightforward. {B, Σ} has a MNIW distribution, in which the hyper-

parameters will depend on the ensemble. For simplicity we take the hyper-

parameters in their prior form, so that {B, Σ} ∼ MNIWq×k (M, Ω, S, δ). If we

have updated the emulator using the ensemble (F ; X), then we also assume

that x 6∈ {X1, . . . , Xn}, to avoid the trivial case of predicting an output that

we know exactly.

Conditional on Σ, the emulator is Gaussian. This follows because B | Σ
and u(x) |Σ are independent and marginally Gaussian, hence jointly Gaussian,

and thus f(x)T | Σ is Gaussian, from (1):

f(x)T | Σ ∼ Nk

(
g(x)TM, w(x)Σ

)
(A4)

where w(x) , g(x)TΩg(x) + 1.

Proof. The mean function is straightforward. To derive the expression for

w(x), note that

var
(
f(x)T | Σ

)
= var

(
g(x)TB | Σ

)
+ var

(
u(x) | Σ

)
,

because B ⊥⊥ u(x)|Σ. The second term contributes Σ, or the ‘+1’ in w(x). For

first term, g(x)TB =
[(

g(x)TB
)

V
]

T . Ignoring the outside transpose because

var(x) = var(xT ),

var(g(x)TB | Σ) = var
((

g(x)TB
)

V | Σ
)

= var
((

Ik ⊗ g(x)T
)
b | Σ

)
=
(
Ik ⊗ g(x)T

)(
Σ⊗ Ω

)(
Ik ⊗ g(x)

)
= Σ⊗

[
g(x)TΩg(x)

]
=
[
g(x)TΩg(x)

]
Σ

as the term in brackets is a scalar.

As Σ ∼ IWk (S, δ), so the unconditional distribution of f(x) is Multivariate

Student-t:

f(x)T ∼ Tk

(
g(x)TM, w(x)S/δ, δ

)
, (A5)
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and the mean and variance are

E
(
f(x)T

)
= g(x)TM (A6a)

var
(
f(x)T

)
= w(x)S/(δ − 2), (A6b)

provided that δ > 1 and δ > 2, respectively.

3 Conjugate analysis

The likehood function for {B, Σ} using the ensemble (F ; X) is

Lik(B, Σ) ∝ |Σ|−n/2 exp {−(1/2) tr UTUΨ} (A7)

where U , F − GB and Gvj , gj(Xv), the n × q matrix of regressor values.

This form for the likelihood is a consequence of the treatment of u(x) |Σ as a

Gaussian nugget, or, in more common parlance, as a standard regression-type

residual.

The prior for {B, Σ} is MNIWq×k (M, Ω, S, δ), where {M, Ω, S, δ} are treated

as hyperparameters.

In the updated distribution for {B, Σ}, the scalar becomes proportional to

|Σ|−[k+(n+δ+q)/2] or |Σ|−[k+(δ̂+q)/2] (A8)

where δ̂ , δ + n. Inside the exponential in the posterior we have, temporarily

discounting the factor of −(1/2),

tr [(F −GB)T (F −GB) + (M ′ − AB)T (M ′ − AB) + S]Ψ (A9)

where A is defined as the matrix square-root of Ω−1, so that ATA ≡ Ω−1, and

M ′ , AM . We can complete the square for B on the condition that GTG+Ω−1

is non-singular, in which case define

Ω̂ , (GTG + Ω−1)−1 (A10a)

M̂ , Ω̂(GTF + Ω−1M), (A10b)

and (A9) becomes

tr
[
(B − M̂)T Ω̂−1(B − M̂) + Ŝ

]
Ψ (A11)
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where

Ŝ , S − M̂T Ω̂−1M̂ + F TF + MTΩ−1M. (A12)

Comparing (A8) and (A11) with (A3), the updated distribution is

B, Σ | (F ; X) ∼ MNIWq×k

(
M̂, Ω̂, Ŝ, δ̂

)
, (A13)

provided that |Ω̂| > 0. One simple way to check that these calculations have

been implemented correctly is to make sure that they satisfy sequential up-

dating under different orderings of the evaluations.

Comparison to ML estimators. Certain prior choices of the hyperparameters

will result in the updated expectation of B and Σ being the same as the Maxi-

mum Likelihood (ML) estimators; these choices are stated in eq. (9). The ML

estimators are

BML , (GTG)−1GTF (A14)

ΣML , n−1(UML)
TUML = n−1F TPF (A15)

where UML , F − GBML, and P , I − G(GTG)−1GT , the projection matrix

(Mardia et al., 1979, sec. 6.2.1). For BML = E(B) = M̂ we require Ω−1 = 0 in

(A10). Taking Ω−1 = 0 and also S = 0 in (A12) we have

Ŝ = F TF − (BML)
T (GTG)BML

= F T (I −G(GTG)−1(GTG)(GTG)−1GT )F

= F TPF. (A16)

Then for ΣML = E(Σ) = Ŝ/(δ̂ − 2) we must also have δ̂ − 2 = n, or δ = 2.
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2005.

T.J. Santner, B.J. Williams, and W.I. Notz, 2003. The Design and Analysis
of Computer Experiments. New York: Springer.

F. Seillier-Moiseiwitsch and A.P. David, 1993. On testing the validity of se-
quential probability forecasts. Journal of the American Statistical Associa-
tion, 88, 355–359.

M. West and J. Harrison, 1997. Bayesian Forecasting and Dynamic Models.
New York: Springer-Verlag, 2nd edition.

B. Williams, D. Higdon, J. Gatticker, L. Moore, M. McKay, and S. Keller-
McNulty, 2006. Combining experimental data and computer simulations,
with an application to flyer plate experiments. Bayesian Analysis, 1(4),
765–792.

K. Zickfeld, T. Slawig, and S. Rahmstorf, 2004. A low-order model for the
response of the Atlantic thermohaline circulation to climate change. Ocean
Dynamics, 54(1), 8–26.

47


