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These notes represent an applied statistican’s overview of risk
assessment, presented as non-technically as possible. Large-scale risk
assessment is not something that humans do well. But one source of
difficulty is mitigable, namely ambiguity of meaning. So I provide
precise definitions for words that are much in use, and handy names
for some of the recurring concepts. My intention is to present a
‘controlled vocabulary’ which will help people involved in risk assess-
ment to communicate with one another. The controlled vocabulary is
given in an index at the end of the document. I welcome comments
and suggestions (see my email address at the top of this page).
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1 The Risk Manager and her environment

To start with, here are some outline definitions. I will respect the
conventional distinction (e.g., HSE, 2001, pp. 5–6) between:

Hazard The thing that has the potential to cause harm; and

Risk (Informal) The chance of harm, arising from the hazard.

Examples of UK hazards would be ‘Icelandic volcanic eruptions’,
or ‘flu-like pandemic’. A more prosaic hazard would be a falling
tree. Somewhere in-between we have a flooding river. Risk needs
to be precisely defined (see section 3), but that will require some
preliminary spade-work; so, for the time being, accept that it has
something to do with chance and harm. I will also introduce

Policy An action designed to reduce the risk of a hazard.

Putting these definitions together:

A ‘Risk Manager’ accepts a portfolio of hazards (maybe just a single
hazard), and chooses between policies to minimise risk.

As part of this process, the Risk Manager might need to rank haz-
ard/policy combinations. In some applications, such as strategic
planning over several hazards, the only policy for each hazard
might be the ‘do-nothing’ policy.1 1 Not literally do nothing, but ‘do noth-

ing in addition to what is currently
being done’.

In the narrative of risk assessment, it is helpful to introduce some
additional players (taken from Smith, 2010, ch. 1). The ‘Client’, who
hires the Risk Manager to operate on her behalf, and the ‘Auditor’,
whom the Client hires to check the Risk Manager’s recommen-
dations. Finally, there are the ‘Experts’, whom the Risk Manager
consults; these might include domain experts, who specialise in
the hazard, and statisticians, who specialise in the assessment of
uncertainty and risk. These players are shown in Figure 1. I say
more about Experts in section 5.

Client

hires

��
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Auditor

checksww

Experts Risk
Manager
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Figure 1: The players in risk assess-
ment.

For example (not hypothetical), the Client might be an invest-
ment company, considering bidding for land with a licence to build
a wind-farm. The Risk Manager will often be a large consultancy
hired to assess the various options, such as different configurations
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of turbines. The Auditor might be a smaller consultancy called in
to do ‘due dilligence’ on the resulting report. The Experts would be
engineers, but also maybe statisticians, to forecast the wind at the
site, and economists, to forecast the price of electricity. ‘Harm’ in
this case is negative profit.

In my own thinking about risk assessment, I put a lot of empha-
sis on the Auditor. This is because large-risk management is almost
invariably a ‘wicked problem’.2 One complication is that the Client 2 See, e.g., Funtowicz and Ravetz (2006)

and Conklin (2009).is often an agent for a range of stakeholders with different and con-
flicting objectives (e.g. for national-scale risk assessment). Another
is that the harm from a hazard is incurred in the future, but the
costs of any action are incurred now. In the light of these difficul-
ties, the successful implementation of a risk management policy
requires some degree of shared ownership, so that those stakehold-
ers who perceive themselves to be disadvantaged by the policy can
nevertheless accept it. Thus the Risk Manager should expect her
recommendation to be audited for transparency and defensibility, and
should plan every aspect of the process accordingly. These notes
outline a framework that, if conscientiously implemented, would
satisfy me, were I the Auditor.

2 Harm versus loss

In risk assessment, it is important to recognise that very few things
that matter to humans can be quantified. In Statistics we try to
maintain a careful distinction between a ‘surrogate endpoint’ and
a ‘true endpoint’ (Cox and Donnelly, 2011, sec. 4.4). For example,
cholesterol levels in the blood are a surrogate endpoint; quality of
life is a true endpoint, which is affected by heart disease, for which
cholesterol is a risk factor. Unlike quality of life, though, cholesterol
is easily measured, and a treatment like a statin is initially assessed
in terms of its ability to lower the amount of bad (LDL) cholesterol
in the blood. Quality of life is also affected by side-effects, and for
statins this has been a contentious issue.

It is the same with assessing ‘harm’ for the purposes of risk
assessment and risk management. Quantitative risk assessment
requires measurable quantities, which can only be surrogates for
other quantities that really matter. And so I define

Loss A surrogate endpoint (quantifiable) for harm.

In the case of risk assessment, one hopes that the policy recom-
mendation based on loss is so clear that it may be accepted for
harm as well. Otherwise, Experts and the Risk Manager must to-
gether decide how to adjust the recommendation to close the gap
between what is feasible to solve and what really matters. So, for
example, a national-scale Risk Manager might report:

According to what we can quantify, the recommended policy
is to do A. But when we incorporate the negative effects of
‘sense of outrage’ the recommended policy is to do B.
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In this decision it should be clear to everybody (and notably the
Auditor) why initially A was chosen, and how incorporating ‘sense
of outrage’ moves the recommendation away from A towards B.
Precisely why B was chosen, and not some other policy on the
trajectory away from A might be less clear.3 3 I return to this topic at the end of

section 6.When choosing a measure for loss, it is very helpful if it is an
‘extensive quantity’, which means capable of being accumulated
by adding (Cox and Donnelly, 2011, sec. 4.4). There is an obvious
advantage to a loss which can be added: for a particular hazard
event, the accumulated losses across different zones are simply the
sum of the losses for each zone. This allows the loss assessment
for a hazard event to be modularised. Likewise, when there is a
non-negligible probability of more than one hazard event in a time-
interval, the total loss from the hazard is the sum of the losses from
each of the events. This notion of total loss will be developed in
section 3. An example of a non-extensive quantity would be par-
ticulate concentration at ground level. This is a surrogate endpoint
for health, but it is not suitable for adding across times or loca-
tions. To make it extensive, it could be converted into loss of QALYs
(quality-adjusted life years).

Of the possible extensive measures of loss, monetary value is
the most obvious contender. There are two reasons for this. First,
most policies involve monetary costs in implementation; if loss is
also measured in monetary terms then cost and loss can simply be
added, which greatly simplifies the overall assessment. But there
is also a deeper reason. Many policies are effective across several
hazards. The benefit of such a policy, in terms of a reduction in
risk, should therefore be accumulated across hazards. This is only
possible if loss has a common and extensive measure. Monetary
loss is common to almost all hazards. Since monetary value is
extensive, it is the natural choice for ‘the’ surrogate for harm.4 4 On this basis, I would not discount

back to present value those ‘monetary’
losses which occur in the future,
because they often represent harm,
for which discounting might be
inappropriate. Mind you, if increasing
the discount rate to a little above zero
made a different to the recommended
policy, then one could hardly consider
the recommendation to be robust.

It might be distasteful to assign a monetary value to a human
life, or to a QALY, in order to assess all risks in terms of monetary
value. We must always remember that this is a surrogate endpoint,
chosen to provide the most effective quantitative assessment of
the harm that arises under different policies. So we do not forget
that there is a further stage in which the recommendations based
on monetary loss are re-evaluated to account for the difference
between loss and harm.

3 Risk and ‘riskiness’

Throughout these notes I assume that probability is an appropri-
ate measure for the quantifiable aspects of uncertainty. What this
means, in effect, is that uncertainty is processed according to the
rules of the probability calculus. There are many justifications for
these rules, and statisticians, philosophers, and physicists some-
times disagree on this topic. However, there is little disagreement
about the rules themselves. See Hacking (2001) for an insightful
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and non-technical introduction.
Fix a specified hazard and policy, and a specified time-interval

in the future; this time-interval will be denoted (a, b]. During that
time-interval, the number of hazard events which will occur is a
random quantity N. Each hazard event has the capacity to create a
loss, which will depend on magnitude, timing, and other factors as
well. Represent the loss of the ith hazard event in the time-interval
as the random quantity Li, assumed to be extensive (see section 2).
The ‘total loss’ in the time-interval is then

T =
N

∑
i=1

Li, N > 0, (1)

and T = 0 otherwise. Technically, I should index both T and
N by the time-interval, e.g. write T(a, b] and N(a, b]. Practically,
this would also be a good idea, to cement the notion that in risk
assessment there is always a time-interval involved. However, this
also seems a bit precious, and cluttered. Therefore I write simply
T and N, suppressing but not ignoring the underlying time-interval
(a, b]. See Figure 2.
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Figure 2: Hypothetical hazard/policy,
‘actual’ and simulated losses, and total
loss for the 30-year time-interval from
a = 2017 to b = 2047; N = 4 and
T = L1 + L2 + L3 + L4.

Risk assessment for this combination of hazard, policy, and time-
interval is synonymous with computing the probability distribution
of T, represented in terms of the ‘distribution function’ FT , where5 5 The symbol ‘:=’ is read as ‘is defined

as’, and ‘Pr’ as ‘the probability of’; R is
the set of all numbers. Thus in (2) the
function FT is defined for all numbers,
and for each number t, FT(t) is the
probability that the total loss is less
than or equal to t.

FT(t) := Pr(T ≤ t), t ∈ R. (2)

The distribution function FT does not exist ‘in nature’; it is a human
construct only partly linked, through our beliefs, to things that
have been recorded about the past. This is why the specification of
FT is so challenging. For this section, I will assume that this task
has been accomplished, and FT exists as a function.6 The ‘survival 6 See section 4 and section 5 for two

approaches to specifying FT .function’ of T is defined as

FT(t) := 1− FT(t) = Pr(T > t), t ∈ R, (3)

and is also known as the ‘probability of exceedance’. Now we can
define the ‘risk curve’.
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Definition 1 (Risk, risk curve). The risk curve for a specified hazard
and policy is the survival function of the total loss over a specified
time-interval, denoted FT . Risk is synonymous with the risk curve.

So ‘risk’ is not a value, but a mathematical object, FT . Figure 3

shows an example of a risk curve. According to its definition, a risk
curve must have the following properties:

1. If t < 0, then FT(t) = 1, because total loss is non-negative.

2. FT is decreasing,7 because if t < t′ then T > t′ implies that T > t. 7 In mathematics ‘decreasing’ typically
means ‘never increasing’. So FT
can have flat segments. If it had no
flat segments it would be ‘strictly
decreasing’.

3. There is a value u > 0 such that for all t ≥ u, FT(t) = 0, because
total loss cannot be infinite.

The value 1− FT(0) is the probability of no hazard events in the
time-interval (a, b], and the value FT(0) is the probability of at least
one event in the time-interval.

Total loss over five years, £M
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risk curve for time-interval of 5 years.
The probability of no hazard events in
five years is 0.37.

The fact that risk is a function and not simply a number indicates
that comparing risk across hazards, or within a hazard across
different policies, is more complicated than just comparing the
values of numbers. We do not expect to be able to order every
combination of hazard/policy from best to worst, although, as will
be discussed in section 6, we do expect to be able to ‘partially order’
hazard/policies.

In the meantime, though, no one can deny the usefulness of a
single summary measure of risk, i.e. a property of the function FT

that can be represented by a single number, with the broad inter-
pretation that larger values correspond to larger risks. For practical
and mathematical reasons, I propose the following definition.

Definition 2 (Riskiness). The ‘riskiness’ of a risk curve FT is either
one of these two equivalent properties:

A. The mathematical expectation of total loss, denoted E(T), or

B. The area under the risk curve (non-negative part).
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It is a mathematical result (quite a sophisticated one, but see
the end of this section) that these two are equivalent. The second
property of Definition 2 is the intuititive one, and the one that al-
lows us to assess riskiness from the risk curve by eye; see Figure 4.
But the first property is the one that allows us to do useful calcu-
lations. The next section shows how this definition of riskiness
sometimes decomposes in a way that will be familiar to almost
everyone involved in risk assessment.
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Figure 4: Same as Figure 3, but with
the riskiness shaded in; see Defini-
tion 2. By eye, the riskiness is about
£100M× 0.4/2 = £20M. The true value
is £18.9M.

* * *
It is a mysterious result that the expected total loss is equal to

the area under the risk curve. But a simple example can illustrate
why it might be true. Suppose that, for a specified hazard/policy
and specified time-interval, Pr(N = 0) = 0.3, Pr(N = 1) = 0.7, and
Pr(N > 1) = 0. Also suppose that if there is an event, then the loss
L1 is exactly £13M. So the expected total loss is

E(T) = 0.3× £0M + 0.7× £13M = £9.1M.

The risk curve is shown in Figure 5, and it is obvious in this case
that the risk curve is a step function, and the area under the risk
curve is 0.7× £13M = £9.1M.

Total loss over five years, £M
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Figure 5: Risk curve for the special
case given in the text, with the area
under the curve shaded in.

4 Rare events

Recollect that N is the number of events in the time-interval (a, b],
for a specified hazard and policy. A hazard/policy with ‘rare
events’ is one where Pr(N > 1) ≈ 0; note that this is always with
respect to a specified time-interval. For concreteness, I define the
‘rare event condition’ as

Pr(N > 1) <
1

20
. (4)

Under the rare event condition,

Pr(N = 0) = 1− p, Pr(N = 1) ≈ p, Pr(N > 1) ≈ 0, (5)
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where p := Pr(N > 0). This value p will feature repeatedly below.
I emphasise that the hazard must be specified, the policy must be
specified, and the time-interval must be specified, before the rare
event condition can be assessed.

Under the rare event condition, there is a large probability (equal
to 1− p) there there will be no hazard event in (a, b], and therefore
no loss; there is a small probability (approximately p) that there will
be one event; and there is a negligible probability that there will be
more than one event. If there is an event, then its loss is a random
quantity, and represented by the ‘single-event loss’ L1, drawn
from some distribution function FL. If the Experts decide, a priori,
that the rare event condition holds for a specified hazard/policy
and time-interval, then the Experts just have to choose p and the
distribution function FL.

A very attractive feature of the rare event condition is that it sim-
plifies computing (approximately) the risk curve and the riskiness,
summarised by the following result.

Result 1 (Rare event approximation). Under the rare event condition in
(4), with p and FL specified,

1. FT(t) ≈ p · FL(t) for t ≥ 0, and 1 otherwise, and

2. E(T) ≈ p ·E(L1).

Many readers will recognise that the second expression in Re-
sult 1 states

riskiness ≈ probability× impact

where we now have precise definitions for all three terms: ‘riskiness’
is expected total loss, ‘probability’ is the probability of at least one
event in the specified time-interval, and ‘impact’ is the expected
loss for a single event; finally, the approximation holds under the
rare event condition in (4).

This decomposition of riskiness into ‘probability × impact’ is
a highly successful meme. It is the basis of many heuristic treat-
ments of risk assessment, and also of a visual tool, termed the risk
matrix, discussed in section 6. It it is a decomposition of the sum-
mary measure ‘riskiness’, not of risk itself: remember that ‘risk’ is
synonymous with the whole of the risk curve.

5 The Lundberg assumptions

We cannot simply ordain that the rare event condition in (4) holds:
there are lots of situations where the probability of more than one
event is non-negligible, for a specified hazard/policy and specified
time-interval. At a national scale, for example, the probability
of more than one UK large flood in five years is non-negligible
under the do-nothing policy. In these risk assessments the Risk
Manager and her Experts need to work harder in order to compute
a distribution function for total loss, FT , and a risk curve.
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Or do they? In fact, there is a simple extension of the the rare
event condition, which uses the same basic components, which
were p and FL (see section 4). Naturally, some simplifying assump-
tions are required. I will refer to them as the ‘Lundberg assump-
tions’, as they can be traced back to the Swedish actuary Filip
Lundberg, writing at the beginning of the Twentieth Century.8 8 See, e.g., Klüppelberg et al. (2014,

chs 1,4).
Definition 3 (Lundberg assumptions).

(i) There is a magnitude threshold ν ≥ 0 below which hazard
events do not generate appreciable losses.

(ii) Hazard events above magnitude ν follow a homogeneous
Poisson process with rate λ /yr. This is the ‘homogeneity
assumption’.

(iii) The losses for hazard events are independent and identically
distributed (IID) with marginal distribution function FL. This
is the ‘IID assumption’.

The Lundberg assumptions are able to reuse the single-event
loss distribution FL by treating the event losses as independent of
their times of occurrence, and of each other (the IID assumption).
Clearly this is a dubious assumption. If losses are incurred, then
the capacity for another hazard event to generate losses is changed.
This could go either way. For example, if a first earthquake destroys
a building, then the building cannot be destroyed for a second time,
so the loss from a second earthquake is zero. But if the building is
rebuilt and then destroyed again, the second loss would typically
be larger than than the first loss. But the new building may not be
not be destroyed, if it has been rebuilt to improved building codes.
The IID assumption is therefore a “don’t really know which way it
will go” assumption. It may or may not be applicable to a particular
hazard/policy.

But even where the IID assumption is not applicable, it might
still be useful.9 Anyone who successfully designs or constructs 9 At this point one is obliged to write:

“All models are wrong, but some are
useful” (George Box).

something complicated—e.g. a machine, a piece of music or art, a
computer programme, a building—will likely use the strategy of
‘get something working’ (GSW).10 Risk assessment is very compli- 10 In writing, this is known as a ‘shitty

first draft’.cated, and an assumption like the Lundberg IID assumption is a
GSW assumption for the Experts.

The other major Lundberg assumption is the homogeneity
assumption, number (ii).11 Another dubious assumption. Some 11 Assumption (i) is innocuous, because

we could take ν = 0; its purpose is to
provide slightly greater generality to
(ii).

hazards are self-exciting, and some are self-quenching (they need
to recharge). Some hazards are both, on different time-scales. For
example, earthquakes come in swarms, i.e. they are locally self-
exciting. But according to the predominant model of earthquakes,
they occur in response to a build-up of stress, and thus, once they
have occurred and the stress is discharged, it takes a while for the
stress to build-up again. The same could be said for volcanoes,



notes on risk assessment, i: basic concepts 10

where the magma chamber must recharge; or wildfires, where the
vegetation must grow back.12 Again, though, the homogeneity 12 See Rougier et al. (2013, chs 8,11,12)

for more details.assumption is a GSW assumption.
The purpose of the Lundberg assumptions is therefore to get

the Experts up and running. Once they have chosen a single-event
loss distribution function FL and a large-event rate λ, the Lundberg
assumptions give them a risk curve for any specified time-interval
(see below, Figure 6). They can then spend the rest of their re-
sources improving it, by thinking harder about FL and λ, and then
by relaxing the IID assumption and/or the homogeneity assump-
tion. As it happens, these are both challenging assumptions to relax,
from a statistical point of view. Which is why Experts would be
well-advised to start with the Lundberg assumptions, to have some-
thing in the bank in case they run out of resources while trying to
relax them.

* * *
Back to implementing the Lundberg assumptions. Recollect from

section 4 that p := Pr(N > 0). Under the homogeneity assumption,

p = 1− e−λ·(b−a), (6)

from the Poisson distribution. This expression can be inverted
to convert from p to λ, if p is specified. From this point of view,
the Lundberg assumptions are a direct extension of the rare event
model, because they simply ‘repurpose’ p and FL. Alternatively,
λ can be specified directly, as the rate of a homogeneous Poisson
process for large-magnitude events, from which p could be inferred,
if required. If λ is specified directly, then a quick calculation shows
that the rare event condition in (4) holds when λ · (b− a) < 0.36. So
if λ = 0.2 then the rare event condition would hold for one year, but
not for two years.

There is an algorithm, ‘Panjer recursion’, for converting FL

and λ into FT under the Lundberg assumptions; see https://en.

wikipedia.org/wiki/Panjer_recursion.13 Figure 6 shows risk 13 Or Ross (1996, sec. 2.5) for the
mathematics.curves for different time-intervals computed using the Lundberg

assumptions. Naturally, as the time-interval extends, the risk curve
rises.

One thing that does not survive the transition from the rare
event condition to the Lundberg assumptions is the riskiness ap-
proximation in Result 1. The Lundberg version for the time-interval
(a, b] is

E(T) = λ · (b− a) ·E(L1) (7)

(an exact result). The rare event condition is the special case when
p ≈ λ · (b− a). So in general, riskiness does not decompose as ‘prob-
ability × impact’. Given the de facto ubiquity of this decomposition,
this is worth stressing:

The decomposition ‘riskiness ≈ probability × impact’ only holds in
the case where the probability of more than one hazard event in the
specified time-interval is negligible.

https://en.wikipedia.org/wiki/Panjer_recursion
https://en.wikipedia.org/wiki/Panjer_recursion
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Figure 6: Hypothetical hazard/policy,
risk curve for different time-intervals
computed using the Lundberg assump-
tions with the same λ and FL, using
Panjer recursion.

6 Comparing risk curves, risk matrices

The Risk Manager will often want to compare risk curves, possibly
across hazards, e.g. to rank them, or possibly across policies for the
same hazard, e.g. to choose a particular policy. As a framing device,
we assume that Clients are risk averse, which allows us to say that
a Client ‘prefers one risk curve to another’ rather than the clunky
‘finds one risk curve less risky than another’. Each Risk Manager
needs to have an understanding of her Client’s preferences, in
order to prepare an appropriate ranking, or to make an informed
choice. There is a lot of theory about this, the theory of ‘utility
functions’ (see, e.g., Smith, 2010, ch. 3), but I regard this theory as
a bit abstruse for actual use. So instead, let’s try to make progress
with some relatively simple ideas.

Suppose, to start with, that the Risk Manager decided to sum-
marise each risk curve in terms of a single value, its riskiness (see
Definition 2). Could this be effective? Definitely not. Most Clients
tend to be sensitive to large losses.14 The righthand tail of the risk 14 See the end of the section for my

explanation.curve is not well-constrained by the riskiness. So another possibility
is to replace the riskiness with a high quantile of the total loss distri-
bution, like the 95th percentile.15 But is it defensible to neglect the 15 The 95th percentile of total loss is the

value t satisfying FT(t) = 0.95.more probable outcomes and only look at the improbable ones?
Figure 7 illustrates these two summaries. In the first, A and

B both have the same expected total loss (riskiness), but I would
expect most Clients to find A more risky than B because of its
much longer righthand tail. In the second, A and C both have the
same 95th percentile, but I would expect most Clients to find A less
risky than B because it has a much lower expected total loss. In fact
I am confident about the following assertion:

Given any single summary of the risk curve, I can construct two
risk curves where the value of that summary is the same, but where a
typical Client will strongly prefer one risk curve to the other.

What this means is that when comparing risk curves, the Risk
Manager will need to use two or more summary values, in order to



notes on risk assessment, i: basic concepts 12

1. Same expected total loss
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2. Same 95th percentile
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Figure 7: Two examples of risk curves
that agree on one criterion but dis-
agree on another. In the first, risk
curve A has a much larger 95th per-
centile than B, while in the second, risk
curve C has a much larger expected
total loss (riskiness) than A.

represent her Client’s preferences. But once each risk curve is sum-
marised by more than one value, we lose the ability to completely
order all of the risk curves. Instead, we have what is termed in
mathematics a ‘partial order’. Suppose that there are two summary
measures for each risk curve, and in both cases larger values are
less preferred. If risk curve A is smaller than risk curve B in both
values, then we can say that A is preferred to B. But if risk curve A
is smaller in one value and larger in the other, then the situation is
ambiguous.

There is a powerful visual tool for capturing this idea of a partial
order based on two summary values, termed a ‘risk matrix’. A risk
matrix is a graph where the horizontal axis (x-axis) represents one
summary value, the vertical axis (y-axis) the other, and each risk is
represented by a symbol: see Figures 8 and 9. If the symbol for risk
curve A is to the southwest of risk curve B, then A is preferred to
B, being smaller in both values. So a risk matrix is actually a visual
tool for representing a partial ordering. We can see at a glance
whether A is preferred to B, or B to A, or whether it is ambiguous;
similarly for every other risk.
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Figure 8: ‘Vanilla’ risk matrix, see
Definition 4. According to the partial
ordering induced by these two statis-
tics, A is less risky than B, but more
risky than C, G, H, and J. It is ambigu-
ous whether A is less or more risky
than D, E, F, I, and K. The dashed
lines are just to highlight A.
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Figure 9: ‘RWC’ risk matrix, see
Definition 4. Based on the same risk
curves as in Figure 8. In this partial
ordering, A is less risky than B, more
risky than C, D, F, G, H, J, and K, and
it is ambiguous whether A is more or
less risky than E and I.

I am going to define two types of risk matrix, according to the
two summary values used.

Definition 4 (Types of risk matrix).

Vanilla x-axis is E(L1), the expected loss from the first event, and y-
axis is p, the probability of at least one event in the time-interval
(see section 4).

Reasonable Worst Case (RWC) x-axis is the 95th percentile of L1, and
y-axis is p, as for Vanilla.

In both types of risk matrix, these two values correspond to ‘im-
pact’ (x-axis) and ‘probability’ (y-axis), as discussed in section 4.
The vanilla risk matrix has a special property. Under the Lundberg
assumptions,16 the riskiness of each risk curve is exactly deter- 16 Including the rare event condition as

a special case.mined by the x and y values. Therefore riskiness in a vanilla risk
matrix can be represented using contour lines; see Figure 10. More
generally, riskiness, or any other third summary value, could be
encoded in the colour of each symbol, but perhaps this is too much
information for a visual tool.
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There are two further points to be made about risk matrices.
First, a risk matrix represents a 2D summary of each risk curve,
and the partial order it displays might not reflect all of a Client’s
preferences. The Risk Manager must understand that the Client will
struggle to articulate his preferences, and she (the Risk Manager)
should be careful not to railroad the Client into the wrong set of
preferences through only presenting him with a restricted set of
summaries. It is a fortuitous outcome if the Client’s preferences can
be represented by some 2D summary and visualised in a risk ma-
trix, but this needs to be discovered by the Risk Manager through a
careful elicitation exercise.

Second, a risk matrix only makes sense if all risk curves are sum-
marised in exactly the same way. This is why I have given careful
definitions of the axes in Definition 4. In many cases different risk
curves are assessed by different groups of people (e.g. for different
hazards). Ambiguity about the definitions of the two axes leads to
incomparable positioning of the symbols in the risk matrix, which
severely degrades its usefulness. The safe way to proceed is to en-
sure that (i) each group assesses the risk curve for its hazard(s), and
(ii) the same summaries are then applied to each risk curve to locate
the symbols. This procedure will ensure that all of the symbols in
the risk matrix are comparable. It also means that the Risk Manager
has the whole of the risk curve, if she needs it, which she may well
do in order to reflect the Client’s preferences.

One comment on current practice. Risk matrices are widely used. In
practice, precise definitions of the two axes are seldom given, and
the cells of the risk matrix are given fanciful colours, sometimes
labelled as, say, ‘low’, ‘medium’, ‘high’, ‘critical’, from bottom-left to
top-right. A risk matrix is only useful if the time-interval is defined,
both axes are clearly defined (ideally as summaries of a risk curve),
and there are no fanciful and possibly misleading colour schemes
and labels. These are basic things that the Auditor should check.
Were I the Auditor, I would be very happy to see a risk matrix
such as Figure 10. Poor examples are easily found online, e.g. by
googling “image risk matrix”.

* * *
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Figure 11: Large losses have the
potential to create disproportionately
large harms. The units of harm are
notional.

Why are Clients so often sensitive to the righthand tail of the risk
curve? For some Clients, e.g. insurance companies, this is because
a loss over some high threshold triggers an irreversible event, like
insolvency. For other Clients, my suggestion is that large losses
have the potential to create disproportionately large harms; see
Figure 11.

It is much harder for the Experts to foresee all of the harm
that arises from an event with a very large loss, due to a lack of
precedents and a failure of imagination. As discussed in section 2,
it is the harm that the Client really cares about, not the loss. If a
risk curve has a long righthand tail, summarised for example by
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a large 95th percentile, then it has more capacity to do harm. In
the interests of transparency, I would prefer the initial assessment
across hazard/policies to be in terms of loss. But I can imagine a
Risk Manager reporting

In terms of loss, risk curve A is slightly preferred to risk curve
B. But because risk curve A has a much longer tail than B,
overall B is preferred to A, because A has the capacity to
produce much more harm than B.

Further reading

Anyone interested in how humans think, and in particular how
they think about complicated things like uncertainty and risk,
should read Kahneman (2011). Tetlock and Gardner (2015) provide
lots of practical advice about forecasting. Woo (2011) provides a
quirky and engaging tour of catastrophes. And, for how it all goes
wrong, read The Big Short by Michael Lewis (Penguin, 2011), or
watch the film (2015).



notes on risk assessment, i: basic concepts 16

References

Conklin, J. (2009). Building shared understanding of wicked
problems. Rotman Magazine. Available at http://www.cognexus.
org/Rotman-interview_SharedUnderstanding.pdf. 3

Cox, D. and Donnelly, C. (2011). Principles of Applied Statistics.
Cambridge University Press, Cambridge, UK. 3, 4

Funtowicz, S. and Ravetz, J. (2006). Post-Normal Science: Envi-
ronmental policy under conditions of complexity. Available at
http://www.nusap.net/sections.php?op=viewarticle&artid=13.
3

Hacking, I. (2001). An Introduction to Probability and Inductive Logic.
Cambridge University Press, Cambridge, UK. 4

HSE (2001). Reducing risks, protecting people. Technical report,
Health and Safety Executive. Available online, http://www.hse.
gov.uk/risk/theory/r2p2.pdf. 2

Kahneman, D. (2011). Thinking, Fast and Slow. Penguin Books Ltd,
London, UK. 15

Klüppelberg, C., Straub, D., and Welpe, I., editors (2014). Risk: A
Multidisciplinary Introduction. Springer, Heidelberg, Germany. 9

Ross, S. (1996). Stochastic Processes. John Wiley & Sons, Inc., New
York, USA, second edition. 10

Rougier, J., Sparks, R., and Hill, L., editors (2013). Risk and Uncer-
tainty Assessment for Natural Hazards. Cambridge University Press,
Cambridge, UK. 10

Smith, J. (2010). Bayesian Decision Analysis: Principle and Practice.
Cambridge University Press, Cambridge, UK. 2, 11

Tetlock, P. and Gardner, D. (2015). Superforecasting: The Art & Science
of Prediction. Random House Books, London, UK. 15

Woo, G. (2011). Calculating Catastrophe. Imperial College Press,
London, UK. 15

http://www.cognexus.org/Rotman-interview_SharedUnderstanding.pdf
http://www.cognexus.org/Rotman-interview_SharedUnderstanding.pdf
http://www.nusap.net/sections.php?op=viewarticle&artid=13
http://www.hse.gov.uk/risk/theory/r2p2.pdf
http://www.hse.gov.uk/risk/theory/r2p2.pdf


notes on risk assessment, i: basic concepts 17

Controlled vocabulary

Auditor, 2

Client, 2

do-nothing, 2

endpoint
surrogate, 3

true, 3

Experts, 2

extensive quantity, 4

harm, 3

hazard, 2

loss, 3

monetary, 4

Lundberg assumptions, 9

homogeneity, 9

IID, 9

policy, 2

probability of exceedance, 5

rare event, 7

approximation, 8

condition, 7

risk curve, 8

riskiness, 8

risk, 4

definition, 6

informal, 2

risk curve, 6

Risk Manager, 2

risk matrix, 12

reasonable worst case, 13

vanilla, 13

riskiness, 6

rare event, 8

single-event loss, 8

survival function, 5

time-interval, 5

total loss, 5
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