MT&I: Exercises 1

1. Show that

- (i) $[a,b] = \bigcap_{n=1}^{\infty} (a 1/n, b + 1/n);$
- (*ii*) $(a,b) = \bigcup_{n=1}^{\infty} [a+1/n, b-1/n].$

Conclude that any σ -algebra of subsets of \mathbb{R} which contains all open (resp. closed) intervals also contains all closed (resp. open) intervals.

2. Show that the Borel σ -algebra \mathfrak{B} is generated by the collection of half-open intervals (a, b]. Show that it is also generated by the collection of half-rays $(a, \infty), a \in \mathbb{R}$.

3. Let $A \subset \Omega$. Describe $\sigma(\{A\})$.

4. Let f be a measurable function on (Ω, \mathcal{A}) and A > 0. The **truncation** f_A of f is defined by

$$f_A(\omega) = \begin{cases} f(\omega) & \text{if } |f(\omega)| \le A, \\ A & \text{if } f(\omega) > A, \\ -A & \text{if } f(\omega) < -A. \end{cases}$$

Show that f_A is measurable.

5. Let $f: (\Omega, \mathcal{A}) \to \mathbb{R}$ (or $\overline{\mathbb{R}}$). Show that the following are equivalent.

- (i) f is \mathcal{A} -measurable;
- (*ii*) $\{f > q\} \in \mathcal{A}$ for each $q \in \mathbb{Q}$;
- (*iii*) $\{f \leq q\} \in \mathcal{A}$ for each $q \in \mathbb{Q}$.

6. Give an example of an \mathbb{R} -valued function f on some measurable space (Ω, \mathcal{A}) which is not \mathcal{A} -measurable, but is such that |f| and f^2 are \mathcal{A} -measurable.

7. Consider the Borel σ -algebra (\mathbb{R}, \mathfrak{B}). Show that any monotone function $f : \mathbb{R} \to \mathbb{R}$ is Borel measurable.

8. Let $x \in (0,1]$ have the expansion $x = 0.x_1x_2x_3...$ in base 2, the non-terminating expansion being used in cases of ambiguity. Show that $f_n(x) = x_n$ is a Borel measurable function of x for each n.

9. Let f be a non-negative measurable function on (Ω, \mathcal{A}) which is bounded (so $0 \le f(\omega) \le K$ for all $\omega \in \Omega$). Show that the sequence of simple measurable functions φ_n constructed in Lemma 2.17 converges to f uniformly on Ω .

10. Let $f: \Omega_1 \to \Omega_2$ be a function. For $E \subseteq \Omega_2$ define

$$f^{-1}(E) = \{\omega \in \Omega_1 : f(\omega) \in E\}$$

Show that

- (i) $f^{-1}(\emptyset) = \emptyset$,
- (*ii*) $f^{-1}(\Omega_2) = \Omega_1$,
- (*iii*) $f^{-1}(E \setminus F) = f^{-1}(E) \setminus f^{-1}(F)$ for $E, F \subseteq \Omega_2$,

for any non-empty collection $\{E_{\alpha}\}$ of Ω_2 ,

- $(iv) f^{-1}(\cup_{\alpha} E_{\alpha}) = \cup_{\alpha} f^{-1}(E_{\alpha}),$
- (v) $f^{-1}(\cap_{\alpha} E_{\alpha}) = \cap_{\alpha} f^{-1}(E_{\alpha}).$

Show that if \mathcal{A}_2 is a σ -algebra of subsets of Ω_2 , then $\{f^{-1}(E) : E \in \mathcal{A}_2\}$ is a σ -algebra of subsets of Ω_1 . **11.** Let $f : \Omega_1 \to \Omega_2$ be a function. Let \mathcal{A}_1 be a σ -algebra of subsets of Ω_1 . Put $\mathcal{A}_2 = \{E \subseteq \Omega_2 : f^{-1}(E) \in \mathcal{A}_1\}$. Show that \mathcal{A}_2 is a σ -algebra.

12. Let $(\Omega_1, \mathcal{A}_1)$ be a measurable space and $f : \Omega_1 \to \Omega_2$. Let \mathcal{E} be a collection of subsets of Ω_2 such that $f^{-1}(E) \in \mathcal{A}_1$ for every $E \in \mathcal{E}$. Show that $f^{-1}(F) \in \mathcal{A}_1$ for any set F that belongs to the σ -algebra generated by \mathcal{E} . *Hint:* Use Question 11.