MT\&I: Exercises 1

1. Show that
(i) $[a, b]=\bigcap_{n=1}^{\infty}(a-1 / n, b+1 / n)$;
(ii) $(a, b)=\bigcup_{n=1}^{\infty}[a+1 / n, b-1 / n]$.

Conclude that any σ-algebra of subsets of \mathbb{R} which contains all open (resp. closed) intervals also contains all closed (resp. open) intervals.
2. Show that the Borel σ-algebra \mathfrak{B} is generated by the collection of half-open intervals $(a, b]$. Show that it is also generated by the collection of half-rays $(a, \infty), a \in \mathbb{R}$.
3. Let $A \subset \Omega$. Describe $\sigma(\{A\})$.
4. Let f be a measurable function on (Ω, \mathcal{A}) and $A>0$. The truncation f_{A} of f is defined by

$$
f_{A}(\omega)= \begin{cases}f(\omega) & \text { if }|f(\omega)| \leq A \\ A & \text { if } f(\omega)>A \\ -A & \text { if } f(\omega)<-A\end{cases}
$$

Show that f_{A} is measurable.
5. Let $f:(\Omega, \mathcal{A}) \rightarrow \mathbb{R}$ (or $\overline{\mathbb{R}})$. Show that the following are equivalent.
(i) f is \mathcal{A}-measurable;
(ii) $\{f>q\} \in \mathcal{A}$ for each $q \in \mathbb{Q}$;
(iii) $\{f \leq q\} \in \mathcal{A}$ for each $q \in \mathbb{Q}$.
6. Give an example of an \mathbb{R}-valued function f on some measurable space (Ω, \mathcal{A}) which is not \mathcal{A}-measurable, but is such that $|f|$ and f^{2} are \mathcal{A}-measurable.
7. Consider the Borel σ-algebra $(\mathbb{R}, \mathfrak{B})$. Show that any monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable.
8. Let $x \in(0,1]$ have the expansion $x=0 . x_{1} x_{2} x_{3} \ldots$ in base 2 , the non-terminatng expansion being used in cases of ambiguity. Show that $f_{n}(x)=x_{n}$ is a Borel measurable function of x for each n.
9. Let f be a non-negative measurable function on (Ω, \mathcal{A}) which is bounded (so $0 \leq f(\omega) \leq K$ for all $\omega \in \Omega$). Show that the sequence of simple measurable functions φ_{n} constructed in Lemma 2.17 converges to f uniformly on Ω.
10. Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function. For $E \subseteq \Omega_{2}$ define

$$
f^{-1}(E)=\left\{\omega \in \Omega_{1}: f(\omega) \in E\right\}
$$

Show that
(i) $f^{-1}(\emptyset)=\emptyset$,
(ii) $f^{-1}\left(\Omega_{2}\right)=\Omega_{1}$,
(iii) $f^{-1}(E \backslash F)=f^{-1}(E) \backslash f^{-1}(F)$ for $E, F \subseteq \Omega_{2}$,
for any non-empty collection $\left\{E_{\alpha}\right\}$ of Ω_{2},
(iv) $f^{-1}\left(\cup_{\alpha} E_{\alpha}\right)=\cup_{\alpha} f^{-1}\left(E_{\alpha}\right)$,
(v) $f^{-1}\left(\cap_{\alpha} E_{\alpha}\right)=\cap_{\alpha} f^{-1}\left(E_{\alpha}\right)$.

Show that if \mathcal{A}_{2} is a σ-algebra of subsets of Ω_{2}, then $\left\{f^{-1}(E): E \in \mathcal{A}_{2}\right\}$ is a σ-algebra of subsets of Ω_{1}.
11. Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a function. Let \mathcal{A}_{1} be a σ-algebra of subsets of Ω_{1}. Put $\mathcal{A}_{2}=\left\{E \subseteq \Omega_{2}: f^{-1}(E) \in \mathcal{A}_{1}\right\}$. Show that \mathcal{A}_{2} is a σ-algebra.
12. Let $\left(\Omega_{1}, \mathcal{A}_{1}\right)$ be a measurable space and $f: \Omega_{1} \rightarrow \Omega_{2}$. Let \mathcal{E} be a collection of subsets of Ω_{2} such that $f^{-1}(E) \in \mathcal{A}_{1}$ for every $E \in \mathcal{E}$. Show that $f^{-1}(F) \in \mathcal{A}_{1}$ for any set F that belongs to the σ-algebra generated by \mathcal{E}. Hint: Use Question 11.

