MT&I: Exercises 6

- 1. Let ν be a charge on (X, \mathbb{X}) .
 - a) Let $\mathbb{X} \ni E_n \uparrow E$ (this means for all $n, E_n \subset E_{n+1}$). Show that $\nu(E) = \lim \nu(E_n)$.
 - b) Let $\mathbb{X} \ni F_n \downarrow F$ (this means for all $n, F_n \supset F_{n+1}$). Show that $\nu(F) = \lim \nu(F_n)$.
- 2. Let ν be a charge on (X, \mathbb{X}) . Show that
 - a) $\nu^+(E) = \sup\{\nu(F) : \mathbb{X} \ni F \subseteq E\},\$

b)
$$\nu^{-}(E) = -\inf\{\nu(F) : \mathbb{X} \ni F \subseteq E\}$$

- 3. Let (X, \mathbb{X}, μ) be a measure space and $f \in L(X, \mathbb{X}, \mu)$. Let $\nu : \mathbb{X} \to \mathbb{R}$ be the charge given by $\nu(A) = \int_A f d\mu$. Show that a set E is null with respect to ν if and only if $\mu(E \cap \{x \in X : f(x) \neq 0\}) = 0$.
- 4. Prove Theorem 8.7 from the lecture notes. That is if $f \in L(X, \mathbb{X}, \mu)$ and $\nu : \mathbb{X} \to \mathbb{R}$ is the charge given by $\nu(A) = \int_A f d\mu$ then show that the positive and negative variations of ν , are given by $\nu^+(A) = \int_A f^+ d\mu$ and $\nu^- = \int_A f^- d\mu$ respectively.
- 5. Let $\nu(E) = \int_E x e^{-x^2} d\lambda$ ($E \in \mathbb{B}$, λ is Lebesgue measure). Give a Hahn decomposition of \mathbb{R} with respect to ν .
- 6. Let ν, μ be σ -finite measures on (X, \mathbb{X}) with $\nu \ll \mu$. Let $f = \frac{d\nu}{d\mu} \in M^+$. Show that for any $g \in M^+$,

$$\int g \, d\nu = \int g f \, d\mu.$$

Hint: Apply Monotone Convergence Theorem to simple functions.

7. Let ν, λ, μ be σ -finite measures on (X, \mathbb{X}) with $\nu \ll \lambda$ and $\lambda \ll \mu$. Show that $\nu \ll \mu$ and

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \frac{d\lambda}{d\mu}$$
 μ -a.e.

8. Let

$$f(x) = \begin{cases} \sqrt{1-x}, & x \le 1\\ 0, & x > 1 \end{cases}$$

and

$$g(x) = \begin{cases} x^2, & x \le 0\\ 0, & x > 0 \end{cases}$$

Let

$$\nu(E) = \int_E f \, d\lambda \quad \text{and} \quad \mu(E) = \int_E g \, d\lambda \quad (E \in \mathbb{B})$$

Find the Lebesgue decomposition of ν with respect to μ .

9. Let (X, \mathbb{X}_0, μ) be a probability space, $f : X \to \mathbb{R}$ an integrable function and $\mathbb{X} \subset \mathbb{X}_0$ a sigma algebra. Show that there exists a function g which is integrable with respect to the measurable space (X, \mathbb{X}) and for which any $A \in \mathbb{X}$ satisfies $\int_A f d\mu = \int_A g d\mu$. (This function (random variable) is known as the conditional expectation).