MT\&I: Exercises 6

1. Let ν be a charge on (X, \mathbb{X}).
a) Let $\mathbb{X} \ni E_{n} \uparrow E$ (this means for all $\left.n, E_{n} \subset E_{n+1}\right)$. Show that $\nu(E)=\lim \nu\left(E_{n}\right)$.
b) Let $\mathbb{X} \ni F_{n} \downarrow F$ (this means for all $\left.n, F_{n} \supset F_{n+1}\right)$. Show that $\nu(F)=\lim \nu\left(F_{n}\right)$.
2. Let ν be a charge on (X, \mathbb{X}). Show that
a) $\nu^{+}(E)=\sup \{\nu(F): \mathbb{X} \ni F \subseteq E\}$,
b) $\nu^{-}(E)=-\inf \{\nu(F): \mathbb{X} \ni F \subseteq E\}$.
3. Let (X, \mathbb{X}, μ) be a measure space and $f \in L(X, \mathbb{X}, \mu)$. Let $\nu: \mathbb{X} \rightarrow \mathbb{R}$ be the charge given by $\nu(A)=\int_{A} f \mathrm{~d} \mu$. Show that a set E is null with respect to ν if and only if $\mu(E \cap\{x \in X: f(x) \neq 0\})=0$.
4. Prove Theorem 8.7 from the lecture notes. That is if $f \in L(X, \mathbb{X}, \mu)$ and $\nu: \mathbb{X} \rightarrow \mathbb{R}$ is the charge given by $\nu(A)=\int_{A} f \mathrm{~d} \mu$ then show that the positive and negative variations of ν, are given by $\nu^{+}(A)=\int_{A} f^{+} \mathrm{d} \mu$ and $\nu^{-}=\int_{A} f^{-} \mathrm{d} \mu$ respectively.
5. Let $\nu(E)=\int_{E} x e^{-x^{2}} \mathrm{~d} \lambda(E \in \mathbb{B}, \lambda$ is Lebesgue measure). Give a Hahn decomposition of \mathbb{R} with respect to ν.
6. Let ν, μ be σ-finite measures on (X, \mathbb{X}) with $\nu \ll \mu$. Let $f=\frac{d \nu}{d \mu} \in M^{+}$. Show that for any $g \in M^{+}$,

$$
\int g d \nu=\int g f d \mu
$$

Hint: Apply Monotone Convergence Theorem to simple functions.
7. Let ν, λ, μ be σ-finite measures on (X, \mathbb{X}) with $\nu \ll \lambda$ and $\lambda \ll \mu$. Show that $\nu \ll \mu$ and

$$
\frac{d \nu}{d \mu}=\frac{d \nu}{d \lambda} \frac{d \lambda}{d \mu} \quad \quad \mu \text {-a.e. }
$$

8. Let

$$
f(x)= \begin{cases}\sqrt{1-x}, & x \leq 1 \\ 0, & x>1\end{cases}
$$

and

$$
g(x)= \begin{cases}x^{2}, & x \leq 0 \\ 0, & x>0\end{cases}
$$

Let

$$
\nu(E)=\int_{E} f d \lambda \quad \text { and } \quad \mu(E)=\int_{E} g d \lambda \quad(E \in \mathbb{B})
$$

Find the Lebesgue decomposition of ν with respect to μ.
9. Let $\left(X, \mathbb{X}_{0}, \mu\right)$ be a probability space, $f: X \rightarrow \mathbb{R}$ an integrable function and $\mathbb{X} \subset \mathbb{X}_{0}$ a sigma algebra. Show that there exists a function g which is integrable with respect to the measurable space (X, \mathbb{X}) and for which any $A \in \mathbb{X}$ satisfies $\int_{A} f \mathrm{~d} \mu=\int_{A} g \mathrm{~d} \mu$. (This function (random variable) is known as the conditional expectation).

