MT&I: Exercises 3

- **1.** Let $f \in L$ and a > 0. Show that $\{|f| \ge a\}$ has finite measure. Show that $\{f \ne 0\}$ has σ -finite measure.
- **2.** Let f be an \mathfrak{A} -measurable \mathbb{R} -valued function such that f = 0 μ -a.e. Show that $f \in L$ and $\int f d\mu = 0$.

3. Let $f \in L$ and g an \mathfrak{A} -measurable \mathbb{R} -valued function such that $f = g \mu$ -a.e. Show that $g \in L$ and $\int f d\mu = \int g d\mu$.

4. Let $f \in L$ and $\varepsilon > 0$. Show that there exists an \mathfrak{A} -measurable simple function φ such that

$$\int |f - \varphi| \, d\mu < \varepsilon.$$

5. Let $f \in L$ with indefinite integral

$$\lambda(E) = \int_E f \, d\mu, \qquad E \in \mathfrak{A}.$$

Show that $\lambda(E) \ge 0$ for all $E \in \mathfrak{A}$ if and only if $f \ge 0$ μ -a.e. Moreover, $\lambda(E) = 0$ for all $E \in \mathfrak{A}$ if and only if f = 0 μ -a.e.

6. Let (f_n) be a sequence in L that converges uniformly on Ω to f. If $\mu(\Omega) < \infty$ show that

$$\int f \, d\mu = \lim \int f_n \, d\mu$$

Show that this may fail if $\mu(\Omega) = \infty$.

7. Let $f_n \in L$ such that

$$\sum_{n=1}^{\infty} \int |f_n| \ d\mu < \infty.$$

Show

- a) $\sum f_n$ converges μ -a.e. to a function $f \in L$;
- b) $\int f d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$
- **8.** Let $f_n \in L$ such that $f_n \to f \in L$. Suppose that

$$\lim \int |f_n - f| \ d\mu = 0.$$

Show that

$$\int |f| \ d\mu = \lim \int |f_n| \ d\mu.$$