Analysis 3: HW4

1.

i) Let $\alpha>1, t \geq 0$. Prove that $0 \leq \frac{t}{1+t^{\alpha}} \leq 1$ and deduce that

$$
\lim _{n \rightarrow \infty} \int_{[0,2 \pi]} \frac{n x \sin x}{1+(n x)^{\alpha}} d m=0
$$

ii) Let $n \geq 2, x \geq 0$. Prove that $(1+x / n)^{n} \geq(1 / 4) x^{2}$. and deduce that $x \rightarrow(1+x / n)^{-n}$ is Lebesgueintegrable over $[1, \infty)$ and that

$$
\lim _{n \rightarrow \infty} \int_{[1, \infty)}\left(1+\frac{x}{n}\right)^{-n} d m=e^{-1}
$$

2. Let $C[0,1]$ be the linear space of continuous functions on $[0,1]$ to \mathbb{R} and define N_{1} to be the Riemann integral of $|f|$ over $[0,1]$. Show that N_{1} is a norm on $C[0,1]$. If f_{n} is defined by

$$
f_{n}(x)= \begin{cases}0 & \text { for } 0 \leq x \leq(1-1 / n) / 2 \\ \text { linear } & \text { for }(1-1 / n) / 2 \leq x \leq 1 / 2 \\ 1 & \text { for } 1 / 2 \leq x \leq 1\end{cases}
$$

show that $\left(f_{n}\right)$ is a Cauchy sequence, but that it does not converge to an element of $C[0,1]$.
3. Let N be a norm on a linear space V and d be defined for $u, v \in V$ by $d(u, v)=N(u-v)$. Show that d is a metric on V; that is, for all $u, v, w \in V$,
i) $d(u, v) \geq 0$;
ii) $d(u, v)=0$ if and only if $u=v$;
iii) $d(u, v)=d(v, u)$;
iv) $d(u, v) \leq d(u, w)+d(w, v)$.
4. If $f \in L^{1}$ and $\epsilon>0$ then there exists a simple \mathfrak{A}-measurable function φ such that $\|f-\varphi\|_{1}<\epsilon$. Extend this to $L^{p}, 1 \leq p<\infty$. Is this true for L^{∞} ?
5. Let $\Omega=\mathbb{N}$ and λ a measure on $\mathfrak{A}=\mathcal{P}(\Omega)$ defined by

$$
\lambda(E)=\sum_{n \in E}\left(1 / n^{2}\right), E \in \mathfrak{A} .
$$

(a) Show that $f: \Omega \rightarrow \mathbb{R}, f(n)=\sqrt{n}$ satisfies $f \in L^{p}$ if and only if $1 \leq p<2$.
(b) Find a function f such that $f \in L^{p}$ if and only if $1 \leq p \leq p_{0}$.
6. Let $(\Omega, \mathfrak{A}, \mu)$ be a finite measure space. If f is \mathfrak{A}-measurable, let $E_{n}=\{(n-1) \leq|f|<n\}$. Show that $f \in L^{1}$ if and only if

$$
\sum_{n=1}^{\infty} n \mu\left(E_{n}\right)<+\infty
$$

More generally, $f \in L^{p}$ for $1 \leq p<\infty$ if and only if

$$
\sum_{n=1}^{\infty} n^{p} \mu\left(E_{n}\right)<+\infty
$$

7. If $(\Omega, \mathfrak{A}, \mu)$ is a finite measure space and $f \in L^{p}$ then $f \in L^{r}$ for any $1 \leq r<p$ and

$$
\|f\|_{r} \leq \mu(\Omega)^{\frac{1}{r}-\frac{1}{p}}\|f\|_{p}
$$

8. Suppose that $\Omega=\mathbb{N}$ and μ is the counting measure on Ω. If $f \in L^{p}$ then $f \in L^{s}$ with $1 \leq p \leq s<\infty$ and $\|f\|_{s} \leq\|f\|_{p}$.
9. Let $(\Omega, \mathfrak{A}, \mu)=(\mathbb{R}, \mathfrak{B}, m)$ and $f(x)=|x|^{-1 / 2}(1+|\log x|)^{-1}$. Then $f \in L^{p}$ if and only if $p=2$.
10. Let $(\Omega, \mathfrak{A}, \mu)$ be a measure space and suppose $f \in L^{p_{1}}$ and $f \in L^{p_{2}}$ with $1 \leq p_{1}<p_{2}<\infty$. Prove that $f \in L^{p}$ for any p with $p_{1} \leq p \leq p_{2}$.
11. Let $p>1, f \geq 0, f \in L^{p}((0, \infty))$ and $F(x)=\int_{[0, x]} f d m$. Show that if p and q are conjugate indices, then $F(x)=o\left(x^{1 / q}\right)$ as $x \rightarrow 0$ and as $x \rightarrow \infty$.
12. If $f \in L^{\infty}(\Omega, \mathfrak{A}, \mu)$ then $|f(\omega)| \leq\|f\|_{\infty}$ for almost all ω. Moreover, if $A<\|f\|_{\infty}$ then there exists a set $E \in \mathfrak{A}$ with $\mu(E)>0$ such that $|f(\omega)|>A$ for all $\omega \in E$.
13. If $f \in L^{p}, 1 \leq p \leq \infty$ and $g \in L^{\infty}$ then the product $f g \in L^{p}$ and $\|f g\|_{p} \leq\|f\|_{p}\|g\|_{\infty}$.
14. The space $L^{\infty}(\Omega, \mathfrak{A}, \mu)$ is contained in $L^{1}(\Omega, \mathfrak{A}, \mu)$ if and only if $\mu(\Omega)<\infty$. If $\mu(\Omega)=1$ and $f \in L^{\infty}$ then

$$
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}
$$

15. Show that $\int_{[0, \pi]} x^{-1 / 4} \sin x d m \leq \pi^{3 / 4}$.
