Analysis 3: Exercises 6

- 1. Is it true on a set of infinite measure that convergence a.e. implies convergence in measure? Justify your answer.
- 2. A sequence of measurable functions $\{f_n\}$ is said to be fundamental in measure if for any $\epsilon > 0$

$$\lim_{m,n \to \infty} \mu\{x : |f_n(x) - f_m(x)| > \epsilon\} = 0.$$

Show that if $\{f_n\}$ is fundamental in measure then there exists a measurable function f such that $f_n \to f$ in measure.

Show that f_n converges to f in measure then f_n is fundamental in measure.

- **3.** Let (f_n) , (g_n) be \mathbb{R} -valued \mathfrak{A} -measurable functions which converge in measure to \mathfrak{A} -measurable functions f and g respectively. Prove that
 - a) $(a f_n + b g_n)$ converges in measure to a f + b g for any $a, b \in \mathbb{R}$;
 - b) $(|f_n|)$ converges to |f| in measure.
- **4.** Show that if $\mu(\Omega) < +\infty$ and $f_n \to f$ and $g_n \to g$ in measure, then $f_n g_n \to f g$ in measure.
- **5.** Prove the following versions of Fatou's Lemma. Assume $f_n, f \in M_+$ $(n \in \mathbb{N})$.
 - i) If $f_n \to f \mu$ -a.e. then $\int f d\mu \leq \underline{\lim} \int f_n d\mu$.
 - *ii)* If $f_n \to f$ in measure then $\int f \, d\mu \leq \underline{\lim} \int f_n \, d\mu$.

Here, the notation <u>lim</u> stands for the limit inferior liminf.

- 6. Show that Lebesgue's Dominated Convergence Theorem holds if almost everywhere convergence is replaced by convergence in measure.
- 7. Let $(\Omega, \mathfrak{A}, \mu)$ be a finite measure space. If f is an \mathfrak{A} -measurable function, put

$$r(f) = \int \frac{|f|}{1+|f|} d\mu.$$

Show that a sequence (f_n) of \mathfrak{A} -measurable \mathbb{R} -valued functions converges in measure to f if and only if $r(f_n - f) \to 0$.

- 8. If a sequence (f_n) converges in L^p to a function f and a subsequence of (f_n) converges in L^p to g, then f = g a.e.
- 9. Find an example which shows that convergence in L^p does not imply a.e. convergence.
- 10. Let $(\Omega, \mathfrak{A}, \mathbb{P})$ be a probability space (i.e. $\mathbb{P}(\Omega) = 1$). Let $X : \Omega \to \mathbb{R}$ be an \mathfrak{A} -measurable random variable. Assume that $X \in L^2(\Omega, \mathfrak{A}, \mathbb{P})$. Define

$$\mu = \mathbb{E}[X] = \int X d\mathbb{P}$$
 (expectation of X),

$$\sigma^2 = \mathbb{E}[(X - \mu)^2]$$
 (variance of X)

Prove Chebychev's inequality,

$$\mathbb{P}[|X - \mu| \ge \alpha] \le (\sigma/\alpha)^2$$

for any $\alpha > 0$.