
MTI Exercises 1: Solutions

1. For part (i). For any x ∈ [a, b] we have that x ∈ (a − 1/n, b + 1/n)
for all n ∈ N and so x ∈ ∩∞n=1(a − 1/n, b + 1/n). On the other hand
if x ∈ ∩∞n=1(a − 1/n, b + 1/n) then for all n ∈ N a − x < 1/n and
x − b > 1/n. Now if a − x > 0 then there exists n ∈ N such that
a − x > 1/n which would be a contradiction so a − x ≤ 0 and thus
x ≥ a. Similarly we can show that x ≤ b which means x ∈ [a, b].

For part (ii). Fix x ∈ (a, b). We know that a < x < b and therefore
there exists n ∈ N such that 1

n < min{(x−a), (b−x)}. Thus a+1/n <
x < b−1/n which means that x ∈ ∪n∈N(a+1/n, b−1/n). On the other
hand if x ∈ ∪n∈N(a+ 1/n, b− 1/n) then a < x < b and so x ∈ (a, b).

Thus if we take a sigma algebra of subsets of R containing all open
intervals then we can write any closed interval as a countable union of
these elements so any closed interval must also be in the sigma-algebra.

2. To show that the Borel-sigma-algebra is generated by half-open in-
tervals we need to show that the Borel sigma algebra (B) contains
all half open intervals and that the sigma algebra generated by half-
open intervals contains all open intervals (A). So let a, b ∈ R then
(a, b] = (a, b + 1) ∩ (b, b + 1)c thus [a, b) ∈ B. On the other hand let
a, b ∈ R we can write (a, b) = ∪n∈N(a, b − (b − a)/(2n)] which means
(a, b) ∈ A, (a,∞) = ∪∞n=1(a, a + n] ∈ A and (−∞, a) = [a,∞]c where
we have [a,∞] = ∪n ∈ N(a+ 1/n,∞) ∈ A and so (−∞, a) ∈ A.

For the second part we proceed similarly, note that all half open rays
are in the Borel-sigma algebra by definition. Let a, b ∈ R first note
that

(−∞, a) = [a,∞)c = (∪∞n=1(a− 1/n,∞))c

so (−∞, a) is in the sigma-algebra generated by half open rays. We
can then write (a, b) = (a,∞) ∩ (−∞, b) and so (a, b) is also in this
sigma algebra.

3. It’s clear that σ(A) = {∅,Ω, A,Ac}

4. Fix A > 0 and α ∈ R. Let

Aα := {x : fA(x) > α}

and note that it suffices to show Aα ∈ X for all α ∈ R. If α ≥ A then
Aα = ∅ ∈ X and if α < −A then Aα = X ∈ X. If −A ≤ α < A then
fk(x) > α if and only if f(x) > α and so Aα = {x : f(x) > α} which
is measurable since f is measurable.
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5. We can see straight away that (i) implies (ii) and by taking compli-
ments that (ii) and (iii) ar equivalent. So we just need to prove that
(ii) implies (i). So suppose (ii) holds, fix α ∈ R\Q and note that since
the rational numbers are dense in R that there exists a sequence of
rational numbers αn which converge to α from above. We can write

{x : f(x) > α} = ∪∞n=1{x : f(x) > αn}

and so {x : f(x) > α} is measurable. Thus f is X-measurable.

6. Let X = R and X = {R, ∅}. Let f(x) = 1 if x ≥ 0 and f(x) =
−1 if x < 0. For all x ∈
R f2(x) = |f | = 1 and so is measurable. However {x ∈ R : f(x) >
0} = R+ but R+ /∈ X and so is not measurable.

7. Let f : R → R be monotone (for convenience we will assume it is
increasing). Fix α ∈ R and consider

Aα := {x ∈ R : f(x) ≥ α}.

If Aα = ∅ then trivially Aα is measurable. If not then let y =
inf{x ∈ R : f(x) ≥ α}. Since f is monotone increasing we have
that Aα = (y,∞) or Aα = [y,∞) which are both measurable. Thus f
is measurable.

8. Let
An = {x : fn(x) = 1}.

If α ≥ 1 then {x : fn(x) > α} = ∅}, if 0 ≤ α < 1 then {x : fn(x) >
α} = An and if α < 0 then {x : fn(x) > α} = [0, 1]. So we just need
to show the sets An are measurable.

An =
⋃

(a1,...,an1 )∈{0,1}n−1

((
n−1∑
i=1

ai
2i

)
+

1

2n
,

(
n−1∑
i=1

ai
2i

)
+

1

2n−1

]
.

So the set An can be written as a union of half-open intervals, which by
question 4 we know are Borel measurable. So An is Borel measurable
and thus fn is measurable.

9. Recall from the lectures we fix n ∈ N and for k = 0, 1, . . . , 2nn − 1
define

Ek,n =

{
x ∈ X : f(x) ∈

[
k

2n
,
k + 1

2n

)}
.

We also define
E2nn,n = {x : f(x) ≥ n}

and let φn(x) = k
2n if x ∈ Ek,n. Now since in this case 0 ≤ f(x) ≤ K

for all x ∈ X if we take n > K then E2nn,n = ∅. Thus if we let ε > 0
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and choose N ≥ max{K,− log ε
log 2} then for all x ∈ X x ∈ Ek,n where

k < 2nn. So

|f(x)− φn(x)| ≤ 1

2n
≤ ε.

Thus the convergence is uniform.

10. The first two points are trivial. To show (iii) we use E \ F = E ∩ F c
and show first that f−1(F c) = (f−1(F ))c. It follows from the identity

f−1(F c) = {x ∈ Ω1 : f(x) ∈ F c} = {x ∈ Ω1 : f(x) /∈ F}
= ({x ∈ Ω1 : f(x) ∈ F})c = (f−1(F ))c.

Now we want to show that f−1(A ∩ B) = f−1(A) ∩ f−1(B) for any
A,B ⊂ Ω1. We use the following argument. We know that x ∈
f−1(A ∩ B) is equivalent to f(x) ∈ A ∩ B, which is equivalent to
f(x) ∈ A and f(x) ∈ B, which is equivalent to x ∈ f−1(A) and
x ∈ f−1(B), equivalent to x ∈ f−1(A) ∩ f−1(B). So we are done.

Now we have to show point (iv). By definition we have

x ∈ f−1(∪αEα)⇔ x ∈ {x ∈ Ω1 : f(x) ∈ ∪αEα} ⇔ ∃α : x ∈ {x ∈ Ω1 : f(x) ∈ Eα}
⇔ x ∈ ∪α{x ∈ Ω1 : f(x) ∈ Eα} ⇔ x ∈ ∪αf−1(Eα).

The last property can be shown using De Morgan’s laws.

11. Use previous exercise.

12. Use previous exercise.
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