MTI Exercises 2: Solutions

1. We have to check properties of a measure. It's clear that $\lambda(\emptyset)=$ $\mu(\emptyset)=0, \lambda(E)=\mu(A \cap E) \geq 0$ for any $E \in \mathfrak{U}$. Now we have to check that if $E_{i} \in \mathfrak{U}(i=1,2, \ldots)$ are disjoint then $\lambda\left(\cup_{i} E_{i}\right)=\sum_{i} \lambda\left(E_{i}\right)$. By definition of λ we have
$\lambda\left(\cup_{i} E_{i}\right)=\mu\left(A \cap\left(\cup_{i} E_{i}\right)\right)=\mu\left(\cup_{i}\left(A \cap E_{i}\right)\right)=\sum_{i} \mu\left(A \cap E_{i}\right)=\sum_{i} \lambda\left(E_{i}\right)$.
2. We can use induction. We know that $a_{1} \mu_{1}$ is a measure so the base case is true. Now suppose $\nu_{k}=a_{1} \mu_{1}+\ldots+a_{k} \mu_{k}$ is a measure and consider $\nu_{k+1}=a_{1} \mu_{1}+\ldots+a_{k+1} \mu_{k+1}$. We know that

$$
\nu_{k+1}(\emptyset)=\nu_{k}(\emptyset)+a_{k+1} \mu_{k+1}(\emptyset)=0 .
$$

For any $A \in \mathbb{X}$ we have that

$$
\nu_{k+1}(A)=\nu_{k}(A)+a_{k+1} \mu_{k+1}(A) \geq 0+0=0 .
$$

Finally let $A_{1}, A_{2}, \ldots \in X$ be disjoint

$$
\begin{aligned}
\nu_{k+1}\left(\cup_{i=1}^{\infty} A_{i}\right) & =\nu_{k}\left(\cup_{i=1}^{\infty} A_{i}\right)+a_{k+1} \mu_{k+1}\left(\cup_{i=1}^{\infty} A_{i}\right) \\
& =\sum_{i=1}^{\infty} \nu_{k}\left(A_{i}\right)+\sum_{i=1}^{\infty} a_{k+1} \mu_{k+1}\left(A_{i}\right) \\
& =\sum_{i=1}^{\infty} \nu_{k+1}\left(A_{i}\right)
\end{aligned}
$$

therefore if ν_{k} is a measure then so is ν_{k+1} and the result follows by induction.
3. To show that μ is a measure you just check the properties of measure and it is straightforward. In the other direction, if μ is any measure on \mathbb{N} then you restrict μ to $\{n\}$ for all $n \in \mathbb{N}$, construct a sequence $\left\{a_{n}\right\}$ and new measure ν, using this sequence $\left\{a_{n}\right\}$ exactly as in the formulation of the question. This new measure ν coincides with μ.
4. This is not a measure. To see this take $E_{n}=\{n\}$ note that $\cup_{n=1}^{\infty} E_{n}=$ \mathbb{N} and note that this union is disjoint. However $\mu(\mathbb{N})=\infty$ but $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)=0$ and thus μ is not a measure.
5. We know $A \subset C, B \subset C$ and $\mu(A)=\mu(C)$. Therefore $\mu(C \backslash A)=0$. It is clear that $\mu(A \cap B)+\mu((C \backslash A) \cap B)=\mu(C \cap B)=\mu(B)$. Recalling $\mu(C \backslash A)=0$ we get the result.
6. Take $F_{n}=(n,+\infty)$ it is clear that $\cap_{n} F_{n}=\emptyset$ but $\mu\left(F_{n}\right)=\infty$ for all n. Result follows.
7. For the first part let $B_{n}=\cap_{m=n}^{\infty} A_{m}$ and note that $B=\cup_{n=1}^{\infty} B_{n}$ and that $B_{n} \subset B_{n+1}$. Thus

$$
\mu(B)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\liminf _{n \rightarrow \infty} \mu\left(B_{n}\right)
$$

and $B_{n} \subset A_{n}$ so $\mu\left(B_{n}\right) \leq \mu\left(A_{n}\right)$ which means that $\mu(B) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$. For the second part let $B_{n}=\cup_{n=m}^{\infty} A_{n}$ and note that $A=\cap_{n=1}^{\infty} B_{n}$. Since $\mu\left(B_{1}\right)<\infty$ and for all n we have that $B_{n} \supseteq B_{n+1}$ we know

$$
\mu(A)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\limsup _{n \rightarrow \infty} \mu\left(B_{n}\right) .
$$

However $B_{n} \supseteq A_{n}$ and so $\mu\left(B_{n}\right) \geq \mu\left(A_{n}\right)$ which means that $\mu(A) \geq$ $\lim \sup _{n \rightarrow \infty} \mu\left(A_{n}\right)$. We now show that this inequality may fail if $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\infty$. For example consider the measure space (R, \mathbb{B}, λ) and the sets $A_{n}=[n-1, n]$. We have that $\lambda\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lambda(\emptyset)=$ 0 but $\lim \sup _{n \rightarrow \infty} \lambda\left(A_{n}\right)=\lim \sup _{n \rightarrow \infty} 1=1$.
8. Take a trivial σ-algebra consisting of Ω and \emptyset and define a measure to be $\mu(\Omega)=\mu(\emptyset)=0$. It's clear that this measure space is not complete.
9. Either use additivity of the integral or a put ϕ is a standard form by constructing disjoint sets.
10. Trivial.
11. Borel measurbility of f follows directly from the definition (consider sets $\left.A_{\alpha}=\{x: f(x)>\alpha\}\right)$. To compute the integral we notice that

$$
\int_{0}^{1} f d \mu=\sum_{n=1}^{\infty} n \frac{2^{n-1}}{3^{n}}=3
$$

12. Let $\epsilon>0$ and let $N \geq \frac{1}{\epsilon}$. We have that for $n \geq N$

$$
\sup _{x \in \mathbb{R}}\left\{\left|f_{n}(x)-f(x)\right|\right\}=\sup _{x \in \mathbb{R}}\left\{f_{n}(x)\right\} \leq \frac{1}{n} \leq \epsilon .
$$

So $f_{n} \rightarrow 0$ uniformly. However

$$
\int f_{n} \mathrm{~d} \lambda=\frac{1}{n} \lambda([0, n])=1
$$

and $\int f \mathrm{~d} \lambda=0$. This does not contradict the Monotone convergence theorem since $f_{1}(1)=1<f_{2}(1)=1 / 2$ which means that $f_{n}(x)$ is not a monotone increasing sequence for all values of x. Yes Fatou's Lemma does apply, we have

$$
0=\int \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} \lambda \leq 1=\liminf \int f_{n}(x) \mathrm{d} \lambda .
$$

13. Fix $\epsilon>0$ and choose N such that for all $n \geq N$ we have that $\sup _{x \in X}\left|f_{n}(x)-f(x)\right| \leq \epsilon / \mu(X)$. We have that for $n \geq N$

$$
\int f_{n} \mathrm{~d} \mu \leq \int(f+\epsilon / \mu(X)) \mathrm{d} \mu
$$

which means that since $\int \epsilon / \mu(X) \mathrm{d} \mu(x)=\epsilon$

$$
\int f_{n} \mathrm{~d} \mu \leq \int f \mathrm{~d} \mu+\epsilon
$$

We also have

$$
\int f \mathrm{~d} \mu \leq \int\left(f_{n}+\epsilon / \mu(X)\right) \mathrm{d} \mu
$$

which means that

$$
\int f_{n} \mathrm{~d} \mu \geq \int f \mathrm{~d} \mu-\epsilon
$$

The result follows.

