MTI Exercises 3: Solutions

1. Use Chebyshev's inequality.
2. Was shown in lectures. Use Theorem 4.14 from the notes for $|f|$.
3. Use previous result.
4. For $f \geq 0$ by Lemma 2.15 we have a monotone sequence of simple functions $\phi_{n} \rightarrow f$ and $\phi_{1} \leq \ldots \leq \phi_{n} \leq \phi_{n+1} \leq \ldots \leq f$. Using MCT we have that for any $\epsilon>0$ there exists N such that for all $n>N$

$$
\left|\int \phi_{n} d \mu-\int f d \mu\right|<\epsilon
$$

Splitting general f into a difference of f_{+}and f_{-}gives the result.
5. A variation of the problem considered in lectures.
6. Fix $\epsilon>0$ and choose N such that for all $n \geq N$ we have that $\sup _{x \in X}\left|f_{n}(x)-f(x)\right| \leq \epsilon / \mu(X)$. We have that for $n \geq N$

$$
\int f_{n} \mathrm{~d} \mu \leq \int(f+\epsilon / \mu(X)) \mathrm{d} \mu
$$

which means that since $\int \epsilon / \mu(X) \mathrm{d} \mu(x)=\epsilon$

$$
\int f_{n} \mathrm{~d} \mu \leq \int f \mathrm{~d} \mu+\epsilon
$$

We also have

$$
\int f \mathrm{~d} \mu \leq \int\left(f_{n}+\epsilon / \mu(X)\right) \mathrm{d} \mu
$$

which means that

$$
\int f_{n} \mathrm{~d} \mu \geq \int f \mathrm{~d} \mu-\epsilon
$$

The result follows.
If $\mu(\Omega)=\infty$ then take $f_{n}=1 / n$ on the interval $[n, 2 n]$ and 0 outside, and see the contradiction.
7. We use two results here - MCT and DCT. It's trivial to show that $\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|f_{n}\right|=\sum_{n=1}^{\infty}\left|f_{n}\right| \equiv g \in M^{+}$. Using MCT we know that

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu=\lim _{N \rightarrow \infty} \int_{X} \sum_{n=1}^{N}\left|f_{n}\right| d \mu=\int_{X} g d \mu .
$$

Therefore $g \in L$. Now since $\sum_{n=1}^{\infty}\left|f_{n}\right| \rightarrow g \in L$ we have $\left|\sum_{n} f_{n}\right| \leq$ $g<\infty$ a.e. (since $g \in L$) and hence $\sum_{n} f_{n}=f \in L$. Using DCT we obtain the result.
8. Trivial as $\left|\int_{X}\right| f\left|d \mu-\int_{X}\right| g|d \mu| \leq \int_{X}|f-g| d \mu$.

