
MTI Exercises 5: Solutions

1. (i) The inequality 0 ≤ t
1+tα ≤ 1 is trivial if you consider case 0 ≤ t ≤ 1

and t > 1 separately. Now we can show that
∣∣∣ nx sinx1+(nx)α

∣∣∣ → 0 for all

x ∈ [0, 2π] and use DCT.

(ii) The inequality is trivial to show by comparing derivatives. After
that one can use DCT to obtain the result.

2. We know that fn(x) → H(x), where H(x) is an appropriate step
function. Using DCT it is clear that N1(fn − f)→ 0 and hence {fn}
is Cauchy in N1. However, we see that the limit is discontinuous.

3. Trivial using properties of the norm.

4. For p = 1 we did it in problem 4, HW3. If 1 < p < ∞ we do exactly
the same argument and use DCT. When p = ∞ we use the fact that
−C ≤ f(x) ≤ C in X (trivial modification is needed for a.e.) and then
define

φn(x) =
m

n
on Anm = {x ∈ X : m/n ≤ f(x) < (m+ 1)/n},

where n ∈ N, −Cn ≤ m ≤ Cn. It is clear that each fn is simple and
|fn(x)− f(x)| ≤ 1

n .

5. We have that ∫
|f |pdµ =

∞∑
n=1

√
n
p

n2
=

∞∑
n=1

np/2−2.

Thus f ∈ Lp if and only if (p/2− 2) < −1 which happens if and only
if 1 ≤ p < 2.

For the second part we take f(n) = n1/p0/ log(n)2. We then have that∫
|f |p =

∞∑
n=1

(n2−p/p0(log n)2p)−1.

Thus if p > p0 we have that p/p0 > 1 and∫
|f |p =

∞∑
n=1

(n2−p/p0(log n)2p)−1 =∞

and if p < p0 then∫
|f |p =

∞∑
n=1

(n2−p/p0(log n)2p)−1 <∞.
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Moreover for p = p0∫
|f |p0 =

∞∑
n=1

(n(log n)2p0)−1 <∞.

6. Firstly for k ∈ N let Fk = {x : |f(x)| < k} and note that∫
|f |dµ = lim

k→∞

∫
|f |χFkdµ. (1)

If we let φk =
∑k

n=1(n− 1)χEn and ψk =
∑k

n=1 nχEn then

k∑
n=1

(n− 1)µ(En) =

∫
φkdµ ≤

∫
|f |χFkdµ ≤

∫
ψkdµ =

k∑
n=1

nµ(En).

Thus applying equation (1) we have that

∞∑
n=1

(n− 1)µ(En) ≤
∫
|f |dµ ≤

∞∑
n=1

nµ(En)

and the result follows. Extension to Lp is trivial.

7. Let q satisfy that 1
p + 1

q = 1
r . Since f ∈ Lp and 1 ∈ Lq (µ(X) < ∞)

we can apply Corollary 6.10 from the notes to get that f = f · 1 ∈ Lr
and

‖f‖r ≤ ‖1‖q‖f‖p = µ(X)1/q‖f‖p = µ(X)1/r−1/p‖f‖p.

8. Since f ∈ Lp with respect to counting measure we have that
∑∞

n=1 |f(n)|p <
∞. Thus there exists N such that for all n ≥ N |f(n)| < 1 and so
|f(n)|p ≥ |f(n)|s. Therefore∫

|f |s =

∞∑
n=1

|f(n)|s ≤
N∑
n=1

|f(n)|s +

∞∑
n=N+1

|f(n)|p <∞.

9. For p = 2 it is easy to integrate. For p 6= 2 we see that there is a blow
up of the integral either near 0 or at ∞.

10. Fix p1 ≤ p ≤ p2 and α such that α/p1 + (1 − α)/p2 = 1/p. We then
have that fα ∈ Lp1/α and f1−α ∈ Lp2/α. Thus we can apply Corollary
6.10 from the notes to see that f = fαf1−α ∈ Lp and

‖f‖p ≤ ‖fα‖p1‖f1−α‖p2 .

11. Use Holder inequality to show that F (x) ≤
(∫ x

0 f
pdm

)1/p
x1/q. For

x→∞ result follows from the fact that f ∈ Lp. For x→ 0 it follows
from the fact that

∫ x
0 f

pdm→ 0.
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12. Since ‖f‖ > A we know that there exists a > 0 such that ‖f‖ = A+a.
Let’s argue by contradiction, assume that µ({x ∈ X : |f(x)| > A}) =
0. Then we know that |f(x)| ≤ A a.e x ∈ X but then ‖f‖ ≤ A and
we get a contradiction.

13. Since g ∈ L∞ we know that if we let

A = {x : |g(x)| > ‖g‖∞}

then µ(A) = 0. Thus∫
|fg|pdµ =

∫
Ac
|fg|p ≤ ‖g‖p∞

∫
|f |pdµ <∞

and taking the pth root yields that

‖fg‖p ≤ ‖g‖∞‖f‖p.

14. (a) First suppose that µ(X) < ∞ and f ∈ L∞. Thus there exists
K > 0 and A ∈ X such that µ(Ac) = 0 and for all x ∈ A we have
that |f(x)| ≤ K. This means that∫

|f |dµ ≤
∫
A
|f |dµ+

∫
Ac
|f |dµ ≤ Kµ(X) + 0 <∞

and so f ∈ L1. On the other hand if µ(X) =∞ then 1 ∈ L∞ but∫
|1|dµ =∞ and so 1 /∈ L1.

(b) Let f ∈ L∞. We know that

µ({x : |f(x)| > ‖f‖∞}) = 0

and so (∫
|f |p

)1/p

≤ ‖f‖∞.

On the other hand for any ε > 0 there exists δ > 0 such that

µ({x : |f | > ‖f‖∞ − ε}) > δ.

Therefore(∫
|f |p

)1/p

≥ (δ(‖f‖∞ − ε)p)1/p = δ1/p(‖f‖∞ − ε).

Thus for any ε > 0 we have that

lim inf
p→∞

‖f‖p ≥ ‖f‖∞ − ε

and the proof is complete.

15. Use estimate on sinx in terms of a linear function.
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