MTI Exercises 5: Solutions

1. (i) The inequality $0 \leq \frac{t}{1+t^{\alpha}} \leq 1$ is trivial if you consider case $0 \leq t \leq 1$ and $t>1$ separately. Now we can show that $\left|\frac{n x \sin x}{1+(n x)^{\alpha}}\right| \rightarrow 0$ for all $x \in[0,2 \pi]$ and use DCT.
(ii) The inequality is trivial to show by comparing derivatives. After that one can use DCT to obtain the result.
2. We know that $f_{n}(x) \rightarrow H(x)$, where $H(x)$ is an appropriate step function. Using DCT it is clear that $N_{1}\left(f_{n}-f\right) \rightarrow 0$ and hence $\left\{f_{n}\right\}$ is Cauchy in N_{1}. However, we see that the limit is discontinuous.
3. Trivial using properties of the norm.
4. For $p=1$ we did it in problem 4, HW3. If $1<p<\infty$ we do exactly the same argument and use DCT. When $p=\infty$ we use the fact that $-C \leq f(x) \leq C$ in X (trivial modification is needed for a.e.) and then define

$$
\phi_{n}(x)=\frac{m}{n} \text { on } A_{m}^{n}=\{x \in X: m / n \leq f(x)<(m+1) / n\},
$$

where $n \in \mathbb{N},-C n \leq m \leq C n$. It is clear that each f_{n} is simple and $\left|f_{n}(x)-f(x)\right| \leq \frac{1}{n}$.
5. We have that

$$
\int|f|^{p} \mathrm{~d} \mu=\sum_{n=1}^{\infty} \frac{\sqrt{n}^{p}}{n^{2}}=\sum_{n=1}^{\infty} n^{p / 2-2} .
$$

Thus $f \in L_{p}$ if and only if $(p / 2-2)<-1$ which happens if and only if $1 \leq p<2$.
For the second part we take $f(n)=n^{1 / p_{0}} / \log (n)^{2}$. We then have that

$$
\int|f|^{p}=\sum_{n=1}^{\infty}\left(n^{2-p / p_{0}}(\log n)^{2 p}\right)^{-1} .
$$

Thus if $p>p_{0}$ we have that $p / p_{0}>1$ and

$$
\int|f|^{p}=\sum_{n=1}^{\infty}\left(n^{2-p / p_{0}}(\log n)^{2 p}\right)^{-1}=\infty
$$

and if $p<p_{0}$ then

$$
\int|f|^{p}=\sum_{n=1}^{\infty}\left(n^{2-p / p_{0}}(\log n)^{2 p}\right)^{-1}<\infty .
$$

Moreover for $p=p_{0}$

$$
\int|f|^{p_{0}}=\sum_{n=1}^{\infty}\left(n(\log n)^{2 p_{0}}\right)^{-1}<\infty
$$

6. Firstly for $k \in \mathbb{N}$ let $F_{k}=\{x:|f(x)|<k\}$ and note that

$$
\begin{equation*}
\int|f| \mathrm{d} \mu=\lim _{k \rightarrow \infty} \int|f| \chi_{F_{k}} \mathrm{~d} \mu \tag{1}
\end{equation*}
$$

If we let $\phi_{k}=\sum_{n=1}^{k}(n-1) \chi_{E_{n}}$ and $\psi_{k}=\sum_{n=1}^{k} n \chi_{E_{n}}$ then

$$
\sum_{n=1}^{k}(n-1) \mu\left(E_{n}\right)=\int \phi_{k} \mathrm{~d} \mu \leq \int|f| \chi_{F_{k}} \mathrm{~d} \mu \leq \int \psi_{k} \mathrm{~d} \mu=\sum_{n=1}^{k} n \mu\left(E_{n}\right)
$$

Thus applying equation (1) we have that

$$
\sum_{n=1}^{\infty}(n-1) \mu\left(E_{n}\right) \leq \int|f| \mathrm{d} \mu \leq \sum_{n=1}^{\infty} n \mu\left(E_{n}\right)
$$

and the result follows. Extension to L^{p} is trivial.
7. Let q satisfy that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Since $f \in L_{p}$ and $1 \in L_{q}(\mu(X)<\infty)$ we can apply Corollary 6.10 from the notes to get that $f=f \cdot 1 \in L_{r}$ and

$$
\|f\|_{r} \leq\|1\|_{q}\|f\|_{p}=\mu(X)^{1 / q}\|f\|_{p}=\mu(X)^{1 / r-1 / p}\|f\|_{p}
$$

8. Since $f \in L_{p}$ with respect to counting measure we have that $\sum_{n=1}^{\infty}|f(n)|^{p}<$ ∞. Thus there exists N such that for all $n \geq N|f(n)|<1$ and so $|f(n)|^{p} \geq|f(n)|^{s}$. Therefore

$$
\int|f|^{s}=\sum_{n=1}^{\infty}|f(n)|^{s} \leq \sum_{n=1}^{N}|f(n)|^{s}+\sum_{n=N+1}^{\infty}|f(n)|^{p}<\infty
$$

9. For $p=2$ it is easy to integrate. For $p \neq 2$ we see that there is a blow up of the integral either near 0 or at ∞.
10. Fix $p_{1} \leq p \leq p_{2}$ and α such that $\alpha / p_{1}+(1-\alpha) / p_{2}=1 / p$. We then have that $f^{\alpha} \in L_{p_{1} / \alpha}$ and $f^{1-\alpha} \in L_{p_{2} / \alpha}$. Thus we can apply Corollary 6.10 from the notes to see that $f=f^{\alpha} f^{1-\alpha} \in L_{p}$ and

$$
\|f\|_{p} \leq\left\|f^{\alpha}\right\|_{p_{1}}\left\|f^{1-\alpha}\right\|_{p_{2}}
$$

11. Use Holder inequality to show that $F(x) \leq\left(\int_{0}^{x} f^{p} d m\right)^{1 / p} x^{1 / q}$. For $x \rightarrow \infty$ result follows from the fact that $f \in L^{p}$. For $x \rightarrow 0$ it follows from the fact that $\int_{0}^{x} f^{p} d m \rightarrow 0$.
12. Since $\|f\|>A$ we know that there exists $a>0$ such that $\|f\|=A+a$. Let's argue by contradiction, assume that $\mu(\{x \in X:|f(x)|>A\})=$ 0 . Then we know that $|f(x)| \leq A$ a.e $x \in X$ but then $\|f\| \leq A$ and we get a contradiction.
13. Since $g \in L_{\infty}$ we know that if we let

$$
A=\left\{x:|g(x)|>\|g\|_{\infty}\right\}
$$

then $\mu(A)=0$. Thus

$$
\int|f g|^{p} \mathrm{~d} \mu=\int_{A^{c}}|f g|^{p} \leq\|g\|_{\infty}^{p} \int|f|^{p} \mathrm{~d} \mu<\infty
$$

and taking the p th root yields that

$$
\|f g\|_{p} \leq\|g\|_{\infty}\|f\|_{p}
$$

14. (a) First suppose that $\mu(X)<\infty$ and $f \in L_{\infty}$. Thus there exists $K>0$ and $A \in \mathbb{X}$ such that $\mu\left(A^{c}\right)=0$ and for all $x \in A$ we have that $|f(x)| \leq K$. This means that

$$
\int|f| \mathrm{d} \mu \leq \int_{A}|f| \mathrm{d} \mu+\int_{A^{c}}|f| \mathrm{d} \mu \leq K \mu(X)+0<\infty
$$

and so $f \in L_{1}$. On the other hand if $\mu(X)=\infty$ then $1 \in L_{\infty}$ but $\int|1| \mathrm{d} \mu=\infty$ and so $1 \notin L_{1}$.
(b) Let $f \in L_{\infty}$. We know that

$$
\mu\left(\left\{x:|f(x)|>\|f\|_{\infty}\right\}\right)=0
$$

and so

$$
\left(\int|f|^{p}\right)^{1 / p} \leq\|f\|_{\infty}
$$

On the other hand for any $\epsilon>0$ there exists $\delta>0$ such that

$$
\mu\left(\left\{x:|f|>\|f\|_{\infty}-\epsilon\right\}\right)>\delta
$$

Therefore

$$
\left(\int|f|^{p}\right)^{1 / p} \geq\left(\delta\left(\|f\|_{\infty}-\epsilon\right)^{p}\right)^{1 / p}=\delta^{1 / p}\left(\|f\|_{\infty}-\epsilon\right)
$$

Thus for any $\epsilon>0$ we have that

$$
\liminf _{p \rightarrow \infty}\|f\|_{p} \geq\|f\|_{\infty}-\epsilon
$$

and the proof is complete.
15. Use estimate on $\sin x$ in terms of a linear function.

