MTI Exercises 6: Solutions

1. Take a sequence f,(z) =1 on (n,n+1) and 0 otherwise. Clearly there
is a.e. convergence but no convergence in measure.

2. See Corollary 7.6. in the lecture notes.

Second part. Let a,e > 0 and note we can fix N such that for all
n > N we have that

pl = [fu(z) — f(2)] > a/2} <e€/2.
By the triangle inequality if we take n,m > N then
{2 [fa(@)=fm(@)] > a} C{z: [f(2)—fu(@)] > a/2}0{z : | f(2)— fin(2)] > a/2}.

Thus
;L({l‘ : |fn(x) - fm| > a}) <e

It follows that f, is Cauchy in measure.

3. a) Let ¢ > 0. We have that by the triangle inequality

{z : afu(z) + bgn(z) — af () —bg(x)| > c}
C{z - al[f(x) = fu(2)] > ¢/2} Uz - [bllg(x) — gn(2)] > ¢/2}.

However since f, — f in measure and g, — g in measure we can
see that

Tim_p({a < [al f(@)— fa(@)] > ¢/2)) = lim p({z : Plla(e)—ga(x)] > c/2}) = 0.
Thus
Jim ju({a  af(2) + by () = of (@) = b(a)| > ¢}) = 0.

b) We have ||fn(x)| — | f(z)|| < |fu(x) — f(x)| and therefore for any
a>0

{z: [fa(@)] = [f(@)]] > a} € {z: |fu(z) = f(2)] > a}

and the result immediately follows since then

pl{z Al fn@)|=[f (@) > a}) < p({z - [fo(2)=f(2)] > a}) = 0 as n — oc.



4. We observe {|fngn — fgl > 3} C {|fn = fllgn — gl > e U{[fn = Fllgl >
e} U{|f|lgn — g| > €}. For any set A we have

1({[fngn — fal > 3€}) < w(A) + p({fo — fllgn — gl > e} N A)
+u({|fn — fllgl > e NV A) + p({] fllgn — gl > e} N A)

It’s clear that for every § > 0 there exists N > 0 such that u({|f| >
N} + p({lg] > N}) < 6. We take

A=A{[fI<N}n{lgl <N}

It is now clear that

1({ fugn — fal > 3¢*}) <6+ u({|fa — fllgn — gl > €})
+ u({|fn = f1 > ¢/N}) + u({lgn — g > ¢/N}).

The claim follows.

5. i. Let A € X such that for all z € A we have that lim f,,(z) = f(z)
and p(A€) = 0. Therefore lim, o fnxa = fxa and so by the
Standard Fatou’s lemma and the fact that u(A¢) =0

/fd,u:/fXAduglinlinf/anAduzliniinf/fnd,u.

ii. Take a subsequence g, of f,, such that limy_, [ ggdp = liminf,, s [ frdp.
We then know that g; converges to f in measure and so by Theo-
rem 7.5 there exists a subsequence h; of g such that lim hy(z) =
f(z) p almost everywhere. Therefore by the previous part

liminf/fndu: lim /hlduZ/fdu.
n—r00 l—00

6. Suppose f, converges in measure to f and |f,| < g for all n where
g € L(X). We can find a subsequence gi of f, such that g tends
to f w almost everywhere so the standard Dominated Convergence
Theorem tells us that f € L. Now we suppose that lim [ f,du # [ fdu
and so we can find an € > 0 and a subsequence g of f, such that
U fndp— [ fd,u‘ > € for all n. However g; converges to f in measure
so we can find a subsequence of gy, h; for which lim;_, hy(z) = f(z)
for p a.e. x and |hy| < g. Therefore by the standard dominated
convergence theorem we have that lim;_,o [ hydp = [ hdp but this is
a contradiction.

7. Fix a,e > 0 we can find N such that for n > N we have that the set

A=Az [fu(z) - f(2)| > a}



10.

satisfies u(A) < e. Thus for n > N we can write

_ [ =t
r(fn—f)—/1+‘fn_fd,uS/ACad,u—l—/Ald,u

and so
r(fn— f) <au(X)+e.
The result follows since a, € can be chosen arbitrarily small.

Now if limy, oo 7(fn — f) then [|f, — f|du = 0 and so we can see that
fn converges in measure to f.

If f, — fin LP? then {f,} is Cauchy in LP, meaning that || f,,— fm| — 0
as n,m — oo. Therefore, we have || f, — fn,|| = 0 as n,k — oco. Since
fne = ¢ in L, we have that ||f — g|| = 0.

Example was given in lectures. Take a cyclic sequence on [0, 1]: fi(x) =

x(0,1/2], fo(z) = [1/2,1], fs(z) = [0,1/3], fa(z) = [1/3,2/3], fs5(x) =
2/3,1], ...

Fix a > 0. We then let A = {x € X : |Y(z) — | > a}. We then have
that

o? = / Y — p)?dP > / Y — p?dP > o’P(A).
A

Thus P(A4) < g—i which is exactly what we needed to prove.



