## MTI Exercises 6: Solutions

1. Take a sequence $f_{n}(x)=1$ on $(n, n+1)$ and 0 otherwise. Clearly there is a.e. convergence but no convergence in measure.
2. See Corollary 7.6. in the lecture notes.

Second part. Let $a, \epsilon>0$ and note we can fix $N$ such that for all $n>N$ we have that

$$
\mu\left\{x:\left|f_{n}(x)-f(x)\right|>a / 2\right\}<\epsilon / 2
$$

By the triangle inequality if we take $n, m>N$ then

$$
\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>a\right\} \subset\left\{x:\left|f(x)-f_{n}(x)\right|>a / 2\right\} \cup\left\{x:\left|f(x)-f_{m}(x)\right|>a / 2\right\}
$$

Thus

$$
\mu\left(\left\{x:\left|f_{n}(x)-f_{m}\right|>a\right\}\right)<\epsilon
$$

It follows that $f_{n}$ is Cauchy in measure.
3. a) Let $c>0$. We have that by the triangle inequality

$$
\begin{aligned}
& \left\{x:\left|a f_{n}(x)+b g_{n}(x)-a f(x)-b g(x)\right|>c\right\} \\
& \subset\left\{x:|a|\left|f(x)-f_{n}(x)\right|>c / 2\right\} \cup\left\{x:|b|\left|g(x)-g_{n}(x)\right|>c / 2\right\}
\end{aligned}
$$

However since $f_{n} \rightarrow f$ in measure and $g_{n} \rightarrow g$ in measure we can see that
$\lim _{n \rightarrow \infty} \mu\left(\left\{x:|a|\left|f(x)-f_{n}(x)\right|>c / 2\right\}\right)=\lim _{n \rightarrow \infty} \mu\left(\left\{x:|b|\left|g(x)-g_{n}(x)\right|>c / 2\right\}\right)=0$.
Thus

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x:\left|a f_{n}(x)+b g_{n}(x)-a f(x)-b g(x)\right|>c\right\}\right)=0
$$

b) We have $\left|\left|f_{n}(x)\right|-|f(x)|\right| \leq\left|f_{n}(x)-f(x)\right|$ and therefore for any $a>0$

$$
\left\{x:\left\|f_{n}(x)|-| f(x)\right\|>a\right\} \subseteq\left\{x:\left|f_{n}(x)-f(x)\right|>a\right\}
$$

and the result immediately follows since then
$\mu\left(\left\{x:\left|\left|f_{n}(x)\right|-|f(x)|\right|>a\right\}\right) \leq \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>a\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$.
4. We observe $\left\{\left|f_{n} g_{n}-f g\right|>3 \epsilon\right\} \subset\left\{\left|f_{n}-f\right|\left|g_{n}-g\right|>\epsilon\right\} \cup\left\{\left|f_{n}-f\right||g|>\right.$ $\epsilon\} \cup\left\{|f|\left|g_{n}-g\right|>\epsilon\right\}$. For any set $A$ we have

$$
\begin{array}{r}
\mu\left(\left\{\left|f_{n} g_{n}-f g\right|>3 \epsilon\right\}\right) \leq \mu\left(A^{c}\right)+\mu\left(\left\{\left|f_{n}-f\right|\left|g_{n}-g\right|>\epsilon\right\} \cap A\right) \\
+\mu\left(\left\{\left|f_{n}-f\right||g|>\epsilon\right\} \cap A\right)+\mu\left(\left\{|f|\left|g_{n}-g\right|>\epsilon\right\} \cap A\right)
\end{array}
$$

It's clear that for every $\delta>0$ there exists $N>0$ such that $\mu(\{|f|>$ $N\})+\mu(\{|g|>N\})<\delta$. We take

$$
A=\{|f| \leq N\} \cap\{|g| \leq N\} .
$$

It is now clear that

$$
\begin{aligned}
& \mu\left(\left\{\left|f_{n} g_{n}-f g\right|>3 \epsilon^{2}\right\}\right) \leq \delta+\mu\left(\left\{\left|f_{n}-f\right|\left|g_{n}-g\right|>\epsilon\right\}\right) \\
&+\mu\left(\left\{\left|f_{n}-f\right|>\epsilon / N\right\}\right)+\mu\left(\left\{\left|g_{n}-g\right|>\epsilon / N\right\}\right) .
\end{aligned}
$$

The claim follows.
5. i. Let $A \in X$ such that for all $x \in A$ we have that $\lim f_{n}(x)=f(x)$ and $\mu\left(A^{c}\right)=0$. Therefore $\lim _{n \rightarrow \infty} f_{n} \chi_{A}=f \chi_{A}$ and so by the Standard Fatou's lemma and the fact that $\mu\left(A^{c}\right)=0$

$$
\int f \mathrm{~d} \mu=\int f \chi_{A} \mathrm{~d} \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} \chi_{A} \mathrm{~d} \mu=\liminf _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \mu .
$$

ii. Take a subsequence $g_{k}$ of $f_{n}$ such that $\lim _{k \rightarrow \infty} \int g_{k} \mathrm{~d} \mu=\liminf _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \mu$. We then know that $g_{k}$ converges to $f$ in measure and so by Theorem 7.5 there exists a subsequence $h_{l}$ of $g_{k}$ such that $\lim h_{l}(x)=$ $f(x) \mu$ almost everywhere. Therefore by the previous part

$$
\liminf _{n \rightarrow \infty} \int f_{n} \mathrm{~d} \mu=\lim _{l \rightarrow \infty} \int h_{l} \mathrm{~d} \mu \geq \int f \mathrm{~d} \mu .
$$

6. Suppose $f_{n}$ converges in measure to $f$ and $\left|f_{n}\right| \leq g$ for all $n$ where $g \in L(X)$. We can find a subsequence $g_{k}$ of $f_{n}$ such that $g_{k}$ tends to $f \mu$ almost everywhere so the standard Dominated Convergence Theorem tells us that $f \in L$. Now we suppose that $\lim \int f_{n} \mathrm{~d} \mu \neq \int f \mathrm{~d} \mu$ and so we can find an $\epsilon>0$ and a subsequence $g_{k}$ of $f_{n}$ such that $\left|\int f_{n} \mathrm{~d} \mu-\int f \mathrm{~d} \mu\right|>\epsilon$ for all $n$. However $g_{k}$ converges to $f$ in measure so we can find a subsequence of $g_{k}, h_{l}$ for which $\lim _{l \rightarrow \infty} h_{l}(x)=f(x)$ for $\mu$ a.e. $\quad x$ and $\left|h_{l}\right| \leq g$. Therefore by the standard dominated convergence theorem we have that $\lim _{l \rightarrow \infty} \int h_{l} \mathrm{~d} \mu=\int h \mathrm{~d} \mu$ but this is a contradiction.
7. Fix $a, \epsilon>0$ we can find $N$ such that for $n>N$ we have that the set

$$
A:=\left\{x:\left|f_{n}(x)-f(x)\right|>a\right\}
$$

satisfies $\mu(A) \leq \epsilon$. Thus for $n>N$ we can write

$$
r\left(f_{n}-f\right)=\int \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} \mathrm{d} \mu \leq \int_{A^{c}} a \mathrm{~d} \mu+\int_{A} 1 \mathrm{~d} \mu
$$

and so

$$
r\left(f_{n}-f\right) \leq a \mu(X)+\epsilon .
$$

The result follows since $a, \epsilon$ can be chosen arbitrarily small.
Now if $\lim _{n \rightarrow \infty} r\left(f_{n}-f\right)$ then $\int\left|f_{n}-f\right| \mathrm{d} \mu=0$ and so we can see that $f_{n}$ converges in measure to $f$.
8. If $f_{n} \rightarrow f$ in $L^{p}$ then $\left\{f_{n}\right\}$ is Cauchy in $L^{p}$, meaning that $\left\|f_{n}-f_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$. Therefore, we have $\left\|f_{n}-f_{n_{k}}\right\| \rightarrow 0$ as $n, k \rightarrow \infty$. Since $f_{n_{k}} \rightarrow g$ in $L_{p}$ we have that $\|f-g\|=0$.
9. Example was given in lectures. Take a cyclic sequence on $[0,1]: f_{1}(x)=$ $\left.\chi_{[ } 0,1 / 2\right], f_{2}(x)=[1 / 2,1], f_{3}(x)=[0,1 / 3], f_{4}(x)=[1 / 3,2 / 3], f_{5}(x)=$ $[2 / 3,1], \ldots$
10. Fix $\alpha>0$. We then let $A=\{x \in X:|Y(x)-\mu| \geq \alpha\}$. We then have that

$$
\sigma^{2}=\int|Y-\mu|^{2} d \mathbb{P} \geq \int_{A}|Y-\mu|^{2} d \mathbb{P} \geq \alpha^{2} \mathbb{P}(A)
$$

Thus $\mathbb{P}(A) \leq \frac{\sigma^{2}}{\alpha^{2}}$ which is exactly what we needed to prove.

