
MTI Exercises 6: Solutions

1. We can prove these results anologously to the corresponding results
for measures. For part a) We let E0 = ∅ and note that the sets
An = En\En−1 are disjoint. We have that

ν(En) = ν(En−1) + ν(En\En−1)

and so
ν(En\En−1) = ν(En)− ν(En−1).

Thus since E = ∪∞n=1En = ∪∞n=1An and the sets An are disjoint.

ν
∞∑
n=1

ν(An) =
∞∑
n=1

ν(En)− ν(En−1) = lim
n→∞

ν(En).

For part b) we let B0 = X and Bn = Fn−1\Fn for n ∈ N. Again we
can see these sets are disjoint, that ν(Bn) = ν(Fn−1 − ν(Fn)) and we
will have that F c = ∪∞n=1Bn. Thus

ν(F c) =

∞∑
n=1

ν(Bn) = ν(X)− lim
n→∞

ν(Bn)

and thus ν(F ) = ν(X)− ν(F c) = limn→∞ ν(Bn).

2. Let N,P be the Hahn decomposition for ν. We have that

ν+(E) = ν(E ∩ P ) ≤ sup{ν(F ) : F ⊂ E}

On the other hand if F ⊂ E then

ν(F ) = ν(F ∩ P ) + ν(F ∩N)

and since ν(F ∩N) ≤ 0 we have

ν(F ) ≤ ν(F ∩ P ) = ν+(F ) ≤ ν+(E).

Now take the supremum over all measurable sets F to get

ν+(E) = {ν(F ) : F ⊂ E}.

3. First suppose that µ(E ∩ {x ∈ X : f(x) 6= 0}) = 0 and let B = {x ∈
X : f(x) 6= 0. Then for A ⊂ E we have that

ν(A) =

∫
A
fdµ =

∫
B∩A

fdµ+

∫
Bc∩A

fdµ = 0 + 0
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since µ(B ∩A) = 0 and f(x) = 0 for all x ∈ Bc. Thus E is a null set.

On the other hand suppose that E is a null set. Then consider B+ =
E ∩ {x ∈ X : f(x) > 0}. We have that

∫
B+ fdµ = 0 since E is a null

set. Thus since f is non-negative on E we must have that f(x) = 0 for
µ-almost all x ∈ B+ but since no x ∈ E satisfy this we must have that
µ(B+) = 0. Now consider B− = E ∩ {x ∈ X : f(x) < 0}. We have
that

∫
B− −fdµ = 0 and thus we must have that µ(B−) = 0. Putting

this together gives that

0 = µ(B− ∪B+) = µ(E ∩ {x ∈ X : f(x) 6= 0}) = 0.

4. We use the definition of ν to find its Hahn decomposition directly. Let

P = {x ∈ X : f(x) > 0} and N = P c.

If E ∈ X then ν(E∩P ) =
∫
E∩P fdµ ≥ 0 and ν(E∩N) =

∫
E∩N fdν ≤

0. So P and N give a Hahn decomposition for ν. Moreover for x ∈ P
we have that f−(x) = 0 and for x ∈ N we have that f+(x) = 0.
Therefore for all A ∈ X

ν+(A) =

∫
A
f+dµ and ν−(A) =

∫
f−dµ.

5. We have that xe−x
2
> 0 if and only if x > 0. So we take P = (0,∞)

and N = (−∞, 0] (it does not matter which set we choose to put 0 in).

6. Let φ ∈ M+ be a simple function, written as
∑n

i=1 ciχAi in standard
form. We have that by the Radon-Nikodým Theorem∫

φdν =
n∑
i=1

ciν(Ai) =
n∑
i=1

ci

∫
Ai

fdµ =

∫
φfdµ.

So the result holds for all non-negative simple functions. We now let
g ∈ M+ and φn a sequence of non-negative functions which converge
monotonically to g. By applying the monotone convergence theorem
twice (to φn and to fφn) we get that∫

gfdµ = lim
n→∞

∫
φnfdµ = lim

n→∞

∫
φndν =

∫
fdν.

7. For the first part we let A ∈ X with µ(A) = 0. We then know that
λ(A) = 0 since λ is absolutely continuous with respect to µ and thus
ν(A) = 0 since ν is absolutely continuous with respect to λ.

For the second part let h = dν
dµ , f = dν

dλ and g = dλ
dµ . Let A ∈ X and

use the result from question 5 and Radon-Nikodým to get that∫
A
hdµ = ν(A) =

∫
A
fdλ =

∫
A
fgdµ.
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This holds for all A ∈ X and so in particular holds for the measurable
set {x ∈ X : h(x) 6= fg(x)}. Thus

µ({x ∈ X : h(x) 6= fg(x)} = 0

which completes the proof.

8. For E ∈ B we define ν2(E) = ν(E∩(−∞, 0]) and ν1(E) = (E∩(0,∞)).
We can see straight away that ν = ν1+ν2. We have that µ((0,∞)) = 0
and ν1((−∞, 0]) = 0 so µ and ν1 are mutually singular. On the other
hand if µ(A) = 0 for A ∈ B then since g(x) > 0 for all x ≤ 0 we know
that λ(A ∩ (−∞, 0)) = 0. This means that

ν2(A) =

∫
A∩(−∞,0)

fdλ = 0.

Thus ν2 is absolutely continuous with respect to µ and ν1 and ν2 is
the Lebesgue decomposition with respect to µ for ν.

9. First suppose that f is non-negative. Let ν be the measure on (X,X0)
defined by

ν(A) =

∫
A
fdµ.

We know that ν is absolutely continuous with respect to µ on (X,X0)
and since f is integrable ν is finite. We can define νX, µX : X→ R by
defining that for A ∈ X µX(A) = µ(A) and νX(A) = ν(A). It immedi-
ately follows that since µ and ν are measures on (X,X0) with ν << µ
that µX and νX are measures on (X,X) with νX absolutely continuous
with respect to νX. Therefore by the Radon-Nikodym theorem we can
find a nonnegative function g ∈ L(X,X, µX) such that for each A ∈ X∫

A
gdµX = νX(A) = ν(A) =

∫
A
fdµ

and thus since g must also be (X,X0) measurable we have∫
A
gdµ =

∫
fdµ.

To complete the result we consider a general f ∈ L(X,X0, µ) and write
f = f+− f− and apply the above argument to f+ and f−. Note that
f may not be measurable in (X,X) so we cannot just take f = g.
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