MTI Exercises 6: Solutions

1. We can prove these results anologously to the corresponding results
for measures. For part a) We let Ey = () and note that the sets
A, = E \E,_1 are disjoint. We have that

v(E,) =v(Ep—1) + v(En\En-1)

and so
V(B )\En-1) =v(E,) —v(Enp_1).

Thus since £ = U2 E, = U2 A, and the sets A,, are disjoint.

n—oo

VZ v(A,) = Z v(E,) —v(Enp—1) = lim v(E,).

n=1

For part b) we let By = X and B, = F,_1\F, for n € N. Again we
can see these sets are disjoint, that v(B,,) = v(F,—1 — v(F,)) and we
will have that F'° = U>2 | B,,. Thus

V(F°) = nz_:l v(Bn) = v(X) — lim v(By)
and thus v(F) = v(X) — v(F°) = limy—00 ¥(Bp).
2. Let N, P be the Hahn decomposition for v. We have that
vH(E)=v(ENP) <sup{v(F): F C E}
On the other hand if ' C E then
v(F)=v(FNP)+v(FNN)
and since v(F'N N) < 0 we have
v(F)<v(FNP)=v"(F)<vT(E).

Now take the supremum over all measurable sets F' to get

vi(E)={v(F): F C E}.

3. First suppose that p(EN{zx € X : f(x) #0}) =0 and let B = {z €
X : f(xz) # 0. Then for A C E we have that

Z/(A):/fdu:/ fdu—i—/ fdu=0+0
A BNA BeNA
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since (BN A) =0 and f(z) =0 for all z € B°. Thus E is a null set.

On the other hand suppose that E is a null set. Then consider BT =
En{z e X : f(x) > 0}. We have that [, fdu = 0 since E is a null
set. Thus since f is non-negative on F we must have that f(z) = 0 for
p-almost all z € BT but since no z € E satisfy this we must have that
wu(BT) = 0. Now consider B~ = EN{z € X : f(x) < 0}. We have
that [, —fdp = 0 and thus we must have that u(B~) = 0. Putting
this together gives that

0=u(B-UBT)=uEn{z e X: f(x)#0}) =0.
. We use the definition of v to find its Hahn decomposition directly. Let
P={zxeX: f(x) >0} and N = P°.

If £ € X then v(ENP) = [pp fdp>0and v(ENN) = [,y fdr <
0. So P and N give a Hahn decomposition for v. Moreover for z € P
we have that f~(z) = 0 and for x € N we have that f™(xz) = 0.
Therefore for all A € X

u+(A):/Af+du and u‘(A):/f_du.

. We have that ze=®" > 0 if and only if z > 0. So we take P = (0, c0)
and N = (—o0, 0] (it does not matter which set we choose to put 0 in).

. Let ¢ € M be a simple function, written as Y ;" | ¢;x4, in standard
form. We have that by the Radon-Nikodym Theorem

[ o= 3 () = 2; /A = [ ofan.

i=1
So the result holds for all non-negative simple functions. We now let
g € M and ¢, a sequence of non-negative functions which converge
monotonically to g. By applying the monotone convergence theorem
twice (to ¢n, and to f¢,) we get that

/ gfdp= lim / nfdp = lim / dpdy = / fdv.

. For the first part we let A € X with pu(A) = 0. We then know that
A(A) = 0 since A is absolutely continuous with respect to p and thus
v(A) = 0 since v is absolutely continuous with respect to .

For the second part let h = g—z, f= % and g = ST/\L' Let A € X and

use the result from question 5 and Radon-Nikodym to get that

/A hdp = v(A) = /A Fd\ = /A Fodp.
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This holds for all A € X and so in particular holds for the measurable
set {x € X : h(x) # fg(z)}. Thus

u({x € X : h(z) # fg()} =0
which completes the proof.

. For E € B we define v5(E) = v(EN(—00,0]) and v1(E) = (EN(0, 00)).
We can see straight away that v = vy +1v5. We have that p((0,00)) =0
and v1((—00,0]) = 0 so p and v; are mutually singular. On the other
hand if u(A) = 0 for A € B then since g(x) > 0 for all x < 0 we know
that A(AN (—o0,0)) = 0. This means that

VZ(A):/A ( O)fd/\:o.
N(—oo,

Thus s is absolutely continuous with respect to p and v, and 1» is
the Lebesgue decomposition with respect to u for v.

. First suppose that f is non-negative. Let v be the measure on (X, Xj)
defined by

V(A) = /A fdu.

We know that v is absolutely continuous with respect to p on (X, Xo)
and since f is integrable v is finite. We can define vx, ux : X — R by
defining that for A € X px(A) = u(A) and vx(A) = v(A). It immedi-
ately follows that since p and v are measures on (X, Xg) with v <<
that px and vx are measures on (X, X) with vx absolutely continuous
with respect to vx. Therefore by the Radon-Nikodym theorem we can
find a nonnegative function g € L(X, X, ux) such that for each A € X

/Agdux =wx(4) =v(4) = /Afdu

and thus since g must also be (X, X() measurable we have

/Agduz/fdu-

To complete the result we consider a general f € L(X, Xy, u) and write
f = f* — f~ and apply the above argument to f™ and f~. Note that
f may not be measurable in (X, X) so we cannot just take f = g.



