MTI Exercises 6: Solutions

1. We can prove these results anologously to the corresponding results for measures. For part a) We let $E_{0}=\emptyset$ and note that the sets $A_{n}=E_{n} \backslash E_{n-1}$ are disjoint. We have that

$$
\nu\left(E_{n}\right)=\nu\left(E_{n-1}\right)+\nu\left(E_{n} \backslash E_{n-1}\right)
$$

and so

$$
\nu\left(E_{n} \backslash E_{n-1}\right)=\nu\left(E_{n}\right)-\nu\left(E_{n-1}\right)
$$

Thus since $E=\cup_{n=1}^{\infty} E_{n}=\cup_{n=1}^{\infty} A_{n}$ and the sets A_{n} are disjoint.

$$
\nu \sum_{n=1}^{\infty} \nu\left(A_{n}\right)=\sum_{n=1}^{\infty} \nu\left(E_{n}\right)-\nu\left(E_{n-1}\right)=\lim _{n \rightarrow \infty} \nu\left(E_{n}\right)
$$

For part b) we let $B_{0}=X$ and $B_{n}=F_{n-1} \backslash F_{n}$ for $n \in \mathbb{N}$. Again we can see these sets are disjoint, that $\nu\left(B_{n}\right)=\nu\left(F_{n-1}-\nu\left(F_{n}\right)\right)$ and we will have that $F^{c}=\cup_{n=1}^{\infty} B_{n}$. Thus

$$
\nu\left(F^{c}\right)=\sum_{n=1}^{\infty} \nu\left(B_{n}\right)=\nu(X)-\lim _{n \rightarrow \infty} \nu\left(B_{n}\right)
$$

and thus $\nu(F)=\nu(X)-\nu\left(F^{c}\right)=\lim _{n \rightarrow \infty} \nu\left(B_{n}\right)$.
2. Let N, P be the Hahn decomposition for ν. We have that

$$
\nu^{+}(E)=\nu(E \cap P) \leq \sup \{\nu(F): F \subset E\}
$$

On the other hand if $F \subset E$ then

$$
\nu(F)=\nu(F \cap P)+\nu(F \cap N)
$$

and since $\nu(F \cap N) \leq 0$ we have

$$
\nu(F) \leq \nu(F \cap P)=\nu^{+}(F) \leq \nu^{+}(E)
$$

Now take the supremum over all measurable sets F to get

$$
\nu^{+}(E)=\{\nu(F): F \subset E\}
$$

3. First suppose that $\mu(E \cap\{x \in X: f(x) \neq 0\})=0$ and let $B=\{x \in$ $X: f(x) \neq 0$. Then for $A \subset E$ we have that

$$
\nu(A)=\int_{A} f \mathrm{~d} \mu=\int_{\mathrm{B} \cap \mathrm{~A}} \mathrm{fd} \mu+\int_{\mathrm{B}^{\mathrm{c}} \cap \mathrm{~A}} \mathrm{fd} \mu=0+0
$$

since $\mu(B \cap A)=0$ and $f(x)=0$ for all $x \in B^{c}$. Thus E is a null set. On the other hand suppose that E is a null set. Then consider $B^{+}=$ $E \cap\{x \in X: f(x)>0\}$. We have that $\int_{B^{+}} f \mathrm{~d} \mu=0$ since E is a null set. Thus since f is non-negative on E we must have that $f(x)=0$ for μ-almost all $x \in B^{+}$but since no $x \in E$ satisfy this we must have that $\mu\left(B^{+}\right)=0$. Now consider $B^{-}=E \cap\{x \in X: f(x)<0\}$. We have that $\int_{B^{-}}-f \mathrm{~d} \mu=0$ and thus we must have that $\mu\left(B^{-}\right)=0$. Putting this together gives that

$$
0=\mu\left(B^{-} \cup B^{+}\right)=\mu(E \cap\{x \in X: f(x) \neq 0\})=0 .
$$

4. We use the definition of ν to find its Hahn decomposition directly. Let

$$
P=\{x \in X: f(x)>0\} \text { and } N=P^{c} .
$$

If $E \in X$ then $\nu(E \cap P)=\int_{E \cap P} f \mathrm{~d} \mu \geq 0$ and $\nu(E \cap N)=\int_{E \cap N} f \mathrm{~d} \nu \leq$ 0 . So P and N give a Hahn decomposition for ν. Moreover for $x \in P$ we have that $f^{-}(x)=0$ and for $x \in \mathbb{N}$ we have that $f^{+}(x)=0$. Therefore for all $A \in \mathbb{X}$

$$
\nu^{+}(A)=\int_{A} f^{+} \mathrm{d} \mu \text { and } \nu^{-}(A)=\int f^{-} \mathrm{d} \mu .
$$

5. We have that $x e^{-x^{2}}>0$ if and only if $x>0$. So we take $P=(0, \infty)$ and $N=(-\infty, 0]$ (it does not matter which set we choose to put 0 in).
6. Let $\phi \in M^{+}$be a simple function, written as $\sum_{i=1}^{n} c_{i} \chi_{A_{i}}$ in standard form. We have that by the Radon-Nikodým Theorem

$$
\int \phi \mathrm{d} \nu=\sum_{i=1}^{n} c_{i} \nu\left(A_{i}\right)=\sum_{i=1}^{n} c_{i} \int_{A_{i}} f \mathrm{~d} \mu=\int \phi f \mathrm{~d} \mu .
$$

So the result holds for all non-negative simple functions. We now let $g \in M^{+}$and ϕ_{n} a sequence of non-negative functions which converge monotonically to g. By applying the monotone convergence theorem twice (to ϕ_{n} and to $f \phi_{n}$) we get that

$$
\int g f \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int \phi_{n} f \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \int \phi_{n} \mathrm{~d} \nu=\int f \mathrm{~d} \nu .
$$

7. For the first part we let $A \in \mathbb{X}$ with $\mu(A)=0$. We then know that $\lambda(A)=0$ since λ is absolutely continuous with respect to μ and thus $\nu(A)=0$ since ν is absolutely continuous with respect to λ.
For the second part let $h=\frac{\mathrm{d} \nu}{\mathrm{d} \mu}, f=\frac{\mathrm{d} \nu}{\mathrm{d} \lambda}$ and $g=\frac{\mathrm{d} \lambda}{\mathrm{d} \mu}$. Let $A \in \mathbb{X}$ and use the result from question 5 and Radon-Nikodým to get that

$$
\int_{A} h \mathrm{~d} \mu=\nu(A)=\int_{A} f \mathrm{~d} \lambda=\int_{A} f g \mathrm{~d} \mu .
$$

This holds for all $A \in \mathbb{X}$ and so in particular holds for the measurable set $\{x \in X: h(x) \neq f g(x)\}$. Thus

$$
\mu(\{x \in X: h(x) \neq f g(x)\}=0
$$

which completes the proof.
8. For $E \in \mathbb{B}$ we define $\nu_{2}(E)=\nu(E \cap(-\infty, 0])$ and $\nu_{1}(E)=(E \cap(0, \infty))$. We can see straight away that $\nu=\nu_{1}+\nu_{2}$. We have that $\mu((0, \infty))=0$ and $\nu_{1}((-\infty, 0])=0$ so μ and ν_{1} are mutually singular. On the other hand if $\mu(A)=0$ for $A \in \mathbb{B}$ then since $g(x)>0$ for all $x \leq 0$ we know that $\lambda(A \cap(-\infty, 0))=0$. This means that

$$
\nu_{2}(A)=\int_{A \cap(-\infty, 0)} f \mathrm{~d} \lambda=0
$$

Thus ν_{2} is absolutely continuous with respect to μ and ν_{1} and ν_{2} is the Lebesgue decomposition with respect to μ for ν.
9. First suppose that f is non-negative. Let ν be the measure on $\left(X, \mathbb{X}_{0}\right)$ defined by

$$
\nu(A)=\int_{A} f \mathrm{~d} \mu
$$

We know that ν is absolutely continuous with respect to μ on $\left(X, \mathbb{X}_{0}\right)$ and since f is integrable ν is finite. We can define $\nu_{\mathbb{X}}, \mu_{\mathbb{X}}: \mathbb{X} \rightarrow \mathbb{R}$ by defining that for $A \in \mathbb{X} \mu_{\mathbb{X}}(A)=\mu(A)$ and $\nu_{\mathbb{X}}(A)=\nu(A)$. It immediately follows that since μ and ν are measures on $\left(X, \mathbb{X}_{0}\right)$ with $\nu \ll \mu$ that $\mu_{\mathbb{X}}$ and $\nu_{\mathbb{X}}$ are measures on (X, \mathbb{X}) with $\nu_{\mathbb{X}}$ absolutely continuous with respect to $\nu_{\mathbb{X}}$. Therefore by the Radon-Nikodym theorem we can find a nonnegative function $g \in L\left(X, \mathbb{X}, \mu_{\mathbb{X}}\right)$ such that for each $A \in \mathbb{X}$

$$
\int_{A} g \mathrm{~d} \mu_{X}=\nu_{\mathbb{X}}(A)=\nu(A)=\int_{A} f \mathrm{~d} \mu
$$

and thus since g must also be $\left(X, \mathbb{X}_{0}\right)$ measurable we have

$$
\int_{A} g \mathrm{~d} \mu=\int f \mathrm{~d} \mu
$$

To complete the result we consider a general $f \in L\left(X, \mathbb{X}_{0}, \mu\right)$ and write $f=f^{+}-f^{-}$and apply the above argument to f^{+}and f^{-}. Note that f may not be measurable in (X, \mathbb{X}) so we cannot just take $f=g$.

