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This paper contains five questions

The best FOUR answers will be used for assessment.

Calculators are not permitted in this examination.
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1. Let X be a non-empty set.

(a) (5 marks)
Explain what is meant by “X is a sigma-algebra of subsets of X”.

(b) (5 marks)
Let X = N and let X be the set of all finite subsets of X and all subsets of X where
the complement is finite. Show that X is not a sigma-algebra of subsets of X.

Now let (X,X) be a general measurable space.

(c) (3 marks)
What does it mean for a function f : X ! R to be measurable.

(d) (3 marks)
Show, directly from your definition, that if f : X ! R is measurable then |f | : X ! R
is also measurable.

(e) (5 marks)
Let (A,A) be the measurable space where A = {1, 2, 3} and A = {A, ;, {2, 3}, {1}}.
Show that f : A ! R is measurable if and only if f(2) = f(3).

(f) (4 marks)
Is the statement ‘|f | : X ! R being measurable implies that f : X ! R is measurable’
true? (Justify your answer).

Continued...
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2. Let (X,X) be a measurable space.

(a) (5 marks)
Explain what is meant by “µ : X ! R is a measure”.

Now let (X,X, µ) be a measure space.

(b) (5 marks)
Let A

n

2 X for all n 2 N. Prove, directly from the definition, that

µ ([
n2NAn

) 
1X

n=1

µ(A
n

).

(c) (4 marks)
Suppose that (F

n

) is a sequence of sets such that µ(F1) < 1 and F

n

◆ F

n+1 for all
n 2 N. Show that

µ (\1
n=1Fn

) = lim
n!1

µ(F
n

).

(d) (6 marks)
Let A

n

2 X be a sequence of sets such that
P1

n=1 µ(An

) < 1 and

A = {x : x 2 A

n

for infinitely many n 2 N}.

Show that µ(A) = 0.

(e) (5 marks)
Now take the measure space (R,B,�) (where B is the Borel sigma algebra and � is
Lebesgue measure), � > 0 and

V =

⇢
x 2 R : there exist infinitely many p 2 Z, q 2 N where

����x� p

q

���� 
1

q

2+�

�
.

Show that �(V ) = 0.

Continued...
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3. Let (X,X, µ) be a measure space.

(a) (2 marks)
State Fatou’s lemma.

(b) (7 marks)
State Lebesgue’s dominated convergence theorem and prove it using Fatou’s lemma.

Now let X = (0, 1), let B denote the Borel subsets of (0, 1), and let � be Lebesgue measure.

(c) (5 marks) Show that for a non-negative measurable function f : (0, 1) ! R we have
that lim

�!0

R
(�,1) fd� =

R
(0,1) fd�. (You may use the monotone convergence theorem

without proof as long as it is clearly stated).

(d) (6 marks)
Let 0 < ↵ < 1 and f

n

: (0, 1) ! R be given by

f

n

(x) =
nx

↵

1 + n

2
x

2
.

Find lim
n!1

R
(0,1) fnd�(x), and justify your answer.

(e) (5 marks)
Let f

n

(x) = n

1+n

2
x

2 , show that lim
n!1

R
(0,1) fnd� 6= 0. Does there exist g 2 L1 such

that |f
n

(x)|  g(x) for all n 2 N and x 2 (0, 1)?

4. Let (X,X, µ) be a measure space, and let 1 < p < 1.

(a) (6 marks)
What is meant by “f = g µ - almost everywhere”? Prove that f = g µ almost
everywhere if and only if

R
|f � g|dµ = 0.

(b) (6 marks)
State and prove Hölder’s inequality. (you may assume Young’s inequality that if
1  p < 1, A,B � 0 and 1

p

+ 1
q

= 1 then AB  A

p

p

+ B

q

q

.)

(c) (3 marks)
State Minkowski’s inequality.

(d) (5 marks)
Let 1  p  q < 1 show that if f 2 L

p

and f 2 L

q

then f 2 L

r

for all p  r  q.

(e) (5 marks)
Let 1  p < 1 and suppose that f 2 L

p

\ L1 show that f 2 L

r

for all r � p.

Continued...
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5. Let (X,X) be a measure space and let µ, ⌫ be measures on X.

(a) (3 marks)
What is meant by “µ is absolutely continuous with respect to ⌫”?

(b) (5 marks)
Let f 2 M

+(X) be a non-negative measurable function and suppose that � : X ! R
is the measure defined by

�(A) =

Z

A

fdµ.

Show that � is absolutely continuous with respect to µ and that if f(x) > 0 for µ

almost every x 2 X then µ is absolutely continuous with respect to �.

(c) (4 marks) Let f
n

: X ! R be a sequence of measurable functions and f : X ! R be
a measurable function. Is it always true that if µ is absolutely continuous with respect
to ⌫ and lim

n!1 f

n

(x) = f(x) for µ almost all x 2 X then lim
n!1 f

n

(x) = f(x) for
⌫ almost all x 2 X? (Justify your answer)

(d) (5 marks) Suppose that µ is absolutely continuous with respect to ⌫ and A

n

2 X are
a sequence of sets such that lim ⌫(A

n

) = 0. Is it always true that lim
n!1 µ(A

n

) = 0?
(Justify your answer)

(e) (3 marks)
State the Radon-Nikodým Theorem.

(f) (5 marks) Let µ and ⌫ be �-finite measures on X where µ is absolutely continuous
with respect to ⌫ and such that the Radon-Nikodým derivative dµ

d⌫ is in L1. Suppose
that f

n

: X ! R are a sequence of measurable functions and f : X ! R is a
measurable function such that f

n

converges in measure to f with respect to ⌫. Show
that f

n

also converges in measure to f with respect to µ.

End of examination.
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