UNIVERSITY OF BRISTOL

Examination for the Degrees of B.Sc. and M.Sci. (Level 3)

MEASURE THEORY AND INTEGRATION

MATH 34000 (Paper Code MATH-34000)

April 2013, 2 hours 30 minutes

This paper contains five questions The best FOUR answers will be used for assessment.

Calculators are **not** permitted in this examination.

Do not turn over until instructed.

Cont...

1. Let X be a non-empty set.

(a) **(5 marks)**

Explain what is meant by "X is a sigma-algebra of subsets of X".

(b) **(5 marks)**

Let $X = \mathbb{N}$ and let \mathbb{X} be the set of all finite subsets of X and all subsets of X where the complement is finite. Show that \mathbb{X} is not a sigma-algebra of subsets of X.

Now let (X, \mathbb{X}) be a general measurable space.

(c) **(3 marks)**

What does it mean for a function $f: X \to \mathbb{R}$ to be measurable.

(d) (3 marks)

Show, directly from your definition, that if $f: X \to \mathbb{R}$ is measurable then $|f|: X \to \mathbb{R}$ is also measurable.

(e) **(5 marks)**

Let (A, \mathbb{A}) be the measurable space where $A = \{1, 2, 3\}$ and $\mathbb{A} = \{A, \emptyset, \{2, 3\}, \{1\}\}$. Show that $f : A \to \mathbb{R}$ is measurable if and only if f(2) = f(3).

(f) (4 marks)

Is the statement $|f|: X \to \mathbb{R}$ being measurable implies that $f: X \to \mathbb{R}$ is measurable' true? (Justify your answer).

Cont...

2. Let (X, \mathbb{X}) be a measurable space.

(a) **(5 marks)**

Explain what is meant by " $\mu : \mathbb{X} \to \mathbb{R}$ is a measure".

Now let (X, \mathbb{X}, μ) be a measure space.

(b) (5 marks)

Let $A_n \in \mathbb{X}$ for all $n \in \mathbb{N}$. Prove, directly from the definition, that

$$\mu\left(\cup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

(c) (4 marks)

Suppose that (F_n) is a sequence of sets such that $\mu(F_1) < \infty$ and $F_n \supseteq F_{n+1}$ for all $n \in \mathbb{N}$. Show that

$$\mu\left(\bigcap_{n=1}^{\infty}F_n\right) = \lim_{n \to \infty}\mu(F_n).$$

(d) **(6 marks)**

Let $A_n \in \mathbb{X}$ be a sequence of sets such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ and

 $A = \{ x : x \in A_n \text{ for infinitely many } n \in \mathbb{N} \}.$

Show that $\mu(A) = 0$.

(e) **(5 marks)**

Now take the measure space $(\mathbb{R}, \mathbb{B}, \lambda)$ (where \mathbb{B} is the Borel sigma algebra and λ is Lebesgue measure), $\delta > 0$ and

$$V = \left\{ x \in \mathbb{R} : \text{ there exist infinitely many } p \in \mathbb{Z}, q \in \mathbb{N} \text{ where } \left| x - \frac{p}{q} \right| \le \frac{1}{q^{2+\delta}} \right\}.$$

Show that $\lambda(V) = 0$.

- 3. Let (X, \mathbb{X}, μ) be a measure space.
 - (a) **(2 marks)** State Fatou's lemma.
 - (b) (7 marks) State Lebesgue's dominated convergence theorem and prove it using Fatou's lemma.

Now let X = (0, 1), let \mathbb{B} denote the Borel subsets of (0, 1), and let λ be Lebesgue measure.

- (c) (5 marks) Show that for a non-negative measurable function $f: (0,1) \to \mathbb{R}$ we have that $\lim_{\delta \to 0} \int_{(\delta,1)} f d\lambda = \int_{(0,1)} f d\lambda$. (You may use the monotone convergence theorem without proof as long as it is clearly stated).
- (d) (6 marks)

Let $0 < \alpha < 1$ and $f_n : (0, 1) \to \mathbb{R}$ be given by

$$f_n(x) = \frac{nx^{\alpha}}{1 + n^2 x^2}.$$

Find $\lim_{n\to\infty} \int_{(0,1)} f_n d\lambda(x)$, and justify your answer.

(e) **(5 marks)**

Let $f_n(x) = \frac{n}{1+n^2x^2}$, show that $\lim_{n\to\infty} \int_{(0,1)} f_n d\lambda \neq 0$. Does there exist $g \in L_1$ such that $|f_n(x)| \leq g(x)$ for all $n \in \mathbb{N}$ and $x \in (0,1)$?

- 4. Let (X, \mathbb{X}, μ) be a measure space, and let 1 .
 - (a) **(6 marks)**

What is meant by " $f = g \mu$ - almost everywhere"? Prove that $f = g \mu$ almost everywhere if and only if $\int |f - g| d\mu = 0$.

(b) (6 marks) State and prove Hölder's ince

State and prove Hölder's inequality. (you may assume Young's inequality that if $1 \le p < \infty$, $A, B \ge 0$ and $\frac{1}{p} + \frac{1}{q} = 1$ then $AB \le \frac{A^p}{p} + \frac{B^q}{q}$.)

- (c) **(3 marks)** State Minkowski's inequality.
- (d) (5 marks) Let $1 \le p \le q < \infty$ show that if $f \in L_p$ and $f \in L_q$ then $f \in L_r$ for all $p \le r \le q$.
- (e) (5 marks) Let $1 \le p < \infty$ and suppose that $f \in L_p \cap L_\infty$ show that $f \in L_r$ for all $r \ge p$.

Continued...

Cont...

- 5. Let (X, \mathbb{X}) be a measure space and let μ, ν be measures on \mathbb{X} .
 - (a) **(3 marks)**

What is meant by " μ is absolutely continuous with respect to ν "?

(b) (5 marks) Let $f \in M^+(X)$ be a non-negative measurable function and suppose that $\lambda : \mathbb{X} \to \overline{\mathbb{R}}$ is the measure defined by

$$\lambda(A) = \int_A f \mathrm{d}\mu.$$

Show that λ is absolutely continuous with respect to μ and that if f(x) > 0 for μ almost every $x \in X$ then μ is absolutely continuous with respect to λ .

- (c) (4 marks) Let $f_n : X \to \mathbb{R}$ be a sequence of measurable functions and $f : X \to \mathbb{R}$ be a measurable function. Is it always true that if μ is absolutely continuous with respect to ν and $\lim_{n\to\infty} f_n(x) = f(x)$ for μ almost all $x \in X$ then $\lim_{n\to\infty} f_n(x) = f(x)$ for ν almost all $x \in X$? (Justify your answer)
- (d) (5 marks) Suppose that μ is absolutely continuous with respect to ν and $A_n \in \mathbb{X}$ are a sequence of sets such that $\lim \nu(A_n) = 0$. Is it always true that $\lim_{n\to\infty} \mu(A_n) = 0$? (Justify your answer)
- (e) **(3 marks)**

State the Radon-Nikodým Theorem.

(f) (5 marks) Let μ and ν be σ -finite measures on X where μ is absolutely continuous with respect to ν and such that the Radon-Nikodým derivative $\frac{d\mu}{d\nu}$ is in L_{∞} . Suppose that $f_n : X \to \mathbb{R}$ are a sequence of measurable functions and $f : X \to \mathbb{R}$ is a measurable function such that f_n converges in measure to f with respect to ν . Show that f_n also converges in measure to f with respect to μ .