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4 Signed measures and Radon-Nikodym theorem

Let (X,M) be some measurable space.

Definition 4.1 A set function ν is called a signed measure if

1. ν(∅) = 0;

2. its domain of definition M is a σ-algebra;

3. ν is σ-additive.

Example 4.1 • If ν(A) = µ1(A)−µ2(A), where µ1 and µ2 are Lebesgue
measures, then ν is a signed measure;

• if ν(A) =
∫

A
f(x)dµ, where f is integrable function and µ is Lebesgue

measure, then ν is a signed measure.

Definition 4.2 Let ν be a signed measure on (X,M). The set A ∈ M is
positive with respect to ν if ν(A ∩E) ≥ 0 for all E ∈ M. The set B ∈ M is
negative with respect to ν if ν(B ∩E) ≤ 0 for all E ∈ M.

Theorem 4.3 (Hahn decomposition) Let ν be a signed measure on (X,M),
then there exists a negative set A− ∈ M and the positive set A+ = X\A−

Proof Fact 1. Negative sets form a σ-ring N. Obviously

• ∅ ∈ N;

• A ∈ N, B ∈ N imply A ∩B ∈ N;

• A ∈ N, B ∈ N imply A\B ∈ N.

Since A ∪B = A ∪ (B\A), A and B\A are disjoint, we obtain

ν((A ∪B) ∩E) = ν(A ∩E) + ν((B\A) ∩B)

for any E ∈ M. From this formula it is easy to see that if A,B ∈ N

then A ∪ B ∈ N. The same arguments work for a countable union of sets.
Therefore N is a σ-ring.
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Let us define
β = inf

B∈N

ν(B).

Obviously β = limn→∞ ν(Bn), Bn ∈ N. We define

B = ∪∞
n=1Bn.

It is possible to show that ν(B) = β:

1. β ≤ ν(B) since B ∈ N;

2. ν(B) = ν(Bn) + ν(B\Bn) ≤ ν(Bn) since B\Bn ∈ N. Therefore β =
limn→∞ ν(Bn) ≥ ν(B).

We want to show that A = X\B is positive. Suppose not, then there
exists E0 ⊂ A such that ν(E0) < 0. If E0 ∈ N then B ∪ E0 ∈ N and
ν(B ∪ E0) < ν(B) that contradicts minimality of β. Therefore E0 is not
negative and there exists C ⊂ E0 such that ν(C) > 0. Now we do the
following procedure:

• find a positive number k1 such that there exists E1 ⊂ E0 with ν(E1) ≥
k1 and k1 is the maximal of such numbers;

• consider E0\E1 (ν(E0\E1) = ν(E0) − ν(E1) < 0) and find a positive
number k2 such that there exists E2 ⊂ E0\E1 with ν(E2) ≥ k2 and k2

is the maximal of such numbers; it is clear that k2 ≤ k1.

Continue this procedure we find a sequence of disjoint sets {Ei} ⊂ E0 with
ν(Ei) ≥ ki (note that this sequence has to be infinite, otherwise we find
larger negative set). Obviously ki → 0 since otherwise ν(∪iEi) = ∞. We
define F0 = E0\∪iEi, for any F ⊂ F0 we must have ν(F ) ≤ 0 and therefore
F0 is negative, disjoint form B, and ν(F0) = ν(E0)−

∑

i ν(Ei) ≤ ν(E0) < 0.
This contradicts the minimality of β. Theorem is proved.

This decomposition is not unique. However we may show the following:
if there are two Hahn decompositions X = A1∪B1 and X = A2∪B2 (A1, A2

are positive and B1, B2 are negative) then

ν(A1 ∩E) = ν(A2 ∩E), ν(B1 ∩E) = ν(B2 ∩E)

for any E ∈ M. Proof of this fact is left as an exercise.
From this it follows that for any signed measure ν we may define X =

A+ ∪A− and

ν+(E) = ν(A+ ∩E), ν−(E) = −ν(A− ∩E).
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It is easy to see that ν+, ν− are σ-additive measures and

ν(E) = ν+(E) − ν−(E).

We proved the following theorem.

Theorem 4.4 (Jordan decomposition) Any signed measure ν may be rep-
resented as a difference of two σ-additive measures ν+ and ν−.

Definition 4.5 |ν| = ν+ + ν− is called the total variation of ν.

Example 4.2 Let ν(A) =
∫

A
f(x)dµ. Obviously f(x) = f+(x)−f−(x) and

therefore

ν(A) =

∫

A

f+(x)dµ−
∫

A

f−(x)dµ = ν+(A) − ν−(A).

Definition 4.6 Let λ and ν be signed measures on (X,M) then λ is called
absolutely continuous with respect to ν (λ � ν) if A ∈ Mr and |ν|(A) = 0
imply λ(A) = 0.

Theorem 4.7 (Radon-Nikodym) Let µ be a σ-additive measure on (X,M),
F be a signed measure on (X,M) and F is absolutely continuous with respect
to µ. Then there exists unique f ∈ L1(X,µ) such that

F (A) =

∫

A

f(x)dµ

for any A ∈ M.

Proof Since any signed measure F = F+ − F− and F � µ implies F+ �
µ and F− � µ (prove it!) it is enough to show theorem for σ-additive
measures.

Let us define the following set:

K = {f is integrable on X : f(x) ≥ 0,

∫

A

f(x)dµ ≤ F (A) for any A ∈ M},

where fn ∈ K. We also define

M = sup
f∈K

∫

X

f(x)dµ = lim
n→∞

∫

X

fn(x)dµ.

Let gn(x) = max{f1(x), ..., fn(x)}, we may show that gn ∈ K:
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1. Obviously gn ≥ 0, gn is integrable.

2. We show that
∫

E
gn(x)dµ ≤ F (E) for any E ∈ M. For any E ∈ M

there exists a collection of disjoint sets {Ei}n
i=1 such that E = ∪n

i=1Ei

and gn(x) = fi(x) on Ei (prove it!). Therefore
∫

E

gn(x)dµ =

n
∑

i=1

∫

Ei

fi(x)dµ ≤
n

∑

i=1

F (Ei) = F (E).

We define f(x) = supn fn(x), obviously f(x) = limn→∞ gn(x). By monotone
convergence theorem f ∈ K and

∫

X
f(x)dµ = limn→∞

∫

X
gn(x)dµ = M .

Define a σ-additive measure

λ(E) = F (E) −
∫

E

f(x)dµ

for any E ∈ M. We want to show that λ(E) = 0 for any E ∈ M.

Lemma 4.1 Let ν, µ be σ-additive measures and ν � µ. Then there exists
n ∈ N and B ∈ M such that µ(B) > 0 and B is positive with respect to
ν − 1

n
µ.

Proof Let X = A−
n ∪A+

n be Hahn decomposition corresponding to a signed
measure ν − 1

n
µ. We define A−

0 = ∩∞
n=1A

−
n , A+

0 = ∪∞
n=1A

+
n then A−

0 ∪A+
0 =

X. We have

ν(A−
0 ) ≤ 1

n
µ(A−

0 ) for any n

and therefore ν(A−
0 ) = 0. So we obtain ν(A+

0 ) > 0 and hence µ(A+
0 ) > 0

(since ν � µ). Therefore there exists n ∈ N such that µ(A+
n ) > 0 and

ν(E ∩ A+
n ) − 1

n
µ(E ∩ A+

n ) ≥ 0 for any E ∈ M since A+
n is positive with

respect to ν − 1
n
µ. Lemma is proved.

By definition λ is a σ-additive measure and λ� µ. Therefore there exists B
and n ∈ N such that λ(E ∩B) ≥ 1

n
µ(E ∩B) for any E ∈ M and µ(B) > 0.

Define

h(x) = f(x) +
1

n
χB(x),

then for any E ∈ M
∫

E

h(x)dµ =

∫

E

f(x)dµ+
1

n
µ(E ∩B) ≤

∫

E

f(x)dµ+ λ(E ∩B)

=

∫

E

f(x)dµ+ F (E ∩B) −
∫

E∩B

f(x)dµ

=

∫

E\B
f(x)dµ+ F (E ∩B) ≤ F (E\B) + F (E ∩B) = F (E).
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Therefore h ∈ K and
∫

X

h(x)dµ =

∫

X

f(x)dµ+
1

n
µ(B) > M,

so we have a contradiction and therefore for any E ∈ M F (E) =
∫

E
f(x)dµ.

Uniqueness is obvious. Theorem is proved.

5 Lp-spaces

Let f be an integrable function over X. We call f̃ the class of equivalence
of functions gf (x) such that f(x) = gf (x) a.e. on X. It is easy to show that
equality a.e. defines the equivalence relation.

Definition 5.1 Let p ≥ 1 and |f(x)|p is an integrable function over X then
f̃ ∈ Lp(X, dµ).

So Lp(X, dµ) is the space of equivalence classes of all p-integrable functions.
Instead of dealing with classes of equivalence we will deal with representa-
tives of these classes, i.e. with usual functions.

Definition 5.2 The function ‖ · ‖ : V → R acting on some vector space V
is called a norm if for any f, g ∈ V

1. ‖f‖ ≥ 0;

2. ‖f‖ = 0 if and only if f = 0;

3. ‖λf‖ = |λ|‖f‖ for any λ ∈ R;

4. ‖f + g‖ ≤ ‖f‖ + ‖g‖.

Proposition 5.3 Let f ∈ Lp(X, dµ) then

‖f‖p =

(
∫

X

|f(x)|pdµ
)

1

p

is a norm of f .

Note that this norm is the same for all functions in the class of equivalence.

Proof We have to check points 1-4. It is easy to see that points 1-3 are
satisfied, we show point 4. For p = 1 it is obvious. Let us assume p > 1.
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Lemma 5.1 If f ∈ Lp(X, dµ), g ∈ Lq(X, dµ) for 1 < p < ∞, 1
p

+ 1
q

= 1
then

∫

X

|fg|dµ ≤
(

∫

X

|f |pdµ
)

1

p
(

∫

X

|g|qdµ
)

1

q

= ‖f‖p‖g‖q

Proof Proof is left as an exercise.

It is easy to see that if f, g ∈ Lp(X, dµ) then |f + g| ∈ Lp(X, dµ) (since|a+
b|p ≤ 2p−1(|f |p + |g|p)). Obviously |f(x)+g(x)|p ≤ |f(x)+g(x)|p−1(|f(x)|+
|g(x)|) and therefore since 1

p
+ 1

q
= 1 we have

∫

X

|f + g|pdµ ≤
∫

X

|f + g|p−1|f |dµ+

∫

X

|f + g|p−1|g|dµ

≤
(

∫

X

|f |pdµ
)

1

p
(

∫

X

|f + g|(p−1)qdµ

)
1

q

+

(
∫

X

|g|pdµ
)

1

p
(

∫

X

|f + g|(p−1)qdµ

)
1

q

.

This implies
‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proposition is proved.

Definition 5.4 Complete normed vector space is called Banach space.

Theorem 5.5 For 1 ≤ p <∞ Lp(X, dµ) is a Banach space.

Proof Let {fn} be a Cauchy sequence in Lp. We choose a subsequence
{fnj

} ⊂ {fn} such that

‖fnj+1
− fnj

‖p ≤ 1

2j

and define

Gm(x) =

m
∑

j=1

|fnj+1
(x) − fnj

(x)|.

Obviously ‖Gm‖p ≤ 1 and Gm(x) is a monotone increasing sequence. By
monotone convergence theorem:

Gm(x) → G(x) =

∞
∑

j=1

|fnj+1
(x) − fnj

(x)| <∞ a.e
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and

lim
m→∞

∫

X

|Gm(x)|pdµ =

∫

X

|G(x)|pdµ ≤ 1.

Therefore f = limj→∞ fnj
exists a.e., f ∈ Lp(X, dµ) and

‖f − fnk
‖p = ‖

∑

j=k

(fnj+1
− fnj

)‖p ≤
∑

j=k

‖fnj+1
− fnj

‖p ≤ 1

2(k−1)
.

So we have fnj
→ f in Lp(X, dµ) and moreover if n > nj

‖fn − f‖p ≤ ‖f − fnj
‖p + ‖fnj

− fn‖p ≤ 2−(j−1) + 2−(j−1) = 22−j → 0

as n > nj → ∞. Theorem is proved.

Theorem 5.6 (Approximation of Lp) Assume 1 < p <∞, then:

1. Simple functions are dense in Lp(X, dµ).

2. Elementary functions are dense in Lp(X, dµ).

3. Uniformly continuous functions are dense in Lp(X, dµ).

Proof Proof is left as an exercise.

Proposition 5.7 (Jensen’s inequality) Let f ∈ L1(X, dµ) and φ : X → R

be convex function. Then

φ

(

1

µ(X)

∫

X

f(x)dµ

)

≤ 1

µ(X)

∫

X

φ(f(x))dµ

Proof Proof is left as an exercise.

5.1 Duality

Definition 5.8 A bounded linear functional on a Banach space B is a map-
ping F : B → R such that

1. F (αf1 + βf2) = αF (f1) + βF (f2) for any α, β ∈ R and f1, f2 ∈ B;

2. |F (f)| ≤ C‖f‖ for any f ∈ B; here C is a constant independent of f
and ‖ · ‖ is a norm on B.
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Definition 5.9 A collection of all bounded liner functionals on a Banach
space B is called a dual space to B and is denoted by B∗. It is usually
endowed with the following norm

‖F‖∗ = sup
f∈B

|F (f)|
‖f‖ . (1)

Theorem 5.10 B∗ is a Banach space.

Proof It is easy to show that B∗ is a normed vector space with the norm
‖ · ‖∗. We show that B∗ is complete. Suppose {Fn} is a Cauchy sequence,
i.e. ‖Fn − Fm‖∗ → 0 as n,m→ ∞. Since for any f ∈ B

|Fn(f) − Fm(f)| ≤ ‖Fn − Fm‖∗‖f‖ → 0

we obtain that {Fn(f)} is a Cauchy sequence and hence Fn(f) → a ≡ F (f).
It is easy to check that F is a linear functional (do it!). Using the following
inequality

|F (f)| = lim
n→∞

|Fn(f)| ≤ lim
n→∞

‖Fn‖∗‖f‖,

and the fact that {‖Fn‖} is a Cauchy sequence, we obtain ‖F‖ ≤ limn ‖Fn‖ ≤
C. Therefore |F (f)| ≤ C‖f‖ and F is a bounded linear functional.

Now we want to show that ‖Fn − F‖∗ → 0 as n → ∞. It is easy to see
from

|Fn(f) − F (f)|
‖f‖ ≤ lim

m

|Fn(f) − Fm(f)|
‖f‖ ≤ lim

m
‖Fn − Fm‖∗.

Taking sup over f ∈ B and then limit as n→ ∞ from both sides we obtain
the result. Theorem is proved.

Theorem 5.11 Let 1 < p < ∞ and 1
p

+ 1
q

= 1. Then (Lp(X, dµ))∗ ≡
Lq(X, dµ).

Proof Step 1. We show that Lq(X, dµ) ⊂ (Lp(X, dµ))∗ is an isometric
injection. Take any g ∈ Lq(X, dµ) and define

Fg(f) =

∫

X

g(x)f(x)dµ

for any f ∈ Lp(X, dµ). It is easy to see that Fg is a bounded linear functional
on Lp(X, dµ). Therefore to any g ∈ Lq(X, dµ) there corresponds a bounded
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linear functional Fg ∈ (Lp(X, dµ))∗. Now we have to show that ‖Fg‖∗ =
‖g‖q . By definition

‖Fg‖∗ = sup
f∈Lp(X,dµ)

∫

X
f(x)g(x)dµ

‖f‖p
.

Using Holder inequality we see that ‖Fg‖∗ ≤ ‖g‖q . Taking f = |g|q−1sgn(g)
we see that ‖Fg‖∗ ≥ ‖g‖q and therefore ‖Fg‖∗ = ‖g‖q . We showed that
g → Fg is an isometric injection of Lq into (Lp)∗.
Step 2. Now we want to show that for any F ∈ (Lp(X, dµ))∗ there exists
g ∈ Lq(X, dµ) such that F (f) =

∫

X
g(x)f(x)dµ for all f ∈ Lp(X, dµ). In

the previous step we proved that for any g ∈ Lq(X, dµ)

‖g‖q = ‖Fg‖∗ = sup
f∈Lp(X,dµ)

∫

X
f(x)g(x)dµ

‖f‖p
.

It is easy to show that

‖g‖q = sup

{
∫

X

f(x)g(x)dµ, f ∈ Lp(X, dµ), ‖f‖p ≤ 1 and f is simple

}

(prove it!) Take anyF ∈ (Lp(X, dµ))∗ and define a set function

ν(A) = F (χA)

for any A ∈ M. Let’s check that ν is a signed measure:

1. ν(∅) = F (0) = 0;

2. if A ∩ B = ∅ then ν(A ∪ B) = F (χA∪B) = F (χA + χB) = F (χA) +
F (χB) = ν(A) + ν(B);

3. if An ↑ A then χAn → χA in Lp(X, dµ) and hence |F (χAn − χA)| ≤
C‖χAn − χA‖p → 0. This obviously implies ν(An) → ν(A) and this
implies countable additivity of ν (prove it!).

Therefore ν is a signed measure. If A ∈ M and µ(A) = 0 then χA = 0
a.e. and therefore ν(A) = F (χA) = 0 and we obtain ν � µ. Using Radon-
Nikodym theorem we have for any A ∈ M

ν(A) =

∫

A

g(x)dµ,
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where g is some integrable function. Our goal is to show that g ∈ Lq(X, dµ).
Let s(x) =

∑n
i=1 aiχAi

(x) be a simple function. Then

F (s) = F (

n
∑

i=1

aiχAi
) =

n
∑

i=1

aiF (χAi
) =

n
∑

i=1

aiν(Ai)

=
n

∑

i=1

ai

∫

Ai

g(x)dµ =

∫

X

g(x)s(x)dµ

It is easy to see that

sup

{
∫

X

s(x)g(x)dµ, s ∈ Lp(X, dµ), ‖s‖p ≤ 1 and s is simple

}

=

= sup {F (s), s ∈ Lp(X, dµ), ‖s‖p ≤ 1 and s is simple } ≤ ‖F‖∗.
Therefore g ∈ Lq(X, dµ) and ‖g‖q ≤ ‖F‖∗. Now take any f ∈ Lp(X, dµ), we
can approximate it by a sequence of simple functions: sn → f in Lp(X, dµ).
We know that

∫

X

g(x)sn(x)dµ = F (sn),

F (sn) → F (f) and
∫

X
g(x)sn(x)dµ→

∫

X
g(x)f(x)dµ and therefore

∫

X

g(x)f(x)dµ = F (f)

for any f ∈ Lp(X, dµ). Theorem is proved.

5.2 Hilbert space L2(X, dµ)

Definition 5.12 Let H be a normed vector space. We call a function (·, ·) :
H ×H → R an inner product if

1. (f, g) = (g, f) for any f, g ∈ H;

2. (f1 + f2, g) = (f1, g) + (f2, g) for any f1, f2, g ∈ H;

3. (λf, g) = λ(f, g) for any λ ∈ R, f, g ∈ H;

4. (f, f) > 0 if f 6= 0..

Definition 5.13 A Banach space H with an inner product (·, ·) and a norm
‖ · ‖ =

√

(·, ·) is called a Hilbert space.
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It is not difficult to show that ‖ · ‖ =
√

(·, ·) is actually a norm (do it!)

Exercise 5.1 Check that Rn and L2(X, dµ) are Hilbert spaces.

Proposition 5.14 Let H be a Hilbert space. Then for any f, g ∈ H
1. |(f, g)| ≤ ‖f‖‖g‖;

2. ‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Proof Proof is left as an exercise.

Proposition 5.15 Let H be a Banach space. If for any f, g ∈ H ‖f+g‖2+
‖f − g‖2 = 2(‖f‖2 + ‖g‖2) then H is a Hilbert space.

Proof Proof is left as an exercise.

Definition 5.16 Let H be a Hilbert space, for f, g ∈ H we say that f is
orthogonal to g if (f, g) = 0. A set A ⊂ H is called orthogonal set if for
any f, g ∈ A (f, g) = 0. A set A ⊂ H is called orthonormal set if for any
f, g ∈ A (f, g) = 0 and ‖f‖ = ‖g‖ = 1.

Definition 5.17 A set A = {f1, ..., fn, ...} ⊂ H is linearly independent if
∑n

i=1 αifi = 0 implies α1 = ... = αn = 0 for any finite subset of A.

Proposition 5.18 An orthonormal set is always linearly independent.

Proof Proof is left as an exercise.

Definition 5.19 An orthonormal set A ⊂ H is called complete if (f, φ) = 0
for all φ ∈ A and fixed f ∈ H implies f = 0.

Definition 5.20 A Banach space H is called separable if there exists a
countable dense subset E ⊂ H.

Proposition 5.21 Let A = {φ1, φ2, ...} be an orthonormal set in a separable
Hilbert space H. Then A is at most countable.

Proof For any φ, ψ ∈ A we have ‖φ−ψ‖ =
√

2. Since H is separable there
exists dense and countable subset E ⊂ H. Therefore there exists f ∈ E and
g ∈ E such that ‖f − φ‖ < 1√

2
and ‖g − ψ‖ < 1√

2
. By triangle inequality

‖φ− ψ‖ ≤ ‖f − g‖ + ‖f − φ‖ + ‖g − ψ‖

and therefore ‖f − g‖ > 0. So we have if φ 6= ψ then f 6= g and hence if A
is uncountable then E is uncountable, but E is at most countable therefore
A is at most countable. Proposition is proved.
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Theorem 5.22 L2(X, dµ) is a separable Hilbert space.

Proof Proof is left as an exercise.

Theorem 5.23 (Riesz - Fisher) Let {φn} be an arbitrary orthonormal set
in L2(X, dµ) and let the corresponding set {cn} ⊂ R satisfy

∑

n c
2
n < ∞.

Then there exists f ∈ L2(X, dµ) such that

1. cn = (f, φn) for all n;

2. f =
∑

n cnφn;

3. ‖f‖2 =
∑

n c
2
n.

Proof If {φn} is a finite set the result is obvious. Since {φn} is at most
countable we assume it is infinite. We set fn =

∑n
k=1 ckφk. Obviously we

have ‖fn+m − fn‖2 =
∑n+m

k=n+1 c
2
k. Since

∑

k c
2
k < ∞ the sequence {fn} is a

Cauchy sequence. Using completness of L2 we obtain fn → f in L2(X, dµ).
We claim that this f satisfies 1-3. By construction f =

∑∞
k=1 ckφk. For a

fixed φi we have (f, φi) = (fn, φi) + (f − fn, φi). If n ≥ i then (f, φi) =
ci + (f − fn, φi). Since (f − fn, φi) ≤ ‖fn − f‖ → 0 as n → ∞ we obtain
(f, φi) = ci. Now ‖f − fn‖2 = ‖f‖2 −

∑n
k=1 c

2
k and taking a limit as n→ ∞

we obtain ‖f‖ =
∑∞

k=1 c
2
k. Theorem is proved.

Theorem 5.24 Let {φn} be a complete orthonormal set in L2(X, dµ) then
any f ∈ L2(X, dµ) admits an expansion

f =

∞
∑

n=1

(f, φn)φn

Proof Proof is left as an exercise.
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