4 Signed measures and Radon-Nikodym theorem

Let (X, \mathfrak{M}) be some measurable space.

Definition 4.1 A set function ν is called a signed measure if

- 1. $\nu(\emptyset) = 0;$
- 2. its domain of definition \mathfrak{M} is a σ -algebra;
- 3. ν is σ -additive.
- **Example 4.1** If $\nu(A) = \mu_1(A) \mu_2(A)$, where μ_1 and μ_2 are Lebesgue measures, then ν is a signed measure;
 - if $\nu(A) = \int_A f(x)d\mu$, where f is integrable function and μ is Lebesgue measure, then ν is a signed measure.

Definition 4.2 Let ν be a signed measure on (X, \mathfrak{M}) . The set $A \in \mathfrak{M}$ is positive with respect to ν if $\nu(A \cap E) \ge 0$ for all $E \in \mathfrak{M}$. The set $B \in \mathfrak{M}$ is negative with respect to ν if $\nu(B \cap E) \le 0$ for all $E \in \mathfrak{M}$.

Theorem 4.3 (Hahn decomposition) Let ν be a signed measure on (X, \mathfrak{M}) , then there exists a negative set $A^- \in \mathfrak{M}$ and the positive set $A^+ = X \setminus A^-$

Proof Fact 1. Negative sets form a σ -ring \mathfrak{N} . Obviously

- $\varnothing \in \mathfrak{N};$
- $A \in \mathfrak{N}, B \in \mathfrak{N}$ imply $A \cap B \in \mathfrak{N}$;
- $A \in \mathfrak{N}, B \in \mathfrak{N}$ imply $A \setminus B \in \mathfrak{N}$.

Since $A \cup B = A \cup (B \setminus A)$, A and $B \setminus A$ are disjoint, we obtain

$$\nu((A \cup B) \cap E) = \nu(A \cap E) + \nu((B \setminus A) \cap B)$$

for any $E \in \mathfrak{M}$. From this formula it is easy to see that if $A, B \in \mathfrak{N}$ then $A \cup B \in \mathfrak{N}$. The same arguments work for a countable union of sets. Therefore \mathfrak{N} is a σ -ring.

Let us define

$$\beta = \inf_{B \in \mathfrak{N}} \nu(B).$$

Obviously $\beta = \lim_{n \to \infty} \nu(B_n), B_n \in \mathfrak{N}$. We define

$$B = \bigcup_{n=1}^{\infty} B_n.$$

It is possible to show that $\nu(B) = \beta$:

- 1. $\beta \leq \nu(B)$ since $B \in \mathfrak{N}$;
- 2. $\nu(B) = \nu(B_n) + \nu(B \setminus B_n) \le \nu(B_n)$ since $B \setminus B_n \in \mathfrak{N}$. Therefore $\beta = \lim_{n \to \infty} \nu(B_n) \ge \nu(B)$.

We want to show that $A = X \setminus B$ is positive. Suppose not, then there exists $E_0 \subset A$ such that $\nu(E_0) < 0$. If $E_0 \in \mathfrak{N}$ then $B \cup E_0 \in \mathfrak{N}$ and $\nu(B \cup E_0) < \nu(B)$ that contradicts minimality of β . Therefore E_0 is not negative and there exists $C \subset E_0$ such that $\nu(C) > 0$. Now we do the following procedure:

- find a positive number k_1 such that there exists $E_1 \subset E_0$ with $\nu(E_1) \ge k_1$ and k_1 is the maximal of such numbers;
- consider $E_0 \setminus E_1$ ($\nu(E_0 \setminus E_1) = \nu(E_0) \nu(E_1) < 0$) and find a positive number k_2 such that there exists $E_2 \subset E_0 \setminus E_1$ with $\nu(E_2) \ge k_2$ and k_2 is the maximal of such numbers; it is clear that $k_2 \le k_1$.

Continue this procedure we find a sequence of disjoint sets $\{E_i\} \subset E_0$ with $\nu(E_i) \geq k_i$ (note that this sequence has to be infinite, otherwise we find larger negative set). Obviously $k_i \to 0$ since otherwise $\nu(\cup_i E_i) = \infty$. We define $F_0 = E_0 \setminus \bigcup_i E_i$, for any $F \subset F_0$ we must have $\nu(F) \leq 0$ and therefore F_0 is negative, disjoint form B, and $\nu(F_0) = \nu(E_0) - \sum_i \nu(E_i) \leq \nu(E_0) < 0$. This contradicts the minimality of β . Theorem is proved.

This decomposition is not unique. However we may show the following: if there are two Hahn decompositions $X = A_1 \cup B_1$ and $X = A_2 \cup B_2$ $(A_1, A_2$ are positive and B_1, B_2 are negative) then

$$\nu(A_1 \cap E) = \nu(A_2 \cap E), \quad \nu(B_1 \cap E) = \nu(B_2 \cap E)$$

for any $E \in \mathfrak{M}$. Proof of this fact is left as an exercise.

From this it follows that for any signed measure ν we may define $X = A^+ \cup A^-$ and

$$\nu^+(E) = \nu(A^+ \cap E), \quad \nu^-(E) = -\nu(A^- \cap E).$$

It is easy to see that ν^+, ν^- are σ -additive measures and

$$\nu(E) = \nu^{+}(E) - \nu^{-}(E).$$

We proved the following theorem.

Theorem 4.4 (Jordan decomposition) Any signed measure ν may be represented as a difference of two σ -additive measures ν^+ and ν^- .

Definition 4.5 $|\nu| = \nu^+ + \nu^-$ is called the total variation of ν .

Example 4.2 Let $\nu(A) = \int_A f(x)d\mu$. Obviously $f(x) = f^+(x) - f^-(x)$ and therefore

$$\nu(A) = \int_A f^+(x)d\mu - \int_A f^-(x)d\mu = \nu^+(A) - \nu^-(A).$$

Definition 4.6 Let λ and ν be signed measures on (X, \mathfrak{M}) then λ is called absolutely continuous with respect to ν ($\lambda \ll \nu$) if $A \in Mr$ and $|\nu|(A) = 0$ imply $\lambda(A) = 0$.

Theorem 4.7 (Radon-Nikodym) Let μ be a σ -additive measure on (X, \mathfrak{M}) , F be a signed measure on (X, \mathfrak{M}) and F is absolutely continuous with respect to μ . Then there exists unique $f \in L^1(X, \mu)$ such that

$$F(A) = \int_{A} f(x) d\mu$$

for any $A \in \mathfrak{M}$.

Proof Since any signed measure $F = F^+ - F^-$ and $F \ll \mu$ implies $F^+ \ll \mu$ and $F^- \ll \mu$ (prove it!) it is enough to show theorem for σ -additive measures.

Let us define the following set:

$$K = \{ f \text{ is integrable on } X : f(x) \ge 0, \int_A f(x) d\mu \le F(A) \text{ for any } A \in \mathfrak{M} \},\$$

where $f_n \in K$. We also define

$$M = \sup_{f \in K} \int_X f(x) d\mu = \lim_{n \to \infty} \int_X f_n(x) d\mu.$$

Let $g_n(x) = \max\{f_1(x), ..., f_n(x)\}$, we may show that $g_n \in K$:

- 1. Obviously $g_n \ge 0$, g_n is integrable.
- 2. We show that $\int_E g_n(x)d\mu \leq F(E)$ for any $E \in \mathfrak{M}$. For any $E \in \mathfrak{M}$ there exists a collection of disjoint sets $\{E_i\}_{i=1}^n$ such that $E = \bigcup_{i=1}^n E_i$ and $g_n(x) = f_i(x)$ on E_i (prove it!). Therefore

$$\int_{E} g_{n}(x) d\mu = \sum_{i=1}^{n} \int_{E_{i}} f_{i}(x) d\mu \leq \sum_{i=1}^{n} F(E_{i}) = F(E).$$

We define $f(x) = \sup_n f_n(x)$, obviously $f(x) = \lim_{n \to \infty} g_n(x)$. By monotone convergence theorem $f \in K$ and $\int_X f(x)d\mu = \lim_{n \to \infty} \int_X g_n(x)d\mu = M$. Define a σ -additive measure

$$\lambda(E) = F(E) - \int_E f(x)d\mu$$

for any $E \in \mathfrak{M}$. We want to show that $\lambda(E) = 0$ for any $E \in \mathfrak{M}$.

Lemma 4.1 Let ν , μ be σ -additive measures and $\nu \ll \mu$. Then there exists $n \in \mathbb{N}$ and $B \in \mathfrak{M}$ such that $\mu(B) > 0$ and B is positive with respect to $\nu - \frac{1}{n}\mu$.

Proof Let $X = A_n^- \cup A_n^+$ be Hahn decomposition corresponding to a signed measure $\nu - \frac{1}{n}\mu$. We define $A_0^- = \bigcap_{n=1}^{\infty} A_n^-$, $A_0^+ = \bigcup_{n=1}^{\infty} A_n^+$ then $A_0^- \cup A_0^+ = X$. We have

$$u(A_0^-) \le \frac{1}{n}\mu(A_0^-) \quad \text{for any } n$$

and therefore $\nu(A_0^-) = 0$. So we obtain $\nu(A_0^+) > 0$ and hence $\mu(A_0^+) > 0$ (since $\nu \ll \mu$). Therefore there exists $n \in \mathbb{N}$ such that $\mu(A_n^+) > 0$ and $\nu(E \cap A_n^+) - \frac{1}{n}\mu(E \cap A_n^+) \ge 0$ for any $E \in \mathfrak{M}$ since A_n^+ is positive with respect to $\nu - \frac{1}{n}\mu$. Lemma is proved.

By definition λ is a σ -additive measure and $\lambda \ll \mu$. Therefore there exists B and $n \in \mathbb{N}$ such that $\lambda(E \cap B) \geq \frac{1}{n}\mu(E \cap B)$ for any $E \in \mathfrak{M}$ and $\mu(B) > 0$. Define

$$h(x) = f(x) + \frac{1}{n}\chi_B(x),$$

then for any $E \in \mathfrak{M}$

$$\begin{split} \int_E h(x)d\mu &= \int_E f(x)d\mu + \frac{1}{n}\mu(E\cap B) \leq \int_E f(x)d\mu + \lambda(E\cap B) \\ &= \int_E f(x)d\mu + F(E\cap B) - \int_{E\cap B} f(x)d\mu \\ &= \int_{E\setminus B} f(x)d\mu + F(E\cap B) \leq F(E\setminus B) + F(E\cap B) = F(E) \end{split}$$

Therefore $h \in K$ and

$$\int_X h(x)d\mu = \int_X f(x)d\mu + \frac{1}{n}\mu(B) > M,$$

so we have a contradiction and therefore for any $E \in \mathfrak{M} F(E) = \int_E f(x) d\mu$. Uniqueness is obvious. Theorem is proved.

5 L^p -spaces

Let f be an integrable function over X. We call \tilde{f} the class of equivalence of functions $g_f(x)$ such that $f(x) = g_f(x)$ a.e. on X. It is easy to show that equality a.e. defines the equivalence relation.

Definition 5.1 Let $p \ge 1$ and $|f(x)|^p$ is an integrable function over X then $\tilde{f} \in L^p(X, d\mu)$.

So $L^p(X, d\mu)$ is the space of equivalence classes of all *p*-integrable functions. Instead of dealing with classes of equivalence we will deal with representatives of these classes, i.e. with usual functions.

Definition 5.2 The function $\|\cdot\| : V \to \mathbb{R}$ acting on some vector space V is called a norm if for any $f, g \in V$

- 1. $||f|| \ge 0;$
- 2. ||f|| = 0 if and only if f = 0;
- 3. $\|\lambda f\| = |\lambda| \|f\|$ for any $\lambda \in \mathbb{R}$;
- 4. $||f + g|| \le ||f|| + ||g||.$

Proposition 5.3 Let $f \in L^p(X, d\mu)$ then

$$||f||_p = \left(\int_X |f(x)|^p d\mu\right)^{\frac{1}{p}}$$

is a norm of f.

Note that this norm is the same for all functions in the class of equivalence.

Proof We have to check points 1-4. It is easy to see that points 1-3 are satisfied, we show point 4. For p = 1 it is obvious. Let us assume p > 1.

Lemma 5.1 If $f \in L^p(X, d\mu)$, $g \in L^q(X, d\mu)$ for $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$ then

$$\int_{X} |fg| d\mu \le \left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} \left(\int_{X} |g|^{q} d\mu \right)^{\frac{1}{q}} = \|f\|_{p} \|g\|_{q}$$

Proof Proof is left as an exercise.

It is easy to see that if $f, g \in L^p(X, d\mu)$ then $|f + g| \in L^p(X, d\mu)$ (since $|a + b|^p \leq 2^{p-1}(|f|^p + |g|^p)$). Obviously $|f(x) + g(x)|^p \leq |f(x) + g(x)|^{p-1}(|f(x)| + |g(x)|)$ and therefore since $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$\begin{split} \int_X |f+g|^p d\mu &\leq \int_X |f+g|^{p-1} |f| d\mu + \int_X |f+g|^{p-1} |g| d\mu \\ &\leq \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}} \left(\int_X |f+g|^{(p-1)q} d\mu \right)^{\frac{1}{q}} \\ &+ \left(\int_X |g|^p d\mu \right)^{\frac{1}{p}} \left(\int_X |f+g|^{(p-1)q} d\mu \right)^{\frac{1}{q}}. \end{split}$$

This implies

$$|f+g||_p \le ||f||_p + ||g||_p.$$

Proposition is proved.

Definition 5.4 Complete normed vector space is called Banach space.

Theorem 5.5 For $1 \le p < \infty$ $L^p(X, d\mu)$ is a Banach space.

Proof Let $\{f_n\}$ be a Cauchy sequence in L^p . We choose a subsequence $\{f_{n_j}\} \subset \{f_n\}$ such that

$$\|f_{n_{j+1}} - f_{n_j}\|_p \le \frac{1}{2^j}$$

and define

$$G_m(x) = \sum_{j=1}^m |f_{n_{j+1}}(x) - f_{n_j}(x)|.$$

Obviously $||G_m||_p \leq 1$ and $G_m(x)$ is a monotone increasing sequence. By monotone convergence theorem:

$$G_m(x) \to G_(x) = \sum_{j=1}^{\infty} |f_{n_{j+1}}(x) - f_{n_j}(x)| < \infty$$
 a.e

and

$$\lim_{m \to \infty} \int_X |G_m(x)|^p d\mu = \int_X |G(x)|^p d\mu \le 1.$$

Therefore $f = \lim_{j \to \infty} f_{n_j}$ exists a.e., $f \in L^p(X, d\mu)$ and

$$||f - f_{n_k}||_p = ||\sum_{j=k} (f_{n_{j+1}} - f_{n_j})||_p \le \sum_{j=k} ||f_{n_{j+1}} - f_{n_j}||_p \le \frac{1}{2^{(k-1)}}.$$

So we have $f_{n_j} \to f$ in $L^p(X, d\mu)$ and moreover if $n > n_j$

$$||f_n - f||_p \le ||f - f_{n_j}||_p + ||f_{n_j} - f_n||_p \le 2^{-(j-1)} + 2^{-(j-1)} = 2^{2-j} \to 0$$

as $n > n_j \to \infty$. Theorem is proved.

Theorem 5.6 (Approximation of L^p) Assume 1 , then:

- 1. Simple functions are dense in $L^p(X, d\mu)$.
- 2. Elementary functions are dense in $L^p(X, d\mu)$.
- 3. Uniformly continuous functions are dense in $L^p(X, d\mu)$.

Proof Proof is left as an exercise.

Proposition 5.7 (Jensen's inequality) Let $f \in L^1(X, d\mu)$ and $\phi : X \to \mathbb{R}$ be convex function. Then

$$\phi\left(\frac{1}{\mu(X)}\int_X f(x)d\mu\right) \le \frac{1}{\mu(X)}\int_X \phi(f(x))d\mu$$

Proof Proof is left as an exercise.

5.1 Duality

Definition 5.8 A bounded linear functional on a Banach space B is a mapping $F : B \to \mathbb{R}$ such that

- 1. $F(\alpha f_1 + \beta f_2) = \alpha F(f_1) + \beta F(f_2)$ for any $\alpha, \beta \in \mathbb{R}$ and $f_1, f_2 \in B$;
- 2. $|F(f)| \leq C ||f||$ for any $f \in B$; here C is a constant independent of f and $||\cdot||$ is a norm on B.

Definition 5.9 A collection of all bounded liner functionals on a Banach space B is called a dual space to B and is denoted by B^* . It is usually endowed with the following norm

$$||F||_* = \sup_{f \in B} \frac{|F(f)|}{||f||}.$$
(1)

Theorem 5.10 B^* is a Banach space.

Proof It is easy to show that B^* is a normed vector space with the norm $\|\cdot\|_*$. We show that B^* is complete. Suppose $\{F_n\}$ is a Cauchy sequence, i.e. $\|F_n - F_m\|_* \to 0$ as $n, m \to \infty$. Since for any $f \in B$

$$|F_n(f) - F_m(f)| \le ||F_n - F_m||_* ||f|| \to 0$$

we obtain that $\{F_n(f)\}$ is a Cauchy sequence and hence $F_n(f) \to a \equiv F(f)$. It is easy to check that F is a linear functional (do it!). Using the following inequality

$$|F(f)| = \lim_{n \to \infty} |F_n(f)| \le \lim_{n \to \infty} ||F_n||_* ||f||,$$

and the fact that $\{||F_n||\}$ is a Cauchy sequence, we obtain $||F|| \leq \lim_n ||F_n|| \leq C$. Therefore $|F(f)| \leq C ||f||$ and F is a bounded linear functional.

Now we want to show that $||F_n - F||_* \to 0$ as $n \to \infty$. It is easy to see from

$$\frac{|F_n(f) - F(f)|}{\|f\|} \le \lim_m \frac{|F_n(f) - F_m(f)|}{\|f\|} \le \lim_m \|F_n - F_m\|_*.$$

Taking sup over $f \in B$ and then limit as $n \to \infty$ from both sides we obtain the result. Theorem is proved.

Theorem 5.11 Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then $(L^p(X, d\mu))^* \equiv L^q(X, d\mu)$.

Proof Step 1. We show that $L^q(X, d\mu) \subset (L^p(X, d\mu))^*$ is an isometric injection. Take any $g \in L^q(X, d\mu)$ and define

$$F_g(f) = \int_X g(x) f(x) d\mu$$

for any $f \in L^p(X, d\mu)$. It is easy to see that F_g is a bounded linear functional on $L^p(X, d\mu)$. Therefore to any $g \in L^q(X, d\mu)$ there corresponds a bounded linear functional $F_g \in (L^p(X, d\mu))^*$. Now we have to show that $||F_g||_* = ||g||_q$. By definition

$$||F_g||_* = \sup_{f \in L^p(X, d\mu)} \frac{\int_X f(x)g(x)d\mu}{\|f\|_p}.$$

Using Holder inequality we see that $||F_g||_* \leq ||g||_q$. Taking $f = |g|^{q-1}sgn(g)$ we see that $||F_g||_* \geq ||g||_q$ and therefore $||F_g||_* = ||g||_q$. We showed that $g \to F_g$ is an isometric injection of L^q into $(L^p)^*$.

Step 2. Now we want to show that for any $F \in (L^p(X, d\mu))^*$ there exists $g \in L^q(X, d\mu)$ such that $F(f) = \int_X g(x)f(x)d\mu$ for all $f \in L^p(X, d\mu)$. In the previous step we proved that for any $g \in L^q(X, d\mu)$

$$||g||_q = ||F_g||_* = \sup_{f \in L^p(X, d\mu)} \frac{\int_X f(x)g(x)d\mu}{||f||_p}.$$

It is easy to show that

$$\|g\|_q = \sup\left\{\int_X f(x)g(x)d\mu, f \in L^p(X, d\mu), \|f\|_p \le 1 \text{ and } f \text{ is simple}\right\}$$

(prove it!) Take any $F \in (L^p(X, d\mu))^*$ and define a set function

$$\nu(A) = F(\chi_A)$$

for any $A \in \mathfrak{M}$. Let's check that ν is a signed measure:

- 1. $\nu(\emptyset) = F(0) = 0;$
- 2. if $A \cap B = \emptyset$ then $\nu(A \cup B) = F(\chi_{A \cup B}) = F(\chi_A + \chi_B) = F(\chi_A) + F(\chi_B) = \nu(A) + \nu(B);$
- 3. if $A_n \uparrow A$ then $\chi_{A_n} \to \chi_A$ in $L^p(X, d\mu)$ and hence $|F(\chi_{A_n} \chi_A)| \le C \|\chi_{A_n} \chi_A\|_p \to 0$. This obviously implies $\nu(A_n) \to \nu(A)$ and this implies countable additivity of ν (prove it!).

Therefore ν is a signed measure. If $A \in \mathfrak{M}$ and $\mu(A) = 0$ then $\chi_A = 0$ a.e. and therefore $\nu(A) = F(\chi_A) = 0$ and we obtain $\nu \ll \mu$. Using Radon-Nikodym theorem we have for any $A \in \mathfrak{M}$

$$\nu(A) = \int_A g(x) d\mu,$$

where g is some integrable function. Our goal is to show that $g \in L^q(X, d\mu)$. Let $s(x) = \sum_{i=1}^n a_i \chi_{A_i}(x)$ be a simple function. Then

$$F(s) = F(\sum_{i=1}^{n} a_i \chi_{A_i}) = \sum_{i=1}^{n} a_i F(\chi_{A_i}) = \sum_{i=1}^{n} a_i \nu(A_i)$$
$$= \sum_{i=1}^{n} a_i \int_{A_i} g(x) d\mu = \int_X g(x) s(x) d\mu$$

It is easy to see that

$$\sup\left\{\int_X s(x)g(x)d\mu, s \in L^p(X, d\mu), \|s\|_p \le 1 \text{ and } s \text{ is simple } \right\} =$$

= sup {
$$F(s), s \in L^p(X, d\mu), \|s\|_p \le 1$$
 and s is simple } $\le \|F\|_*.$

Therefore $g \in L^q(X, d\mu)$ and $||g||_q \leq ||F||_*$. Now take any $f \in L^p(X, d\mu)$, we can approximate it by a sequence of simple functions: $s_n \to f$ in $L^p(X, d\mu)$. We know that

$$\int_X g(x)s_n(x)d\mu = F(s_n),$$

$$F(s_n)\to F(f)$$
 and $\int_X g(x)s_n(x)d\mu\to \int_X g(x)f(x)d\mu$ and therefore
$$\int_X g(x)f(x)d\mu=F(f)$$

for any $f \in L^p(X, d\mu)$. Theorem is proved.

5.2 Hilbert space $L^2(X, d\mu)$

Definition 5.12 Let H be a normed vector space. We call a function (\cdot, \cdot) : $H \times H \to \mathbb{R}$ an inner product if

- 1. (f,g) = (g,f) for any $f,g \in H$;
- 2. $(f_1 + f_2, g) = (f_1, g) + (f_2, g)$ for any $f_1, f_2, g \in H$;
- 3. $(\lambda f, g) = \lambda(f, g)$ for any $\lambda \in \mathbb{R}$, $f, g \in H$;
- 4. (f, f) > 0 if $f \neq 0$..

Definition 5.13 A Banach space H with an inner product (\cdot, \cdot) and a norm $\|\cdot\| = \sqrt{(\cdot, \cdot)}$ is called a Hilbert space.

It is not difficult to show that $\|\cdot\| = \sqrt{(\cdot, \cdot)}$ is actually a norm (do it!) **Exercise 5.1** Check that \mathbb{R}^n and $L^2(X, d\mu)$ are Hilbert spaces.

Proposition 5.14 Let H be a Hilbert space. Then for any $f, g \in H$

- 1. $|(f,g)| \le ||f|| ||g||;$
- 2. $||f + g||^2 + ||f g||^2 = 2(||f||^2 + ||g||^2).$

Proof Proof is left as an exercise.

Proposition 5.15 *Let H be a Banach space. If for any* $f, g \in H ||f+g||^2 + ||f-g||^2 = 2(||f||^2 + ||g||^2)$ then *H* is a Hilbert space.

Proof Proof is left as an exercise.

Definition 5.16 Let H be a Hilbert space, for $f, g \in H$ we say that f is orthogonal to g if (f,g) = 0. A set $A \subset H$ is called orthogonal set if for any $f,g \in A$ (f,g) = 0. A set $A \subset H$ is called orthonormal set if for any $f,g \in A$ (f,g) = 0 and ||f|| = ||g|| = 1.

Definition 5.17 A set $A = \{f_1, ..., f_n, ...\} \subset H$ is linearly independent if $\sum_{i=1}^n \alpha_i f_i = 0$ implies $\alpha_1 = ... = \alpha_n = 0$ for any finite subset of A.

Proposition 5.18 An orthonormal set is always linearly independent.

Proof Proof is left as an exercise.

Definition 5.19 An orthonormal set $A \subset H$ is called complete if $(f, \phi) = 0$ for all $\phi \in A$ and fixed $f \in H$ implies f = 0.

Definition 5.20 A Banach space H is called separable if there exists a countable dense subset $E \subset H$.

Proposition 5.21 Let $A = \{\phi_1, \phi_2, ...\}$ be an orthonormal set in a separable Hilbert space H. Then A is at most countable.

Proof For any $\phi, \psi \in A$ we have $\|\phi - \psi\| = \sqrt{2}$. Since *H* is separable there exists dense and countable subset $E \subset H$. Therefore there exists $f \in E$ and $g \in E$ such that $\|f - \phi\| < \frac{1}{\sqrt{2}}$ and $\|g - \psi\| < \frac{1}{\sqrt{2}}$. By triangle inequality

 $\|\phi - \psi\| \le \|f - g\| + \|f - \phi\| + \|g - \psi\|$

and therefore ||f - g|| > 0. So we have if $\phi \neq \psi$ then $f \neq g$ and hence if A is uncountable then E is uncountable, but E is at most countable therefore A is at most countable. Proposition is proved.

Theorem 5.22 $L^2(X, d\mu)$ is a separable Hilbert space.

Proof Proof is left as an exercise.

Theorem 5.23 (Riesz - Fisher) Let $\{\phi_n\}$ be an arbitrary orthonormal set in $L^2(X, d\mu)$ and let the corresponding set $\{c_n\} \subset \mathbb{R}$ satisfy $\sum_n c_n^2 < \infty$. Then there exists $f \in L^2(X, d\mu)$ such that

- 1. $c_n = (f, \phi_n)$ for all n; 2. $f = \sum_n c_n \phi_n$;
- $\sum J = \sum_n c_n \psi_n,$
- 3. $||f||^2 = \sum_n c_n^2$.

Proof If $\{\phi_n\}$ is a finite set the result is obvious. Since $\{\phi_n\}$ is at most countable we assume it is infinite. We set $f_n = \sum_{k=1}^n c_k \phi_k$. Obviously we have $\|f_{n+m} - f_n\|^2 = \sum_{k=n+1}^{n+m} c_k^2$. Since $\sum_k c_k^2 < \infty$ the sequence $\{f_n\}$ is a Cauchy sequence. Using completness of L^2 we obtain $f_n \to f$ in $L^2(X, d\mu)$. We claim that this f satisfies 1-3. By construction $f = \sum_{k=1}^{\infty} c_k \phi_k$. For a fixed ϕ_i we have $(f, \phi_i) = (f_n, \phi_i) + (f - f_n, \phi_i)$. If $n \ge i$ then $(f, \phi_i) = c_i + (f - f_n, \phi_i)$. Since $(f - f_n, \phi_i) \le \|f_n - f\| \to 0$ as $n \to \infty$ we obtain $(f, \phi_i) = c_i$. Now $\|f - f_n\|^2 = \|f\|^2 - \sum_{k=1}^n c_k^2$ and taking a limit as $n \to \infty$ we obtain $\|f\| = \sum_{k=1}^{\infty} c_k^2$. Theorem is proved.

Theorem 5.24 Let $\{\phi_n\}$ be a complete orthonormal set in $L^2(X, d\mu)$ then any $f \in L^2(X, d\mu)$ admits an expansion

$$f = \sum_{n=1}^{\infty} (f, \phi_n) \phi_n$$

Proof Proof is left as an exercise.