4 Signed measures and Radon-Nikodym theorem

Let (X, \mathfrak{M}) be some measurable space.
Definition 4.1 A set function ν is called a signed measure if

1. $\nu(\varnothing)=0$;
2. its domain of definition \mathfrak{M} is a σ-algebra;
3. ν is σ-additive.

Example 4.1 - If $\nu(A)=\mu_{1}(A)-\mu_{2}(A)$, where μ_{1} and μ_{2} are Lebesgue measures, then ν is a signed measure;

- if $\nu(A)=\int_{A} f(x) d \mu$, where f is integrable function and μ is Lebesgue measure, then ν is a signed measure.

Definition 4.2 Let ν be a signed measure on (X, \mathfrak{M}). The set $A \in \mathfrak{M}$ is positive with respect to ν if $\nu(A \cap E) \geq 0$ for all $E \in \mathfrak{M}$. The set $B \in \mathfrak{M}$ is negative with respect to ν if $\nu(B \cap E) \leq 0$ for all $E \in \mathfrak{M}$.

Theorem 4.3 (Hahn decomposition) Let ν be a signed measure on (X, \mathfrak{M}), then there exists a negative set $A^{-} \in \mathfrak{M}$ and the positive set $A^{+}=X \backslash A^{-}$

Proof Fact 1. Negative sets form a σ-ring \mathfrak{N}. Obviously

- $\varnothing \in \mathfrak{N}$;
- $A \in \mathfrak{N}, B \in \mathfrak{N}$ imply $A \cap B \in \mathfrak{N}$;
- $A \in \mathfrak{N}, B \in \mathfrak{N}$ imply $A \backslash B \in \mathfrak{N}$.

Since $A \cup B=A \cup(B \backslash A), A$ and $B \backslash A$ are disjoint, we obtain

$$
\nu((A \cup B) \cap E)=\nu(A \cap E)+\nu((B \backslash A) \cap B)
$$

for any $E \in \mathfrak{M}$. From this formula it is easy to see that if $A, B \in \mathfrak{N}$ then $A \cup B \in \mathfrak{N}$. The same arguments work for a countable union of sets. Therefore \mathfrak{N} is a σ-ring.

Let us define

$$
\beta=\inf _{B \in \mathfrak{N}} \nu(B) .
$$

Obviously $\beta=\lim _{n \rightarrow \infty} \nu\left(B_{n}\right), B_{n} \in \mathfrak{N}$. We define

$$
B=\cup_{n=1}^{\infty} B_{n}
$$

It is possible to show that $\nu(B)=\beta$:

1. $\beta \leq \nu(B)$ since $B \in \mathfrak{N}$;
2. $\nu(B)=\nu\left(B_{n}\right)+\nu\left(B \backslash B_{n}\right) \leq \nu\left(B_{n}\right)$ since $B \backslash B_{n} \in \mathfrak{N}$. Therefore $\beta=$ $\lim _{n \rightarrow \infty} \nu\left(B_{n}\right) \geq \nu(B)$.

We want to show that $A=X \backslash B$ is positive. Suppose not, then there exists $E_{0} \subset A$ such that $\nu\left(E_{0}\right)<0$. If $E_{0} \in \mathfrak{N}$ then $B \cup E_{0} \in \mathfrak{N}$ and $\nu\left(B \cup E_{0}\right)<\nu(B)$ that contradicts minimality of β. Therefore E_{0} is not negative and there exists $C \subset E_{0}$ such that $\nu(C)>0$. Now we do the following procedure:

- find a positive number k_{1} such that there exists $E_{1} \subset E_{0}$ with $\nu\left(E_{1}\right) \geq$ k_{1} and k_{1} is the maximal of such numbers;
- consider $E_{0} \backslash E_{1}\left(\nu\left(E_{0} \backslash E_{1}\right)=\nu\left(E_{0}\right)-\nu\left(E_{1}\right)<0\right)$ and find a positive number k_{2} such that there exists $E_{2} \subset E_{0} \backslash E_{1}$ with $\nu\left(E_{2}\right) \geq k_{2}$ and k_{2} is the maximal of such numbers; it is clear that $k_{2} \leq k_{1}$.

Continue this procedure we find a sequence of disjoint sets $\left\{E_{i}\right\} \subset E_{0}$ with $\nu\left(E_{i}\right) \geq k_{i}$ (note that this sequence has to be infinite, otherwise we find larger negative set). Obviously $k_{i} \rightarrow 0$ since otherwise $\nu\left(\cup_{i} E_{i}\right)=\infty$. We define $F_{0}=E_{0} \backslash \cup_{i} E_{i}$, for any $F \subset F_{0}$ we must have $\nu(F) \leq 0$ and therefore F_{0} is negative, disjoint form B, and $\nu\left(F_{0}\right)=\nu\left(E_{0}\right)-\sum_{i} \nu\left(E_{i}\right) \leq \nu\left(E_{0}\right)<0$. This contradicts the minimality of β. Theorem is proved.

This decomposition is not unique. However we may show the following: if there are two Hahn decompositions $X=A_{1} \cup B_{1}$ and $X=A_{2} \cup B_{2}\left(A_{1}, A_{2}\right.$ are positive and B_{1}, B_{2} are negative) then

$$
\nu\left(A_{1} \cap E\right)=\nu\left(A_{2} \cap E\right), \quad \nu\left(B_{1} \cap E\right)=\nu\left(B_{2} \cap E\right)
$$

for any $E \in \mathfrak{M}$. Proof of this fact is left as an exercise.
From this it follows that for any signed measure ν we may define $X=$ $A^{+} \cup A^{-}$and

$$
\nu^{+}(E)=\nu\left(A^{+} \cap E\right), \quad \nu^{-}(E)=-\nu\left(A^{-} \cap E\right)
$$

It is easy to see that ν^{+}, ν^{-}are σ-additive measures and

$$
\nu(E)=\nu^{+}(E)-\nu^{-}(E) .
$$

We proved the following theorem.
Theorem 4.4 (Jordan decomposition) Any signed measure ν may be represented as a difference of two σ-additive measures ν^{+}and ν^{-}.

Definition 4.5 $|\nu|=\nu^{+}+\nu^{-}$is called the total variation of ν.
Example 4.2 Let $\nu(A)=\int_{A} f(x) d \mu$. Obviously $f(x)=f^{+}(x)-f^{-}(x)$ and therefore

$$
\nu(A)=\int_{A} f^{+}(x) d \mu-\int_{A} f^{-}(x) d \mu=\nu^{+}(A)-\nu^{-}(A) .
$$

Definition 4.6 Let λ and ν be signed measures on (X, \mathfrak{M}) then λ is called absolutely continuous with respect to $\nu(\lambda \ll \nu)$ if $A \in M r$ and $|\nu|(A)=0$ imply $\lambda(A)=0$.

Theorem 4.7 (Radon-Nikodym) Let μ be a σ-additive measure on (X, \mathfrak{M}), F be a signed measure on (X, \mathfrak{M}) and F is absolutely continuous with respect to μ. Then there exists unique $f \in L^{1}(X, \mu)$ such that

$$
F(A)=\int_{A} f(x) d \mu
$$

for any $A \in \mathfrak{M}$.
Proof Since any signed measure $F=F^{+}-F^{-}$and $F \ll \mu$ implies $F^{+} \ll$ μ and $F^{-} \ll \mu$ (prove it!) it is enough to show theorem for σ-additive measures.

Let us define the following set:
$K=\left\{f\right.$ is integrable on $X: f(x) \geq 0, \int_{A} f(x) d \mu \leq F(A)$ for any $\left.A \in \mathfrak{M}\right\}$, where $f_{n} \in K$. We also define

$$
M=\sup _{f \in K} \int_{X} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n}(x) d \mu .
$$

Let $g_{n}(x)=\max \left\{f_{1}(x), \ldots, f_{n}(x)\right\}$, we may show that $g_{n} \in K$:

1. Obviously $g_{n} \geq 0, g_{n}$ is integrable.
2. We show that $\int_{E} g_{n}(x) d \mu \leq F(E)$ for any $E \in \mathfrak{M}$. For any $E \in \mathfrak{M}$ there exists a collection of disjoint sets $\left\{E_{i}\right\}_{i=1}^{n}$ such that $E=\cup_{i=1}^{n} E_{i}$ and $g_{n}(x)=f_{i}(x)$ on E_{i} (prove it!). Therefore

$$
\int_{E} g_{n}(x) d \mu=\sum_{i=1}^{n} \int_{E_{i}} f_{i}(x) d \mu \leq \sum_{i=1}^{n} F\left(E_{i}\right)=F(E) .
$$

We define $f(x)=\sup _{n} f_{n}(x)$, obviously $f(x)=\lim _{n \rightarrow \infty} g_{n}(x)$. By monotone convergence theorem $f \in K$ and $\int_{X} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{X} g_{n}(x) d \mu=M$. Define a σ-additive measure

$$
\lambda(E)=F(E)-\int_{E} f(x) d \mu
$$

for any $E \in \mathfrak{M}$. We want to show that $\lambda(E)=0$ for any $E \in \mathfrak{M}$.
Lemma 4.1 Let ν, μ be σ-additive measures and $\nu \ll \mu$. Then there exists $n \in \mathbb{N}$ and $B \in \mathfrak{M}$ such that $\mu(B)>0$ and B is positive with respect to $\nu-\frac{1}{n} \mu$.

Proof Let $X=A_{n}^{-} \cup A_{n}^{+}$be Hahn decomposition corresponding to a signed measure $\nu-\frac{1}{n} \mu$. We define $A_{0}^{-}=\cap_{n=1}^{\infty} A_{n}^{-}, A_{0}^{+}=\cup_{n=1}^{\infty} A_{n}^{+}$then $A_{0}^{-} \cup A_{0}^{+}=$ X. We have

$$
\nu\left(A_{0}^{-}\right) \leq \frac{1}{n} \mu\left(A_{0}^{-}\right) \quad \text { for any } n
$$

and therefore $\nu\left(A_{0}^{-}\right)=0$. So we obtain $\nu\left(A_{0}^{+}\right)>0$ and hence $\mu\left(A_{0}^{+}\right)>0$ (since $\nu \ll \mu$). Therefore there exists $n \in \mathbb{N}$ such that $\mu\left(A_{n}^{+}\right)>0$ and $\nu\left(E \cap A_{n}^{+}\right)-\frac{1}{n} \mu\left(E \cap A_{n}^{+}\right) \geq 0$ for any $E \in \mathfrak{M}$ since A_{n}^{+}is positive with respect to $\nu-\frac{1}{n} \mu$. Lemma is proved.
By definition λ is a σ-additive measure and $\lambda \ll \mu$. Therefore there exists B and $n \in \mathbb{N}$ such that $\lambda(E \cap B) \geq \frac{1}{n} \mu(E \cap B)$ for any $E \in \mathfrak{M}$ and $\mu(B)>0$. Define

$$
h(x)=f(x)+\frac{1}{n} \chi_{B}(x),
$$

then for any $E \in \mathfrak{M}$

$$
\begin{aligned}
\int_{E} h(x) d \mu & =\int_{E} f(x) d \mu+\frac{1}{n} \mu(E \cap B) \leq \int_{E} f(x) d \mu+\lambda(E \cap B) \\
& =\int_{E} f(x) d \mu+F(E \cap B)-\int_{E \cap B} f(x) d \mu \\
& =\int_{E \backslash B} f(x) d \mu+F(E \cap B) \leq F(E \backslash B)+F(E \cap B)=F(E) .
\end{aligned}
$$

Therefore $h \in K$ and

$$
\int_{X} h(x) d \mu=\int_{X} f(x) d \mu+\frac{1}{n} \mu(B)>M,
$$

so we have a contradiction and therefore for any $E \in \mathfrak{M} F(E)=\int_{E} f(x) d \mu$. Uniqueness is obvious. Theorem is proved.

$5 \quad L^{p}$-spaces

Let f be an integrable function over X. We call \tilde{f} the class of equivalence of functions $g_{f}(x)$ such that $f(x)=g_{f}(x)$ a.e. on X. It is easy to show that equality a.e. defines the equivalence relation.

Definition 5.1 Let $p \geq 1$ and $|f(x)|^{p}$ is an integrable function over X then $\tilde{f} \in L^{p}(X, d \mu)$.

So $L^{p}(X, d \mu)$ is the space of equivalence classes of all p-integrable functions. Instead of dealing with classes of equivalence we will deal with representatives of these classes, i.e. with usual functions.

Definition 5.2 The function $\|\cdot\|: V \rightarrow \mathbb{R}$ acting on some vector space V is called a norm if for any $f, g \in V$

1. $\|f\| \geq 0$;
2. $\|f\|=0$ if and only if $f=0$;
3. $\|\lambda f\|=|\lambda|\|f\|$ for any $\lambda \in \mathbb{R}$;
4. $\|f+g\| \leq\|f\|+\|g\|$.

Proposition 5.3 Let $f \in L^{p}(X, d \mu)$ then

$$
\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d \mu\right)^{\frac{1}{p}}
$$

is a norm of f.
Note that this norm is the same for all functions in the class of equivalence.
Proof We have to check points 1-4. It is easy to see that points $1-3$ are satisfied, we show point 4 . For $p=1$ it is obvious. Let us assume $p>1$.

Lemma 5.1 If $f \in L^{p}(X, d \mu), g \in L^{q}(X, d \mu)$ for $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1$ then

$$
\int_{X}|f g| d \mu \leq\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{X}|g|^{q} d \mu\right)^{\frac{1}{q}}=\|f\|_{p}\|g\|_{q}
$$

Proof Proof is left as an exercise.
It is easy to see that if $f, g \in L^{p}(X, d \mu)$ then $|f+g| \in L^{p}(X, d \mu)$ (since $\mid a+$ $\left.b\right|^{p} \leq 2^{p-1}\left(|f|^{p}+|g|^{p}\right)$. Obviously $|f(x)+g(x)|^{p} \leq|f(x)+g(x)|^{p-1}(|f(x)|+$ $|g(x)|)$ and therefore since $\frac{1}{p}+\frac{1}{q}=1$ we have

$$
\begin{aligned}
\int_{X}|f+g|^{p} d \mu & \leq \int_{X}|f+g|^{p-1}|f| d \mu+\int_{X}|f+g|^{p-1}|g| d \mu \\
& \leq\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{X}|f+g|^{(p-1) q} d \mu\right)^{\frac{1}{q}} \\
& +\left(\int_{X}|g|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{X}|f+g|^{(p-1) q} d \mu\right)^{\frac{1}{q}}
\end{aligned}
$$

This implies

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Proposition is proved.
Definition 5.4 Complete normed vector space is called Banach space.
Theorem 5.5 For $1 \leq p<\infty L^{p}(X, d \mu)$ is a Banach space.
Proof Let $\left\{f_{n}\right\}$ be a Cauchy sequence in L^{p}. We choose a subsequence $\left\{f_{n_{j}}\right\} \subset\left\{f_{n}\right\}$ such that

$$
\left\|f_{n_{j+1}}-f_{n_{j}}\right\|_{p} \leq \frac{1}{2^{j}}
$$

and define

$$
G_{m}(x)=\sum_{j=1}^{m}\left|f_{n_{j+1}}(x)-f_{n_{j}}(x)\right| .
$$

Obviously $\left\|G_{m}\right\|_{p} \leq 1$ and $G_{m}(x)$ is a monotone increasing sequence. By monotone convergence theorem:

$$
G_{m}(x) \rightarrow G_{(}(x)=\sum_{j=1}^{\infty}\left|f_{n_{j+1}}(x)-f_{n_{j}}(x)\right|<\infty \quad \text { a.e }
$$

and

$$
\lim _{m \rightarrow \infty} \int_{X}\left|G_{m}(x)\right|^{p} d \mu=\int_{X}|G(x)|^{p} d \mu \leq 1
$$

Therefore $f=\lim _{j \rightarrow \infty} f_{n_{j}}$ exists a.e., $f \in L^{p}(X, d \mu)$ and

$$
\left\|f-f_{n_{k}}\right\|_{p}=\left\|\sum_{j=k}\left(f_{n_{j+1}}-f_{n_{j}}\right)\right\|_{p} \leq \sum_{j=k}\left\|f_{n_{j+1}}-f_{n_{j}}\right\|_{p} \leq \frac{1}{2^{(k-1)}}
$$

So we have $f_{n_{j}} \rightarrow f$ in $L^{p}(X, d \mu)$ and moreover if $n>n_{j}$

$$
\left\|f_{n}-f\right\|_{p} \leq\left\|f-f_{n_{j}}\right\|_{p}+\left\|f_{n_{j}}-f_{n}\right\|_{p} \leq 2^{-(j-1)}+2^{-(j-1)}=2^{2-j} \rightarrow 0
$$

as $n>n_{j} \rightarrow \infty$. Theorem is proved.
Theorem 5.6 (Approximation of L^{p}) Assume $1<p<\infty$, then:

1. Simple functions are dense in $L^{p}(X, d \mu)$.
2. Elementary functions are dense in $L^{p}(X, d \mu)$.
3. Uniformly continuous functions are dense in $L^{p}(X, d \mu)$.

Proof Proof is left as an exercise.
Proposition 5.7 (Jensen's inequality) Let $f \in L^{1}(X, d \mu)$ and $\phi: X \rightarrow \mathbb{R}$ be convex function. Then

$$
\phi\left(\frac{1}{\mu(X)} \int_{X} f(x) d \mu\right) \leq \frac{1}{\mu(X)} \int_{X} \phi(f(x)) d \mu
$$

Proof Proof is left as an exercise.

5.1 Duality

Definition 5.8 A bounded linear functional on a Banach space B is a mapping $F: B \rightarrow \mathbb{R}$ such that

1. $F\left(\alpha f_{1}+\beta f_{2}\right)=\alpha F\left(f_{1}\right)+\beta F\left(f_{2}\right)$ for any $\alpha, \beta \in \mathbb{R}$ and $f_{1}, f_{2} \in B$;
2. $|F(f)| \leq C\|f\|$ for any $f \in B$; here C is a constant independent of f and $\|\cdot\|$ is a norm on B.

Definition 5.9 A collection of all bounded liner functionals on a Banach space B is called a dual space to B and is denoted by B^{*}. It is usually endowed with the following norm

$$
\begin{equation*}
\|F\|_{*}=\sup _{f \in B} \frac{|F(f)|}{\|f\|} . \tag{1}
\end{equation*}
$$

Theorem 5.10 B^{*} is a Banach space.
Proof It is easy to show that B^{*} is a normed vector space with the norm $\|\cdot\|_{*}$. We show that B^{*} is complete. Suppose $\left\{F_{n}\right\}$ is a Cauchy sequence, i.e. $\left\|F_{n}-F_{m}\right\|_{*} \rightarrow 0$ as $n, m \rightarrow \infty$. Since for any $f \in B$

$$
\left|F_{n}(f)-F_{m}(f)\right| \leq\left\|F_{n}-F_{m}\right\|_{*}\|f\| \rightarrow 0
$$

we obtain that $\left\{F_{n}(f)\right\}$ is a Cauchy sequence and hence $F_{n}(f) \rightarrow a \equiv F(f)$. It is easy to check that F is a linear functional (do it!). Using the following inequality

$$
|F(f)|=\lim _{n \rightarrow \infty}\left|F_{n}(f)\right| \leq \lim _{n \rightarrow \infty}\left\|F_{n}\right\|_{*}\|f\|,
$$

and the fact that $\left\{\left\|F_{n}\right\|\right\}$ is a Cauchy sequence, we obtain $\|F\| \leq \lim _{n}\left\|F_{n}\right\| \leq$ C. Therefore $|F(f)| \leq C\|f\|$ and F is a bounded linear functional.

Now we want to show that $\left\|F_{n}-F\right\|_{*} \rightarrow 0$ as $n \rightarrow \infty$. It is easy to see from

$$
\frac{\left|F_{n}(f)-F(f)\right|}{\|f\|} \leq \lim _{m} \frac{\left|F_{n}(f)-F_{m}(f)\right|}{\|f\|} \leq \lim _{m}\left\|F_{n}-F_{m}\right\|_{*} .
$$

Taking sup over $f \in B$ and then limit as $n \rightarrow \infty$ from both sides we obtain the result. Theorem is proved.

Theorem 5.11 Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then $\left(L^{p}(X, d \mu)\right)^{*} \equiv$ $L^{q}(X, d \mu)$.

Proof Step 1. We show that $L^{q}(X, d \mu) \subset\left(L^{p}(X, d \mu)\right)^{*}$ is an isometric injection. Take any $g \in L^{q}(X, d \mu)$ and define

$$
F_{g}(f)=\int_{X} g(x) f(x) d \mu
$$

for any $f \in L^{p}(X, d \mu)$. It is easy to see that F_{g} is a bounded linear functional on $L^{p}(X, d \mu)$. Therefore to any $g \in L^{q}(X, d \mu)$ there corresponds a bounded
linear functional $F_{g} \in\left(L^{p}(X, d \mu)\right)^{*}$. Now we have to show that $\left\|F_{g}\right\|_{*}=$ $\|g\|_{q}$. By definition

$$
\left\|F_{g}\right\|_{*}=\sup _{f \in L^{p}(X, d \mu)} \frac{\int_{X} f(x) g(x) d \mu}{\|f\|_{p}} .
$$

Using Holder inequality we see that $\left\|F_{g}\right\|_{*} \leq\|g\|_{q}$. Taking $f=|g|^{q-1} \operatorname{sgn}(g)$ we see that $\left\|F_{g}\right\|_{*} \geq\|g\|_{q}$ and therefore $\left\|F_{g}\right\|_{*}=\|g\|_{q}$. We showed that $g \rightarrow F_{g}$ is an isometric injection of L^{q} into $\left(L^{p}\right)^{*}$.
Step 2. Now we want to show that for any $F \in\left(L^{p}(X, d \mu)\right)^{*}$ there exists $g \in L^{q}(X, d \mu)$ such that $F(f)=\int_{X} g(x) f(x) d \mu$ for all $f \in L^{p}(X, d \mu)$. In the previous step we proved that for any $g \in L^{q}(X, d \mu)$

$$
\|g\|_{q}=\left\|F_{g}\right\|_{*}=\sup _{f \in L^{p}(X, d \mu)} \frac{\int_{X} f(x) g(x) d \mu}{\|f\|_{p}} .
$$

It is easy to show that

$$
\|g\|_{q}=\sup \left\{\int_{X} f(x) g(x) d \mu, f \in L^{p}(X, d \mu),\|f\|_{p} \leq 1 \text { and } f \text { is simple }\right\}
$$

(prove it!) Take any $F \in\left(L^{p}(X, d \mu)\right)^{*}$ and define a set function

$$
\nu(A)=F\left(\chi_{A}\right)
$$

for any $A \in \mathfrak{M}$. Let's check that ν is a signed measure:

1. $\nu(\varnothing)=F(0)=0$;
2. if $A \cap B=\varnothing$ then $\nu(A \cup B)=F\left(\chi_{A \cup B}\right)=F\left(\chi_{A}+\chi_{B}\right)=F\left(\chi_{A}\right)+$ $F\left(\chi_{B}\right)=\nu(A)+\nu(B)$;
3. if $A_{n} \uparrow A$ then $\chi_{A_{n}} \rightarrow \chi_{A}$ in $L^{p}(X, d \mu)$ and hence $\left|F\left(\chi_{A_{n}}-\chi_{A}\right)\right| \leq$ $C\left\|\chi_{A_{n}}-\chi_{A}\right\|_{p} \rightarrow 0$. This obviously implies $\nu\left(A_{n}\right) \rightarrow \nu(A)$ and this implies countable additivity of ν (prove it!).

Therefore ν is a signed measure. If $A \in \mathfrak{M}$ and $\mu(A)=0$ then $\chi_{A}=0$ a.e. and therefore $\nu(A)=F\left(\chi_{A}\right)=0$ and we obtain $\nu \ll \mu$. Using RadonNikodym theorem we have for any $A \in \mathfrak{M}$

$$
\nu(A)=\int_{A} g(x) d \mu,
$$

where g is some integrable function. Our goal is to show that $g \in L^{q}(X, d \mu)$. Let $s(x)=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}(x)$ be a simple function. Then

$$
\begin{aligned}
F(s) & =F\left(\sum_{i=1}^{n} a_{i} \chi_{A_{i}}\right)=\sum_{i=1}^{n} a_{i} F\left(\chi_{A_{i}}\right)=\sum_{i=1}^{n} a_{i} \nu\left(A_{i}\right) \\
& =\sum_{i=1}^{n} a_{i} \int_{A_{i}} g(x) d \mu=\int_{X} g(x) s(x) d \mu
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& \sup \left\{\int_{X} s(x) g(x) d \mu, s \in L^{p}(X, d \mu),\|s\|_{p} \leq 1 \text { and } s \text { is simple }\right\}= \\
& =\sup \left\{F(s), s \in L^{p}(X, d \mu),\|s\|_{p} \leq 1 \text { and } s \text { is simple }\right\} \leq\|F\|_{*}
\end{aligned}
$$

Therefore $g \in L^{q}(X, d \mu)$ and $\|g\|_{q} \leq\|F\|_{*}$. Now take any $f \in L^{p}(X, d \mu)$, we can approximate it by a sequence of simple functions: $s_{n} \rightarrow f$ in $L^{p}(X, d \mu)$. We know that

$$
\int_{X} g(x) s_{n}(x) d \mu=F\left(s_{n}\right)
$$

$F\left(s_{n}\right) \rightarrow F(f)$ and $\int_{X} g(x) s_{n}(x) d \mu \rightarrow \int_{X} g(x) f(x) d \mu$ and therefore

$$
\int_{X} g(x) f(x) d \mu=F(f)
$$

for any $f \in L^{p}(X, d \mu)$. Theorem is proved.

5.2 Hilbert space $L^{2}(X, d \mu)$

Definition 5.12 Let H be a normed vector space. We call a function (\cdot, \cdot) : $H \times H \rightarrow \mathbb{R}$ an inner product if

1. $(f, g)=(g, f)$ for any $f, g \in H$;
2. $\left(f_{1}+f_{2}, g\right)=\left(f_{1}, g\right)+\left(f_{2}, g\right)$ for any $f_{1}, f_{2}, g \in H$;
3. $(\lambda f, g)=\lambda(f, g)$ for any $\lambda \in \mathbb{R}, f, g \in H$;
4. $(f, f)>0$ if $f \neq 0$..

Definition 5.13 A Banach space H with an inner product (\cdot, \cdot) and a norm $\|\cdot\|=\sqrt{(\cdot, \cdot)}$ is called a Hilbert space.

It is not difficult to show that $\|\cdot\|=\sqrt{(\cdot, \cdot)}$ is actually a norm (do it!)
Exercise 5.1 Check that R^{n} and $L^{2}(X, d \mu)$ are Hilbert spaces.
Proposition 5.14 Let H be a Hilbert space. Then for any $f, g \in H$

1. $|(f, g)| \leq\|f\|\|g\|$;
2. $\|f+g\|^{2}+\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right)$.

Proof Proof is left as an exercise.
Proposition 5.15 Let H be a Banach space. If for any $f, g \in H\|f+g\|^{2}+$ $\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right)$ then H is a Hilbert space.

Proof Proof is left as an exercise.
Definition 5.16 Let H be a Hilbert space, for $f, g \in H$ we say that f is orthogonal to g if $(f, g)=0$. A set $A \subset H$ is called orthogonal set if for any $f, g \in A(f, g)=0$. A set $A \subset H$ is called orthonormal set if for any $f, g \in A(f, g)=0$ and $\|f\|=\|g\|=1$.

Definition 5.17 A set $A=\left\{f_{1}, \ldots, f_{n}, \ldots\right\} \subset H$ is linearly independent if $\sum_{i=1}^{n} \alpha_{i} f_{i}=0$ implies $\alpha_{1}=\ldots=\alpha_{n}=0$ for any finite subset of A.

Proposition 5.18 An orthonormal set is always linearly independent.
Proof Proof is left as an exercise.
Definition 5.19 An orthonormal set $A \subset H$ is called complete if $(f, \phi)=0$ for all $\phi \in A$ and fixed $f \in H$ implies $f=0$.

Definition 5.20 A Banach space H is called separable if there exists a countable dense subset $E \subset H$.

Proposition 5.21 Let $A=\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ be an orthonormal set in a separable Hilbert space H. Then A is at most countable.

Proof For any $\phi, \psi \in A$ we have $\|\phi-\psi\|=\sqrt{2}$. Since H is separable there exists dense and countable subset $E \subset H$. Therefore there exists $f \in E$ and $g \in E$ such that $\|f-\phi\|<\frac{1}{\sqrt{2}}$ and $\|g-\psi\|<\frac{1}{\sqrt{2}}$. By triangle inequality

$$
\|\phi-\psi\| \leq\|f-g\|+\|f-\phi\|+\|g-\psi\|
$$

and therefore $\|f-g\|>0$. So we have if $\phi \neq \psi$ then $f \neq g$ and hence if A is uncountable then E is uncountable, but E is at most countable therefore A is at most countable. Proposition is proved.

Theorem 5.22 $L^{2}(X, d \mu)$ is a separable Hilbert space.
Proof Proof is left as an exercise.
Theorem 5.23 (Riesz - Fisher) Let $\left\{\phi_{n}\right\}$ be an arbitrary orthonormal set in $L^{2}(X, d \mu)$ and let the corresponding set $\left\{c_{n}\right\} \subset \mathbb{R}$ satisfy $\sum_{n} c_{n}^{2}<\infty$. Then there exists $f \in L^{2}(X, d \mu)$ such that

1. $c_{n}=\left(f, \phi_{n}\right)$ for all n;
2. $f=\sum_{n} c_{n} \phi_{n}$;
3. $\|f\|^{2}=\sum_{n} c_{n}^{2}$.

Proof If $\left\{\phi_{n}\right\}$ is a finite set the result is obvious. Since $\left\{\phi_{n}\right\}$ is at most countable we assume it is infinite. We set $f_{n}=\sum_{k=1}^{n} c_{k} \phi_{k}$. Obviously we have $\left\|f_{n+m}-f_{n}\right\|^{2}=\sum_{k=n+1}^{n+m} c_{k}^{2}$. Since $\sum_{k} c_{k}^{2}<\infty$ the sequence $\left\{f_{n}\right\}$ is a Cauchy sequence. Using completness of L^{2} we obtain $f_{n} \rightarrow f$ in $L^{2}(X, d \mu)$. We claim that this f satisfies 1-3. By construction $f=\sum_{k=1}^{\infty} c_{k} \phi_{k}$. For a fixed ϕ_{i} we have $\left(f, \phi_{i}\right)=\left(f_{n}, \phi_{i}\right)+\left(f-f_{n}, \phi_{i}\right)$. If $n \geq i$ then $\left(f, \phi_{i}\right)=$ $c_{i}+\left(f-f_{n}, \phi_{i}\right)$. Since $\left(f-f_{n}, \phi_{i}\right) \leq\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$ we obtain $\left(f, \phi_{i}\right)=c_{i}$. Now $\left\|f-f_{n}\right\|^{2}=\|f\|^{2}-\sum_{k=1}^{n} c_{k}^{2}$ and taking a limit as $n \rightarrow \infty$ we obtain $\|f\|=\sum_{k=1}^{\infty} c_{k}^{2}$. Theorem is proved.

Theorem 5.24 Let $\left\{\phi_{n}\right\}$ be a complete orthonormal set in $L^{2}(X, d \mu)$ then any $f \in L^{2}(X, d \mu)$ admits an expansion

$$
f=\sum_{n=1}^{\infty}\left(f, \phi_{n}\right) \phi_{n}
$$

Proof Proof is left as an exercise.

