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This little write-up is part of important foundations of probability that were left out of the unit Probability
1 due to lack of time and prerequisites. Here we give an elementary proof of the Bernoulli Weak Law of Large
Numbers. As a corollary, we prove Weierstrass’ Approximation Theorem regarding Bernstein’s polynomials.

We need the notion of the mode of a discrete distribution: this is simply the most likely value(s) of our
random variable. In other words, this is the value(s) xi where the mass function pX(xi) is maximal.

Proposition 1 The mode of the Binomial distribution of parameters n, p is ⌊(n+1)p⌋ (lower integer part). If
(n+ 1)p happens to be an integer number, then (n+ 1)p− 1 and (n+ 1)p are both modes of this distribution.

Proof. Let 0 < i ≤ n, then

pX(i)

pX(i− 1)
=

(
n

i

)
pi(1− p)n−i

(
n

i−1

)
pi−1(1− p)n−i+1

=
(n− i+ 1)p

i(1− p)
.

Therefore, the following are equivalent:

pX(i) ≥ pX(i− 1)

pX(i)

pX(i− 1)
≥ 1

(n− i+ 1)p

i(1− p)
≥ 1

(n+ 1)p ≥ i

⌊(n+ 1)p⌋ ≥ i.

This implies that pX(i) increases until i reaches the value ⌊(n+1)p⌋, after which we see a decrease of the mass
function. We also see that pX(i) = pX(i− 1) happens if and only if i = (n+ 1)p (which requires (n+ 1)p to be
an integer), in this case we have two modes. �

Recall that the Binomial(n, p) distribution counts the number of successes in a given n number of trials.
When this number is large, it is natural to expect that the proportion of successes approximates the success
probability p. This is the content of the Bernoulli Law of Large Numbers:

Theorem 2 (Bernoulli Law of Large Numbers) Fix 0 < p < 1, and for given n let X ∼ Binom(n, p). Then
for all ε > 0

lim
n→∞

P
{∣
∣
∣
X

n
− p

∣
∣
∣ > ε

}

= 0.

The Law of Large Numbers can be proved in various versions with various methods, see a general one at the
end of the Probability 1 slides, or stronger versions in more advanced texts on probability.

Proof. For the sake of simplicity we use the abbreviation q = 1 − p. Let r ≥ (n + 1)p and k ≥ 1 be integers.
Then a simple computation for the ratio of the Binomial mass functions shows

pX(r + k)

pX(r + k − 1)
=

n− r − k + 1

r + k
· p
q
≤ n− r

r + k
· p
q
≤ n− r

r
· p
q
= : K.

This number K is bounded by 1, since

K =
(n

r
− 1

)

· p
q
≤

( n

(n+ 1)p
− 1

)

· p
q
=

n− np− p

(n+ 1)p
· p
q
<

n− np+ 1− p

(n+ 1)p
· p
q
=

(n+ 1) · (1− p)

(n+ 1)p
· p
q
= 1.
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With this, we have

P{X ≥ r} =

n−r∑

k=0

pX(r + k) =

n−r∑

k=0

pX(r) · pX(r + 1)

pX(r)
· pX(r + 2)

pX(r + 1)
· · · pX(r + k)

pX(r + k − 1)
︸ ︷︷ ︸

k terms

≤

≤
n−r∑

k=0

pX(r) ·Kk = pX(r) · 1−Kn−r+1

1−K
≤ pX(r)

1−K
.

Next is an estimate for pX(r), for which we use Proposition 1. By our assumption r ≥ (n + 1)p, therefore
r ≥ ⌊(n+ 1)p⌋, and the mass function decreases between ⌊(n+ 1)p⌋ and r. Thus for all ⌊(n+ 1)p⌋ ≤ i ≤ r we
have pX(r) ≤ pX(i), and a rather crude estimate gives

1 =

n∑

i=0

pX(i) ≥
r∑

i=⌊(n+1)p⌋

pX(i) ≥
r∑

i=⌊(n+1)p⌋

pX(r) =
(
r − ⌊(n+ 1)p⌋+ 1

)
· pX(r) ≥

≥
(
r − (n+ 1)p+ 1

)
· pX(r) ≥ (r − np) · pX(r), that is

pX(r) ≤ 1

r − np
.

We proceed from here and the definition of K with estimating the probability:

P{X ≥ r} ≤ 1

r − np
· 1

1− n−r
r

· p

q

=
rq

(r − np)2
.

With ε and p given, nε > p will hold for all large enough n’s, and we can make the choice r = ⌈np+nε⌉ (upper
integer part) in the previous estimate:

P
{X

n
− p > ε

}

= P{X > np+ nε} ≤ P{X ≥ ⌈np+ nε⌉} ≤ ⌈np+ nε⌉q
(
⌈np+ nε⌉ − np

)2 ≤ (np+ nε+ 1)q

n2ε2
=

=
pq

ε2n
+

q

εn
+

q

ε2n2
.

To finish the proof we also need a lower bound on X. To do this, we notice that Y : = n −X, the number of
failures, is Binom(n, q) distributed. All the above applies to this variable, and we can write

P
{X

n
− p < −ε

}

= P
{n− Y

n
− p < −ε

}

= P
{−Y

n
+ 1− p < −ε

}

= P
{Y

n
− q > ε

}

=
pq

ε2n
+

p

εn
+

p

ε2n2
.

finally,

P
{∣
∣
∣
X

n
− p

∣
∣
∣ > ε

}

≤ P
{X

n
− p > ε

}

+P
{X

n
− p < −ε

}

≤ 2pq

ε2n
+

1

εn
+

1

ε2n2
≤ 1

2ε2n
+

1

εn
+

1

ε2n2
, (1)

where in the last step we used that pq = p(1− p) can never be larger than 1/4. �

Notice that we actually proved more than the statement of the theorem: for any ε > p/n (1) holds. As an
example, we can choose ε = ε(n) to be a function of n, we just have to make sure it decreases slow enough for
ε(n) · √n −→

n→∞
∞ to hold. Then we still have

P
{∣
∣
∣
X

n
− p

∣
∣
∣ > ε(n)

}

−→
n→∞

0.

As an application we prove Weierstrass’ approximation theorem:

Theorem 3 (Weierstrass’ approximation theorem) Let f : [0, 1] → R be a continuous function. Then for all
ε > 0 there exist n < ∞ and a polynomial Bn(x) of degree n, such that

sup
0≤x≤1

|f(x)−Bn(x)| < ε.

Proof. Given x ∈ [0, 1], let X ∼ Binom(n, x), and define the Bernstein-polynomial of degree n by

Bn(x) : = E
[

f
(X

n

)]

=

n∑

i=0

f
( i

n

)(n

i

)

(1− x)n−ixi.
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f is continuous on a closed interval, hence it is bounded, and it is also uniformly continuous by Heine’s theorem.
Therefore with ε/2 we have δ > 0 such that |f(x)− f(y)| ≤ ε/2 for all 0 ≤ x, y ≤ 1, |x− y| ≤ δ. With this δ,

∣
∣f(x)−Bn(x)

∣
∣ =

∣
∣f(x)−E

[
f(X/n)

]∣
∣ =

∣
∣E

[
f(x)− f(X/n)

]∣
∣ ≤

≤
∣
∣E

[
(f(x)− f(X/n)) · 1{|x−X/n| > δ}

]∣
∣+

∣
∣E

[
(f(x)− f(X/n)) · 1{|x−X/n| ≤ δ}

]∣
∣ ≤

≤ 2M ·P{|x−X/n| > δ}+ ε/2,

where in the last step we bounded f by its maximum M in [0, 1], used uniform continuity in the second term,
and the fact that an indicator never exceeds 1. Using (1) we obtain that

∣
∣f(x)−Bn(x)

∣
∣ ≤ 2M

[ 1

2δ2n
+

1

δn
+

1

δ2n2

]

+ ε/2.

For a given ε and the appropriately chosen δ we have a large enough n that makes the right hand-side smaller
than ε, and this finishes the proof. �
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