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This little write-up is part of important foundations of probability that were left out of the unit Proba-
bility 1 due to lack of time and prerequisites. Here we define the Negative Binomial and the Hypergeometric
distributions, and show some of their properties.

Definition 1 (Negative Binomal distribution) We perform independent trials, each succeeding with probability
p. Let X be the number of trials needed to see the rth success. Then X has the Negative Binomial distribution
with parameters p and r (X ∼ Neg.bin(p, r)).

Proposition 2 Let X ∼ Neg.bin(p, r), then its mass function is given by

P{X = n} = p(n) =

(

n− 1

r − 1

)

· pr · (1− p)n−r, n = r, r + 1, . . . .

Proof. The event that the nth trial will see the rth success is equivalent to the fact that out of the first n − 1
trials exactly r − 1 succeed (this is a Binomial(n − 1, p) probability), then the nth trial succeeds as well (this
has probability p). This explains the above mass function. �

Notice that the Negative Binomial variable X is the (discrete) waiting time for the rth success. As such, it can
be broken up into individual waiting times: let Y1 be the waiting time for the first success, and Yi the waiting
time between the ith and the i − 1st successes, 2 ≤ i ≤ r. Then X = Y1 + Y2 + · · · + Yr, and the variables Yi

are i.i.d. Geometric(p) variables. We use this fact, together with the nice properties of expectations (discussed
towards the end of Probability 1) to determine the expectation and variance:

Proposition 3 Let (X ∼ Neg.bin(p, r)). Then

EX =
r

p
, VarX = r ·

1− p

p2
.

Proof.

EX = E(Y1 + Y2 + · · ·+ Yr) = EY1 +EY2 + · · ·+EYr =
1

p
+

1

p
+ · · ·+

1

p
=

r

p
.

VarX = Var(Y1 + Y2 + · · ·+ Yr) = VarY1 +VarY2 + · · ·+VarYr = r ·
1− p

p2

(the second line needed independence of the Yi’s as well). �

Next we consider the Hypergeometric distribution. It has so many parameters that we don’t even bother to
formally write them out. Also we define it via an example, in fact we are talking about the intersection size of
random subsets:

Definition 4 (Hypergeometric distribution) Out of the N deer in the forest, m have been tagged. Later n of
the deer are captured (we assume their numbers do not change), each with equal chance. Let X be the number
of tagged deer among those captured. Then X has the Hypergeometric distribution.

Proposition 5 The mass function of the Hypergeometric distribution with the above parameters is

P{X = i} = p(i) =

(

m

i

)

·
(

N−m

n−i

)

(

N

n

) =

(

n

i

)

·
(

N−n

m−i

)

(

N

m

) .

This mass function gives zero whenever any group of deer (tagged–non-tagged, or captured–non-captured) would
be negative, this is made sure by the binomial coefficients of the numerator.
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Proof. To see the validity of this formula, just think about the number of ways we can have X = i in the sample
space {n-combinations of N deer}. The equivalence of the two formulas can be seen by expanding the binomial
coefficients, or by combinatorics: X counts the elements in the intersection of a random subset of size m and
one of size n of a set of cardinality N . (In fact, it is enough to have one of these subsets random.) This explains
that the mass function has to be invariant to interchanging the parameters n and m. In other words, we could
first capture the n deer, then letting them go we could later tag a random m of all N of them; the distribution
of X would not change. �

Proposition 6

EX =
nm

N
, and VarX =

nm

N
·
[ (n− 1)(m− 1)

N − 1
+ 1−

nm

N

]

.

Proof. We only prove the expectation, the variance can be done along the same lines after a careful examination
of the dependence of the following indicator variables on each other.

Xi =

{

1, if the ith captured deer is tagged,

0, if the ith captured deer is not tagged,
i = 1, 2, . . . , n.

Then EXi = m/N , and X =
n
∑

i=1

Xi:

EX = E

n
∑

i=1

Xi =

n
∑

i=1

EXi =
nm

N
.

�

Notice that the above symmetry allows a second look at the problem:

Yj =

{

1, if the jth tagged deer is captured,

0, if the jth tagged deer is not captured,
j = 1, 2, . . . , m.

Then EYj = n/N , and X =
m
∑

j=1

Yj :

EX = E

m
∑

j=1

Yj =

m
∑

j=1

EYj =
nm

N
.
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