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Models Scaled Meanfield Positive recurrence Proof

Attractive and non-attractive models
Totally asymmetric simple exclusion process
A ⊕ ⊖ 0 model
Totally asymmetric zero range process

On large scales
Shocks
Rarefaction waves

A mean field version

Positive recurrence

Two words on the proof
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The Bernoulli(̺) product distribution is stationary (and
non-reversible) for all 0 ≤ ̺ ≤ 1: ωi(t) ∼ Bernoulli(̺).

These are the important (= ergodic) stationary distributions.
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∂X [ ˆ̺(1 − ˆ̺)] = 0 Burgers eq.: nonlinear PDE.

Characteristics: find a path X (T ) where ˆ̺
(

T , X (T )
)

is a
constant:

d
dT

ˆ̺
(

T , X (T )
)

= 0

∂

∂T
ˆ̺+ Ẋ (T ) ·

∂

∂X
ˆ̺ = 0

∂

∂T
ˆ̺+ (1 − 2 ˆ̺) ·

∂

∂X
ˆ̺ = 0

The characteristic velocity: Ẋ (T ) = 1 − 2 ˆ̺.

Second class particles are known to follow the characteristics.



Models Scaled Meanfield Positive recurrence Proof Shocks Rarefaction waves

On large scales

X

ˆ̺(T , X)

0.2

0.4

0.6

0.8

1.0

Jam
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Ẋ (T ) = 1 − 2 ˆ̺



Models Scaled Meanfield Positive recurrence Proof Shocks Rarefaction waves

On large scales

X

ˆ̺(T , X)

0.2

0.4

0.6

0.8

1.0

Jam
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Ẋ (T ) = 1 − 2 ˆ̺



Models Scaled Meanfield Positive recurrence Proof Shocks Rarefaction waves

On large scales

X

ˆ̺(T , X)

0.2

0.4

0.6

0.8

1.0

Jam

Ẋ (T ) = 1 − 2 ˆ̺



Models Scaled Meanfield Positive recurrence Proof Shocks Rarefaction waves

On large scales

X

ˆ̺(T , X)

0.2

0.4

0.6

0.8

1.0

Jam
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Ẋ (T ) = 1 − 2 ˆ̺



Models Scaled Meanfield Positive recurrence Proof Shocks Rarefaction waves

On large scales

X

ˆ̺(T , X)

0.2

0.4

0.6

0.8

1.0

Jam
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The second class particle: non-attractive case

We are facing a
◮ nearest neighbour
◮ parity conserving
◮ branching
◮ annihilating process
◮ on the dynamic background of first class particles.

The aim is to control the number of and ’s. Idea from Bálint
Tóth.

 homog2.avi
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A model we can say something about:

0 0 0 1 1 0 1 1

Branching with annihilation: exclusion

◮ Double branching-annihilating random walks (DBARW)
◮ ’s and ’s always alternate;
◮ their algebraic sum is constant in time.
◮ Nothing is monotone.

Question: Is the process, as seen by the leftmost , recurrent?
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DBARW

0 0 0 1 1 0 1 1

First instance of DBARW we could find in the literature: A.
Sudbury ’90. Positive recurrence: V. Belitsky, P.A. Ferrari, M.V.
Menshikov and S.Y. Popov ’01; A. Sturm and J.M. Swart ’08.
Results are very sensitive to the details of branching.

But: true second class particles interact (common background
of first class particles).

 Repeat the Sturm-Swart proof with configuration dependent
jump rates. Jump rates can depend on the whole configuration.
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DBARW

Conditions on the jumping and branching rates:
◮ Translation invariance.
◮ Uniform lower bound on jumping rates: no particles are

stuck.
◮ Bounds on the branching rates.
◮ Bounds on the difference for branching rates of ’s and ’s.
◮ Weak dependence on particles far away.
◮ No repulsion in the jumping rates between particles. (A bit

of repulsion locally is still OK.)
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Positive recurrence

Theorem
Then, starting from a single :
◮ The process takes finitely many steps in finite time

(construction).
◮ The width of the process has all moments finite.
◮ The process as seen from the leftmost is positive

recurrent.
◮ The stationary distribution sees a finite expected number

of particles.
◮ (Extension of all this to non nearest neighbour symmetric

branching.)
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1
2
+

∑

particle on right

1
distanceα ,

jump rate to the left:

1
2
+

∑

particle on left

1
distanceα ,

α > 1.

Unfortunately we do not seem to be there yet... This is not
covered at the moment. But a small modification that respects
parity in a peculiar way works.
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◮ Branching rates: constant.
◮ Jump rate to the right:

1
2
+

∑

gaps Li on the right

1
Lα

i

jump rate to the left:

1
2
+

∑

gaps Li on the left

1
Lα

i

α > 1. (∼ like a rank dependent model but decreasing with
distance.)

This one is fine.
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Main tool 1: the number of inversions, i.e., wrongly ordered 1-0
pairs.
If there are too many of them, the generator is negative on the
number of these pairs.
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If there are too many of them, the generator is negative on the
number of these pairs.

Main tool 2: if the process is not tight, then on the long run
there cannot be any finite number of particles:

1
T

∫ T

0
P{number(t) < N} dt → 0 (∀N).
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Main tool 1: the number of inversions, i.e., wrongly ordered 1-0
pairs.
If there are too many of them, the generator is negative on the
number of these pairs.

Main tool 2: if the process is not tight, then on the long run
there cannot be any finite number of particles:

1
T

∫ T

0
P{number(t) < N} dt → 0 (∀N).

Thank you.
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