Dependent Double Branching Annihilating Random Walk

Joint with Attila László Nagy

Márton Balázs

University of Bristol

Oberseminar Stochastics Bonn, 9th July, 2015.

Attractive and non-attractive models

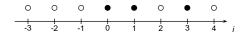
Totally asymmetric simple exclusion process $A \oplus \ominus 0$ model Totally asymmetric zero range process

On large scales Shocks Rarefaction waves

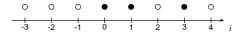
A mean field version

Positive recurrence

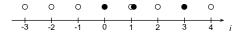
Two words on the proof



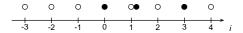
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



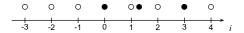
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

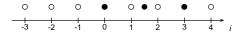


 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

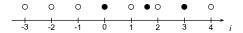


 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

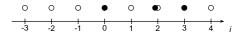


 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



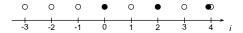
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

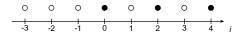
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



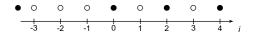
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



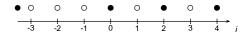
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



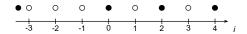
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



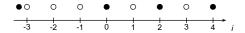
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



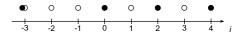
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



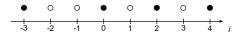
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



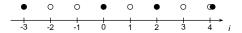
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



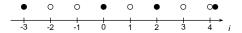
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



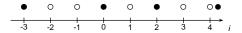
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



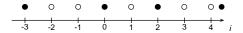
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



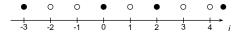
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



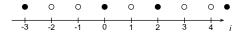
 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

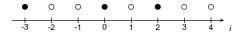


 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.



 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

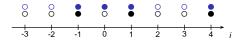


 $\omega_i(0) \sim \text{Bernoulli}(\varrho)$ product distribution.

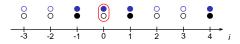
Particles step to the right with rate 1, unless the destination site is occupied.

The Bernoulli(ϱ) product distribution is stationary (and non-reversible) for all $0 \le \varrho \le 1$: $\omega_i(t) \sim \text{Bernoulli}(\varrho)$.

These are the important (= ergodic) stationary distributions.



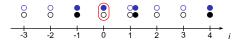
Stochastic coupling: evolution as close as possible



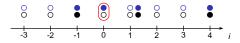
Stochastic coupling: evolution as close as possible



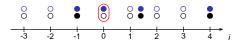
Stochastic coupling: evolution as close as possible



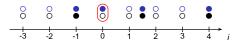
Stochastic coupling: evolution as close as possible



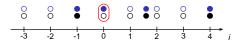
Stochastic coupling: evolution as close as possible



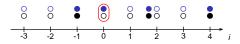
Stochastic coupling: evolution as close as possible



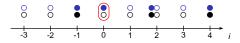
Stochastic coupling: evolution as close as possible



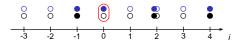
Stochastic coupling: evolution as close as possible



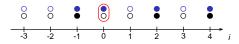
Stochastic coupling: evolution as close as possible



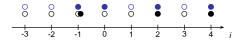
Stochastic coupling: evolution as close as possible



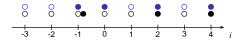
Stochastic coupling: evolution as close as possible



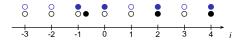
Stochastic coupling: evolution as close as possible



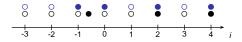
Stochastic coupling: evolution as close as possible



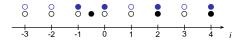
Stochastic coupling: evolution as close as possible



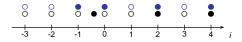
Stochastic coupling: evolution as close as possible



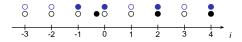
Stochastic coupling: evolution as close as possible



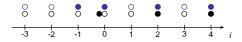
Stochastic coupling: evolution as close as possible



Stochastic coupling: evolution as close as possible

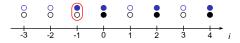


Stochastic coupling: evolution as close as possible

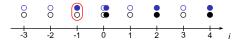


Stochastic coupling: evolution as close as possible

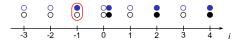
Stochastic coupling: evolution as close as possible



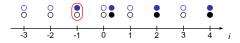
Stochastic coupling: evolution as close as possible



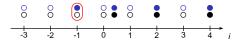
Stochastic coupling: evolution as close as possible



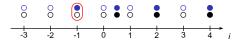
Stochastic coupling: evolution as close as possible



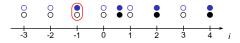
Stochastic coupling: evolution as close as possible



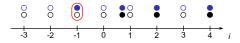
Stochastic coupling: evolution as close as possible



Stochastic coupling: evolution as close as possible



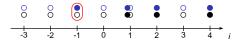
Stochastic coupling: evolution as close as possible



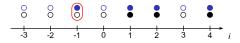
Stochastic coupling: evolution as close as possible



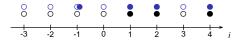
Stochastic coupling: evolution as close as possible



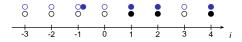
Stochastic coupling: evolution as close as possible



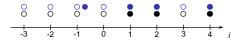
Stochastic coupling: evolution as close as possible



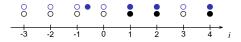
Stochastic coupling: evolution as close as possible



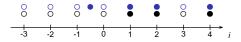
Stochastic coupling: evolution as close as possible



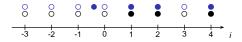
Stochastic coupling: evolution as close as possible



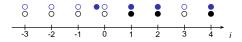
Stochastic coupling: evolution as close as possible



Stochastic coupling: evolution as close as possible



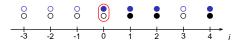
Stochastic coupling: evolution as close as possible



Stochastic coupling: evolution as close as possible

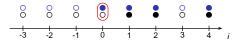
Stochastic coupling: evolution as close as possible

Stochastic coupling: evolution as close as possible



Stochastic coupling: evolution as close as possible

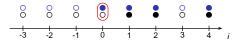
Second class particle. Its position at time t: Q(t).



Stochastic coupling: evolution as close as possible

Second class particle. Its position at time t: Q(t).

$$\begin{aligned} \mathbf{Cov}(\omega_i(t), \, \omega_0(0)) &= \mathbf{E}[\omega_i(t)\omega_0(0) \,|\, \omega_0(0) = 0] \cdot (1-\varrho) \\ &+ \mathbf{E}[\omega_i(t)\omega_0(0) \,|\, \omega_0(0) = 1] \cdot \varrho - \varrho^2 \\ &= \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \end{aligned}$$



Stochastic coupling: evolution as close as possible

Second class particle. Its position at time t: Q(t).

$$\begin{aligned} \mathbf{Cov}(\omega_i(t), \, \omega_0(0)) &= \mathbf{E}[\omega_i(t)\omega_0(0) \,|\, \omega_0(0) = 0] \cdot (1 - \varrho) \\ &+ \mathbf{E}[\omega_i(t)\omega_0(0) \,|\, \omega_0(0) = 1] \cdot \varrho - \varrho^2 \\ &= \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \end{aligned}$$

 $\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)-\omega_i(t)]=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)].$

Stochastic coupling: evolution as close as possible

Second class particle. Its position at time t: Q(t).

$$\begin{aligned} \mathbf{Cov}(\omega_i(t), \, \omega_0(0)) &= \mathbf{E}[\omega_i(t)\omega_0(0) \,|\, \omega_0(0) = 0] \cdot (1-\varrho) \\ &+ \mathbf{E}[\omega_i(t)\omega_0(0) \,|\, \omega_0(0) = 1] \cdot \varrho - \varrho^2 \\ &= \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \end{aligned}$$

 $\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)-\omega_i(t)]=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)].$

$$\begin{split} \varrho &= \mathsf{E}[\omega_i(t)] = \mathsf{E}[\omega_i(t) \,|\, \omega_0(0) = 0] \cdot (1 - \varrho) \\ &+ \mathsf{E}[\omega_i(t) \,|\, \omega_0(0) = 1] \cdot \varrho \\ &= \mathsf{E}[\omega_i(t)] \cdot (1 - \varrho) + \mathsf{E}[\omega_i(t)] \cdot \varrho \end{split}$$

$$\mathbf{Cov}(\omega_i(t), \, \omega_0(0)) = \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \tag{1}$$

$$\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)]. \tag{2}$$

$$\varrho = \mathbf{E}[\omega_i(t)] \cdot (1 - \varrho) + \mathbf{E}[\omega_i(t)] \cdot \varrho.$$
 (3)

$$\mathbf{Cov}(\omega_i(t),\,\omega_0(0)) = \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \tag{1}$$

$$\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)]. \tag{2}$$

$$\varrho = \mathbf{E}[\omega_i(t)] \cdot (1 - \varrho) + \mathbf{E}[\omega_i(t)] \cdot \varrho.$$
 (3)

So,

 $\mathbf{Cov}(\omega_i(t), \omega_0(0)) \stackrel{(1)}{=} \varrho \cdot (\mathbf{E}[\omega_i(t)] - \varrho)$

$$\mathbf{Cov}(\omega_i(t), \, \omega_0(0)) = \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \tag{1}$$

$$\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)]. \tag{2}$$

$$\varrho = \mathsf{E}[\omega_i(t)] \cdot (1-\varrho) + \mathsf{E}[\omega_i(t)] \cdot \varrho.$$
 (3)

So,

$$\begin{aligned} \mathbf{Cov}(\omega_i(t), \, \omega_0(0)) \stackrel{(1)}{=} \varrho \cdot \left(\mathbf{E}[\omega_i(t)] - \varrho \right) \\ \stackrel{(3)}{=} \varrho(1 - \varrho) \cdot \left(\mathbf{E}[\omega_i(t)] - \mathbf{E}[\omega_i(t)] \right) \end{aligned}$$

$$\mathbf{Cov}(\omega_i(t), \, \omega_0(0)) = \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \tag{1}$$

$$\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)]. \tag{2}$$

$$\varrho = \mathbf{E}[\omega_i(t)] \cdot (1 - \varrho) + \mathbf{E}[\omega_i(t)] \cdot \varrho.$$
 (3)

So,

$$\begin{aligned} \mathbf{Cov}(\omega_i(t), \, \omega_0(0)) &\stackrel{(1)}{=} \varrho \cdot \left(\mathbf{E}[\omega_i(t)] - \varrho \right) \\ &\stackrel{(3)}{=} \varrho(1 - \varrho) \cdot \left(\mathbf{E}[\omega_i(t)] - \mathbf{E}[\omega_i(t)] \right) \\ &\stackrel{(2)}{=} \varrho(1 - \varrho) \cdot \mathbf{P}\{\mathbf{Q}(t) = i\}. \end{aligned}$$

$$\mathbf{Cov}(\omega_i(t), \, \omega_0(0)) = \mathbf{E}[\omega_i(t)] \cdot \varrho - \varrho^2. \tag{1}$$

$$\mathsf{P}\{\mathsf{Q}(t)=i\}=\mathsf{E}[\omega_i(t)]-\mathsf{E}[\omega_i(t)]. \tag{2}$$

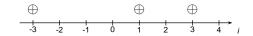
$$\varrho = \mathsf{E}[\omega_i(t)] \cdot (1 - \varrho) + \mathsf{E}[\omega_i(t)] \cdot \varrho.$$
 (3)

So,

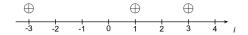
$$\begin{aligned} \mathbf{Cov}(\omega_i(t), \, \omega_0(0)) \stackrel{(1)}{=} \varrho \cdot \left(\mathbf{E}[\omega_i(t)] - \varrho \right) \\ \stackrel{(3)}{=} \varrho(1 - \varrho) \cdot \left(\mathbf{E}[\omega_i(t)] - \mathbf{E}[\omega_i(t)] \right) \\ \stackrel{(2)}{=} \varrho(1 - \varrho) \cdot \mathbf{P}\{Q(t) = i\}. \end{aligned}$$

The second class particle traces information propagation.

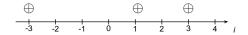
$A \oplus \ominus 0$ model



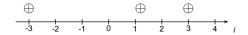
\oplus to the right: rate 1



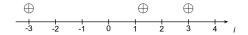
\oplus to the right: rate 1



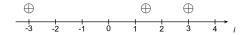
\oplus to the right: rate 1



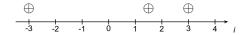
\oplus to the right: rate 1



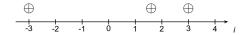
\oplus to the right: rate 1



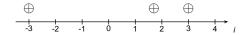
\oplus to the right: rate 1



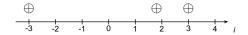
\oplus to the right: rate 1



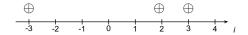
\oplus to the right: rate 1



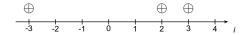
\oplus to the right: rate 1



\oplus to the right: rate 1

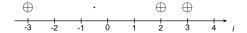


\oplus to the right: rate 1

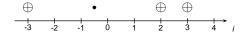


$A \oplus \ominus 0$ model

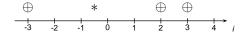
pair creation from vacuum: rate c



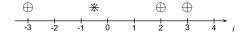
pair creation from vacuum: rate c



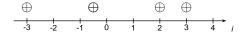
pair creation from vacuum: rate c



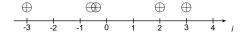
pair creation from vacuum: rate c



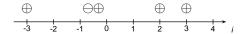
pair creation from vacuum: rate c



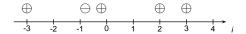
pair creation from vacuum: rate c



pair creation from vacuum: rate c



pair creation from vacuum: rate c



pair creation from vacuum: rate c

pair creation from vacuum: rate c

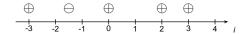
\ominus to the left: rate 1

\ominus to the left: rate 1

\ominus to the left: rate 1

\ominus to the left: rate 1

\ominus to the left: rate 1



\ominus to the left: rate 1

\ominus to the left: rate 1

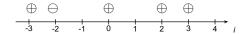


\ominus to the left: rate 1

\ominus to the left: rate 1

\ominus to the left: rate 1

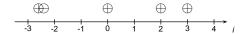
annihilation: rate 2



annihilation: rate 2

annihilation: rate 2

annihilation: rate 2



annihilation: rate 2

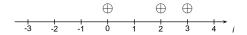
annihilation: rate 2

annihilation: rate 2



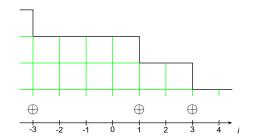
annihilation: rate 2

annihilation: rate 2



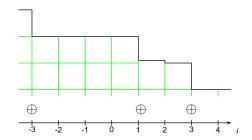
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



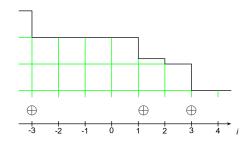
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



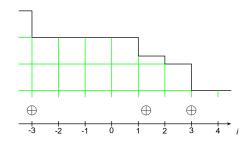
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



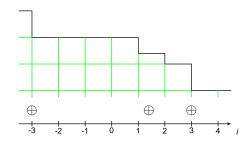
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



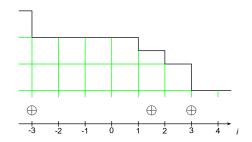
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



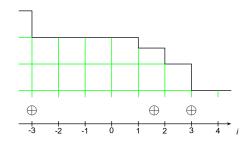
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



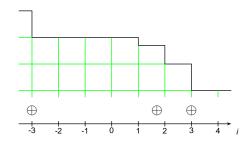
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



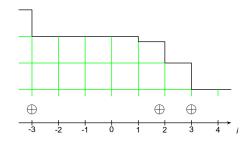
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



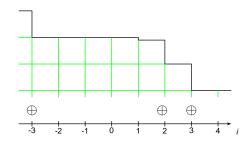
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



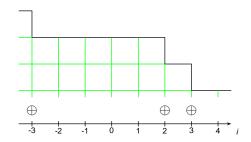
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



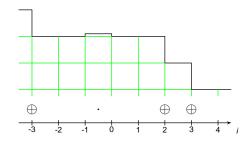
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



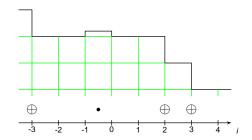
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



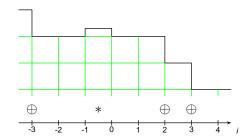
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



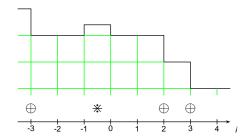
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



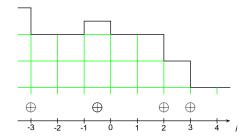
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



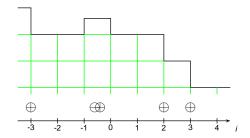
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



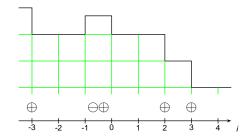
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



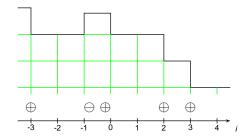
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



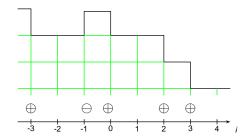
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



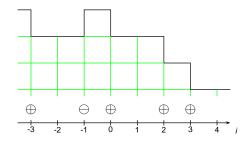
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



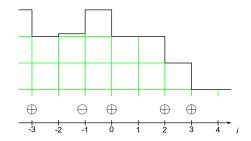
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



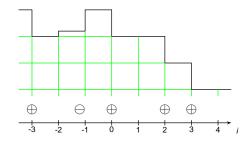
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



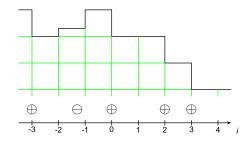
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



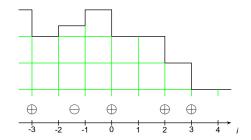
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



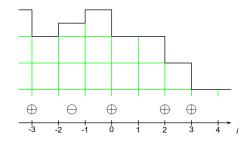
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



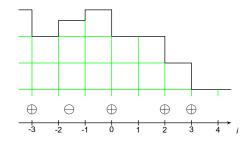
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



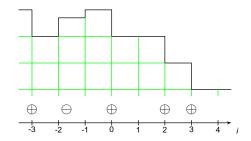
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



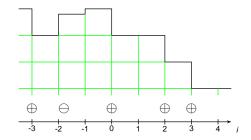
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



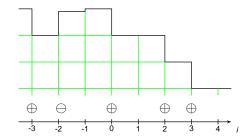
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



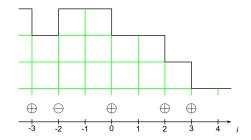
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



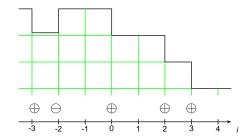
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



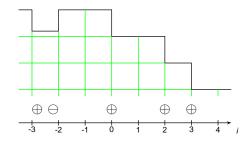
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



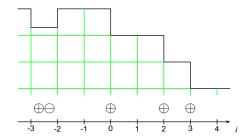
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



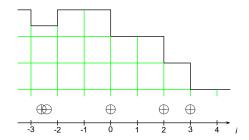
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



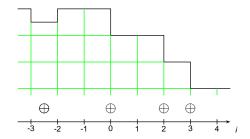
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



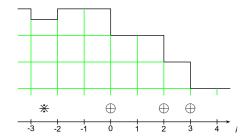
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



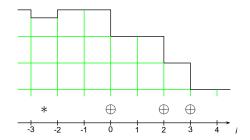
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



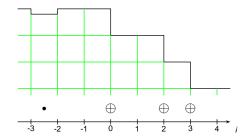
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



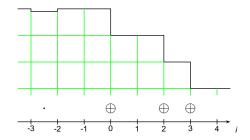
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



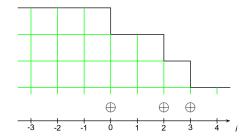
 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).



 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).

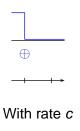


 $\omega_i = -1, 0, 1$: a family of product initial distribution.

Those product distributions are stationary (and non-reversible).

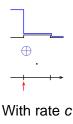
The second class particle

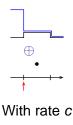
... works much like in TASEP for $c \le 1$. The interesting case:

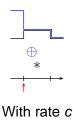


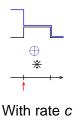
... works much like in TASEP for $c \le 1$. The interesting case:

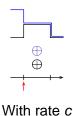
With rate c

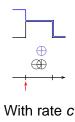


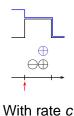


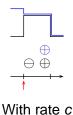


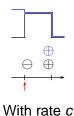






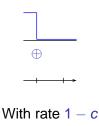




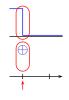


... works much like in TASEP for $c \le 1$. The interesting case:

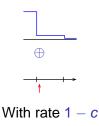
With rate c

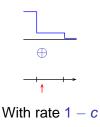


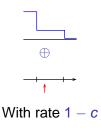
... works much like in TASEP for $c \le 1$. The interesting case:

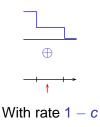


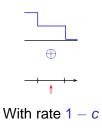
With rate 1 - c

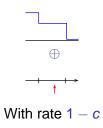


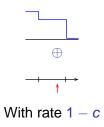


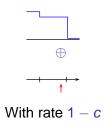


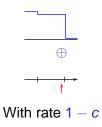




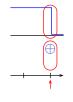






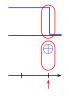


... works much like in TASEP for $c \leq 1$. The interesting case:



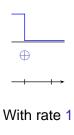
With rate 1 - c

... works much like in TASEP for $c \leq 1$. The interesting case:

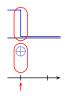


With rate 1 - c

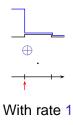
Attractivity

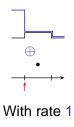


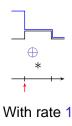
But, for c > 1:

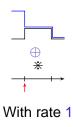


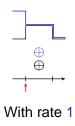
With rate 1

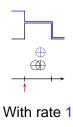


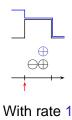


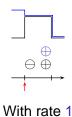


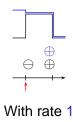








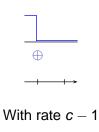




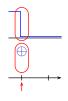
But, for c > 1:

With rate 1

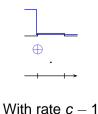
But, for c > 1:



But, for c > 1:



But, for c > 1:



But, for c > 1:

But, for c > 1:

But, for c > 1:

But, for c > 1:

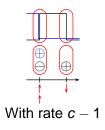
But, for c > 1:

But, for *c* > 1:

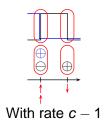
But, for *c* > 1:

But, for c > 1:

But, for *c* > 1:

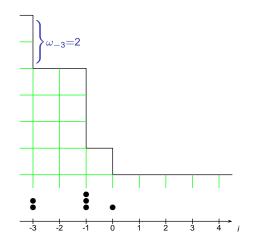


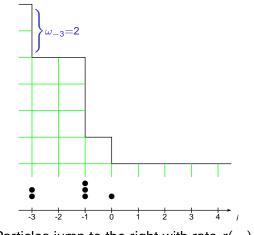
But, for *c* > 1:



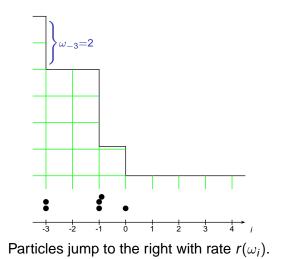
Non-attractivity

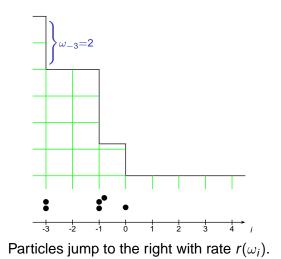


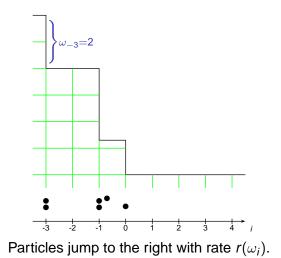


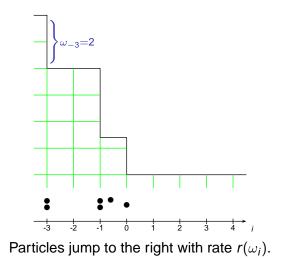


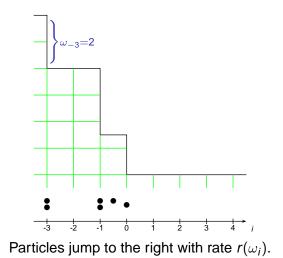
Particles jump to the right with rate $r(\omega_i)$.

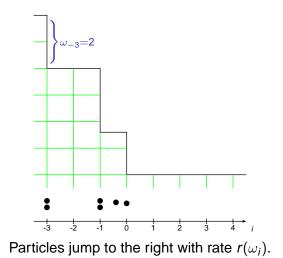


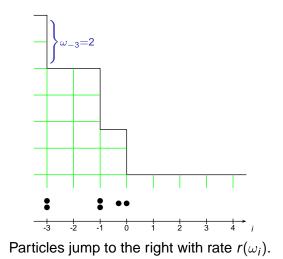


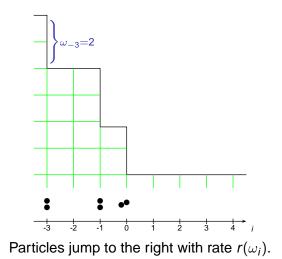


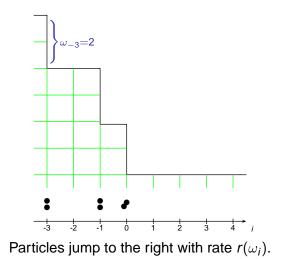


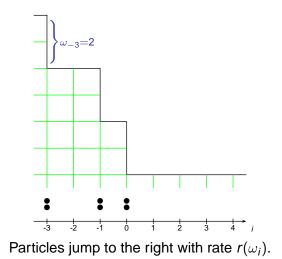


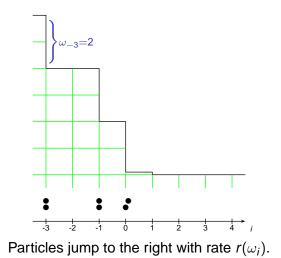


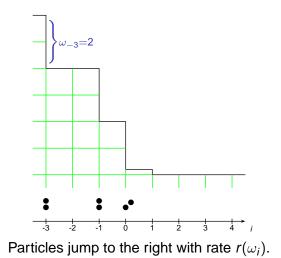


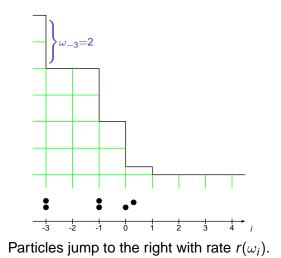


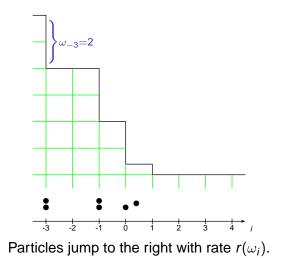


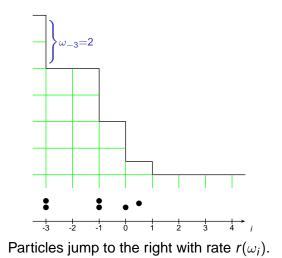


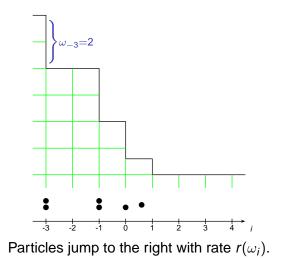


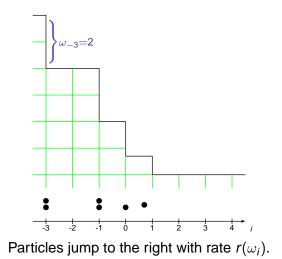


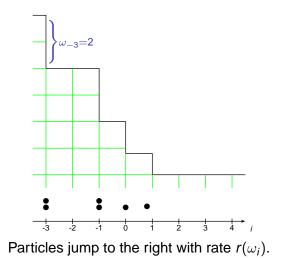


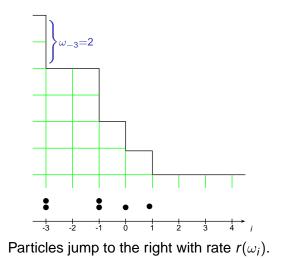


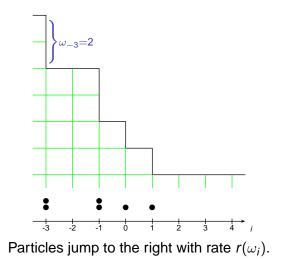


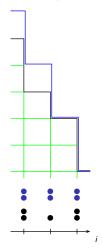


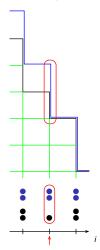


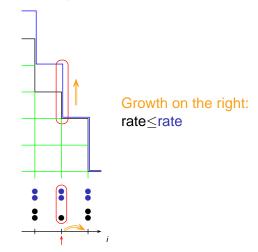




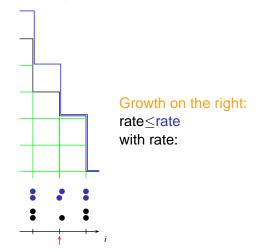


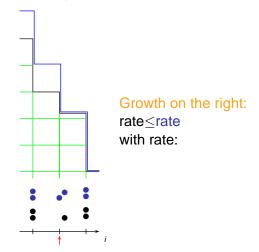


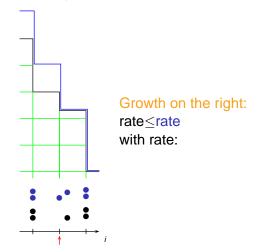


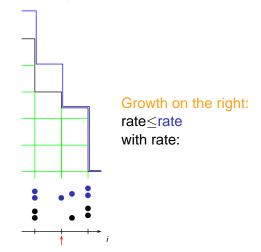


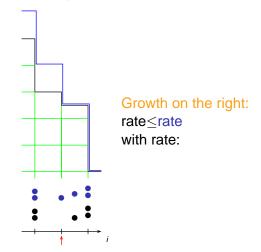


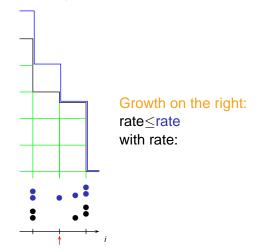


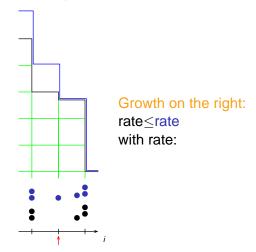


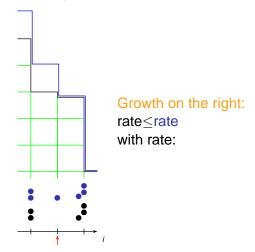


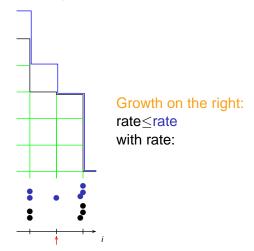


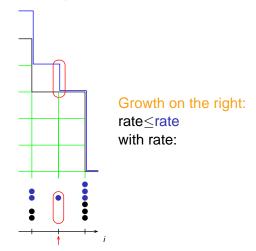


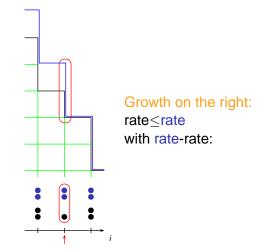


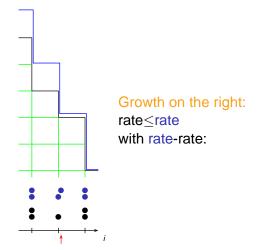


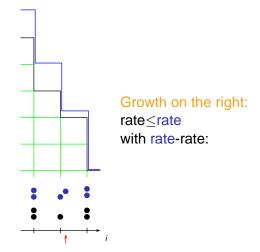




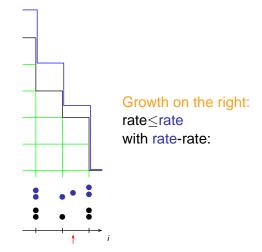


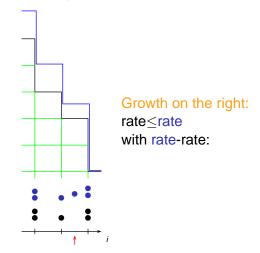


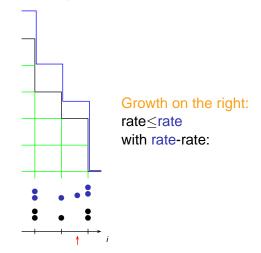


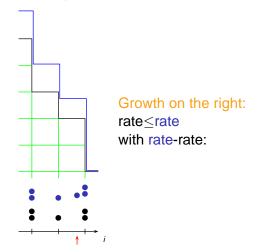


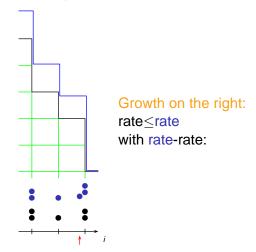


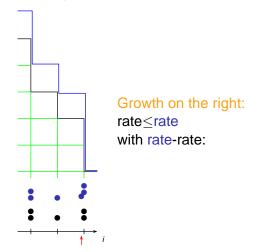


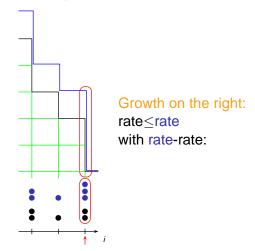


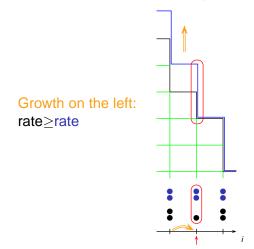


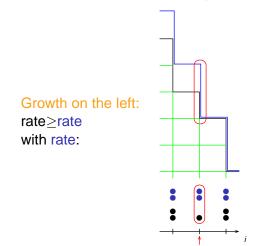


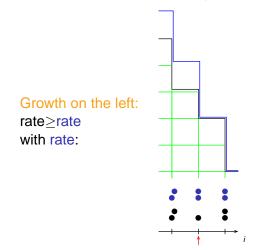


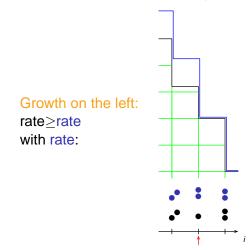


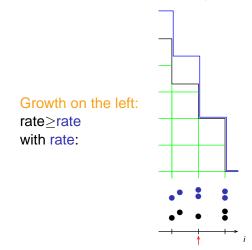


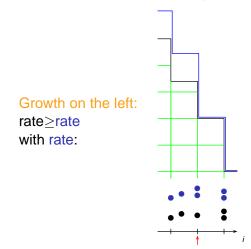


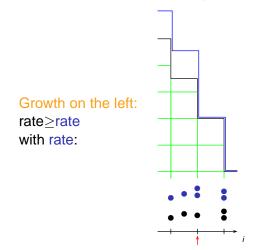


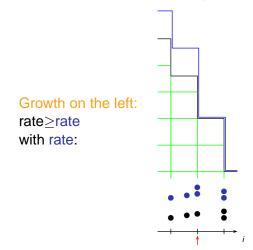


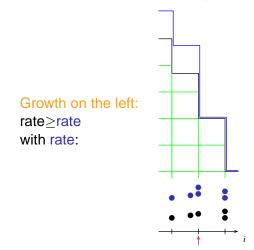


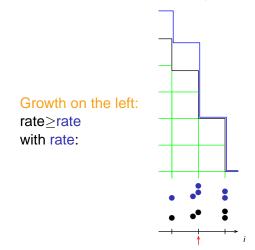


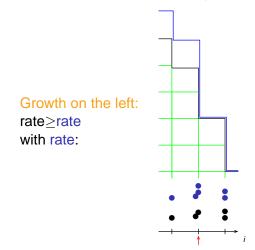


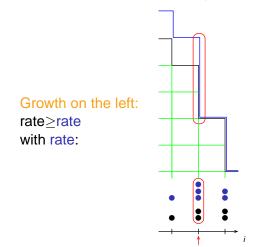


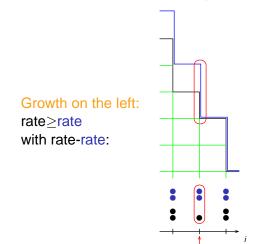


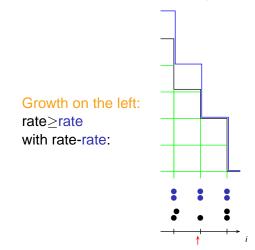


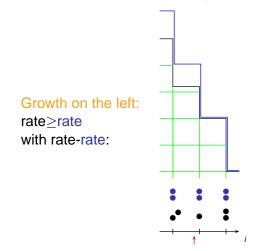


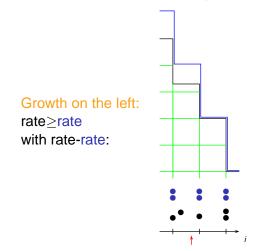


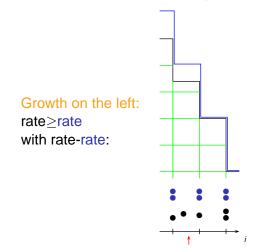


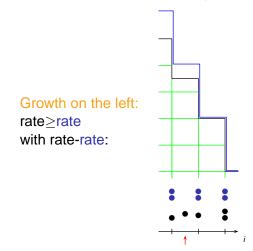


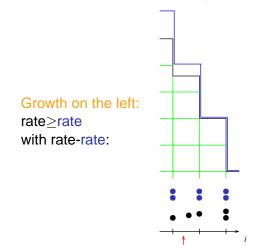


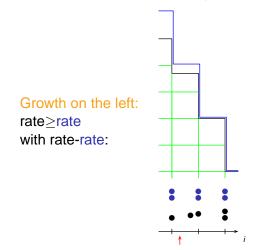


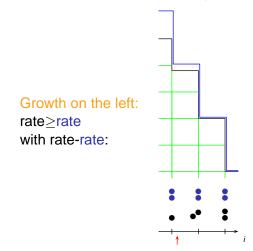


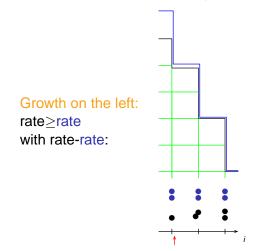


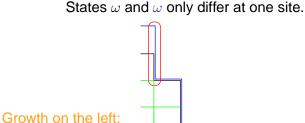




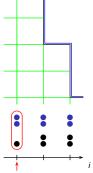


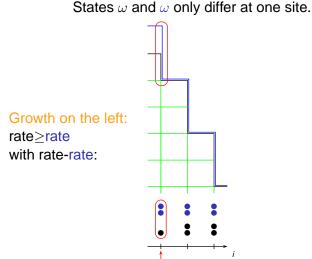




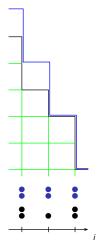


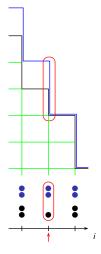
rate≥rate with rate-rate:

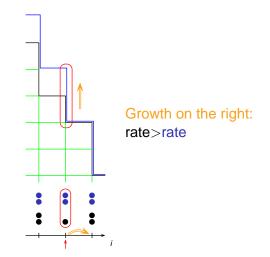


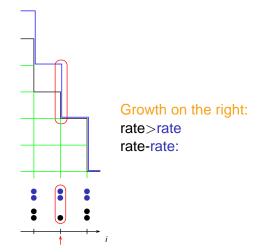


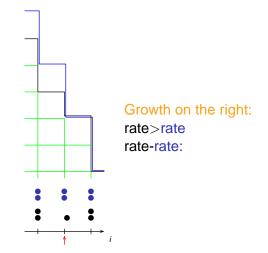
A single discrepancy t, the second class particle, is conserved.

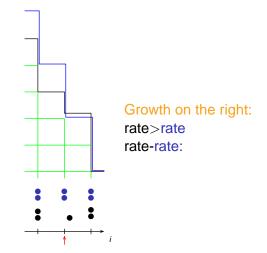


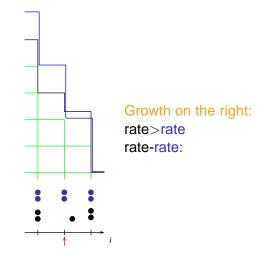


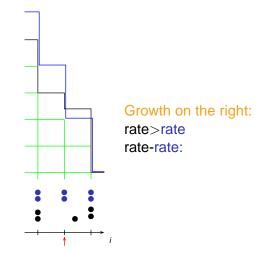


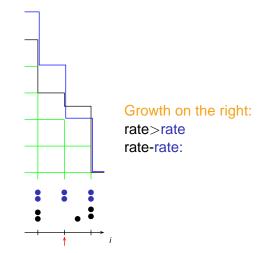


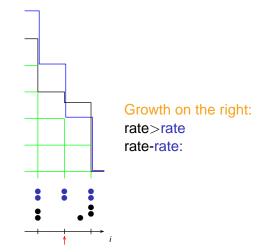


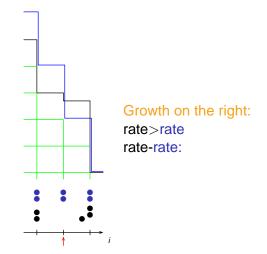


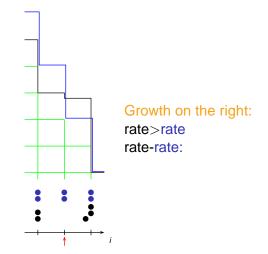


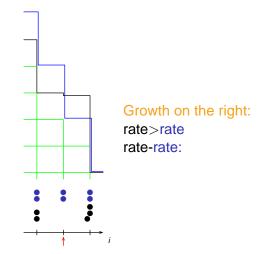


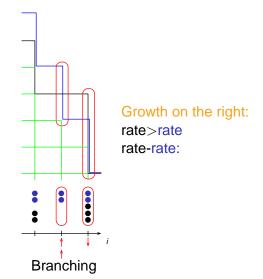


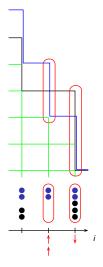


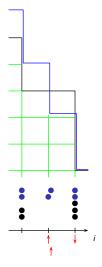


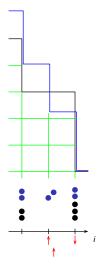


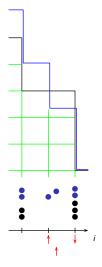


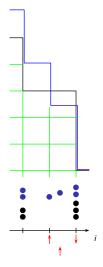


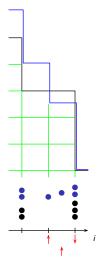


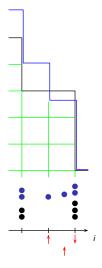


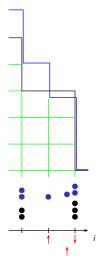


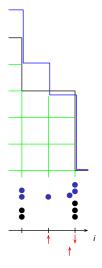


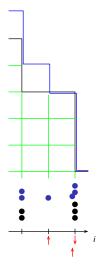


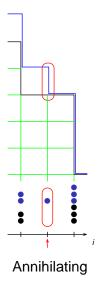


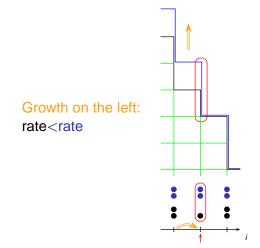


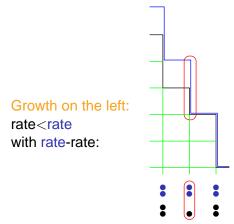


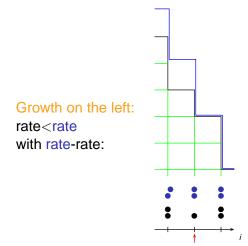


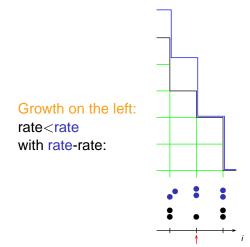


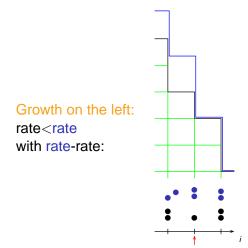


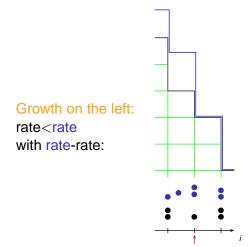


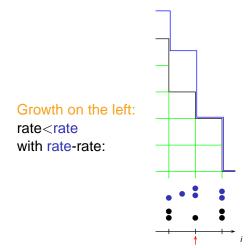


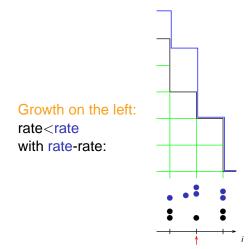


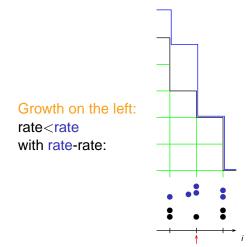


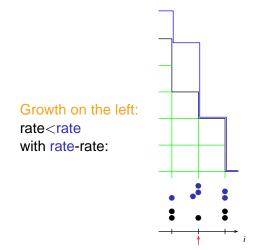


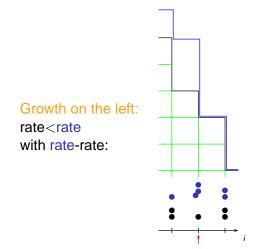


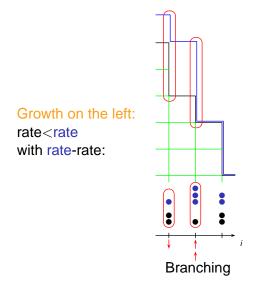


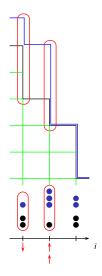


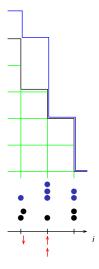


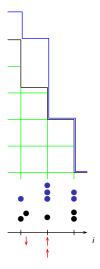


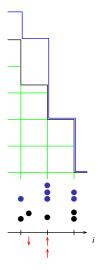


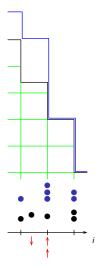


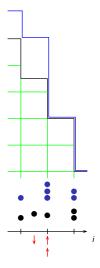


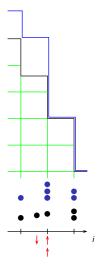


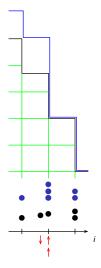


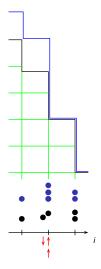


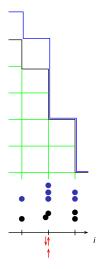


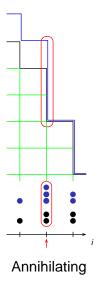












$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$
$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_i = 0\}t - \mathbf{P}\{\omega_i = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_i = 0\}t - \mathbf{P}\{\omega_i = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_i] - \varrho_i[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{\frac{X}{\varepsilon}}(\frac{T}{\varepsilon})$.

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{\frac{X}{\varepsilon}}(\frac{T}{\varepsilon})$.

$$\varepsilon \frac{\partial}{\partial T} \hat{\varrho} = \hat{\varrho}(T, X - \varepsilon) \big[1 - \hat{\varrho}(T, X) \big] - \hat{\varrho}(T, X) \big[1 - \hat{\varrho}(T, X + \varepsilon) \big]$$

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{X}(\frac{T}{\varepsilon})$.

$$\varepsilon \frac{\partial}{\partial T} \hat{\varrho} = \hat{\varrho}(T, X - \varepsilon) \big[1 - \hat{\varrho}(T, X) \big] - \hat{\varrho}(T, X) \big[1 - \hat{\varrho}(T, X + \varepsilon) \big]$$

$$\frac{\partial}{\partial T}\hat{\varrho} = \frac{\hat{\varrho}(T, X - \varepsilon) \left[1 - \hat{\varrho}(T, X)\right] - \hat{\varrho}(T, X) \left[1 - \hat{\varrho}(T, X + \varepsilon)\right]}{\varepsilon}$$

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{X}(\frac{T}{\varepsilon})$.

$$\varepsilon \frac{\partial}{\partial T} \hat{\varrho} = \hat{\varrho}(T, X - \varepsilon) \big[1 - \hat{\varrho}(T, X) \big] - \hat{\varrho}(T, X) \big[1 - \hat{\varrho}(T, X + \varepsilon) \big]$$

$$\frac{\partial}{\partial T}\hat{\varrho} = \frac{\hat{\varrho}(T, X - \varepsilon) \left[1 - \hat{\varrho}(T, X)\right] - \hat{\varrho}(T, X) \left[1 - \hat{\varrho}(T, X + \varepsilon)\right]}{\varepsilon}$$

$$\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0$$
 (Burgers eq.).

Burgers eq.: characteristics

 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$

Burgers eq.: characteristics

 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0$ Burgers eq.: nonlinear PDE.

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}\big(T,\,X(T)\big)=0$$

Burgers eq.: characteristics

 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

Burgers eq.: characteristics

 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0$ Burgers eq.: nonlinear PDE.

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + (1 - 2\hat{\varrho}) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

Burgers eq.: characteristics

 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + (1 - 2\hat{\varrho}) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

The characteristic velocity: $\dot{X}(T) = 1 - 2\hat{\varrho}$.

Burgers eq.: characteristics

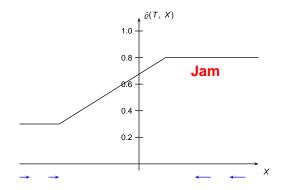
 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$

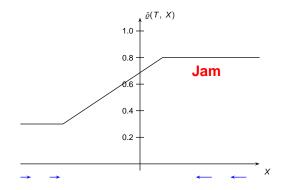
Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

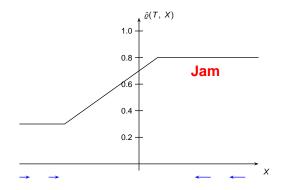
$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + (1 - 2\hat{\varrho}) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

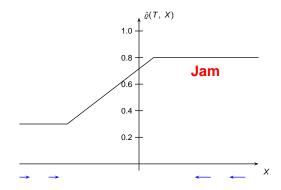
The characteristic velocity: $\dot{X}(T) = 1 - 2\hat{\varrho}$.

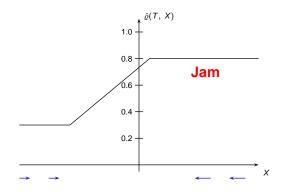
Second class particles are known to follow the characteristics.

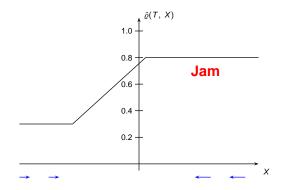


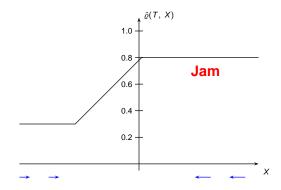


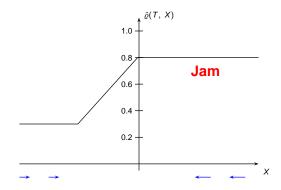


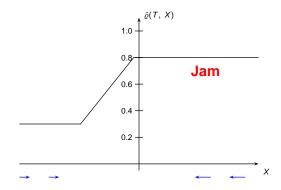


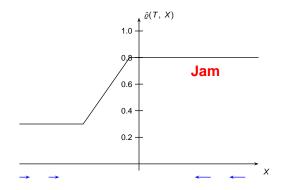


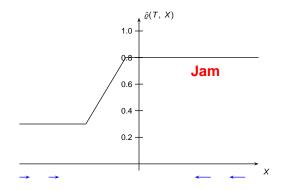


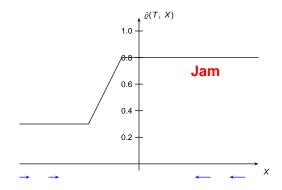


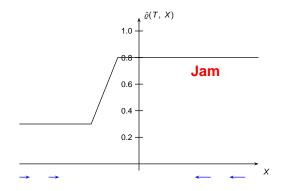


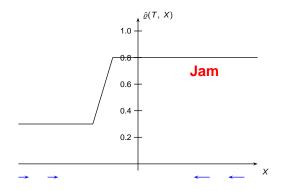


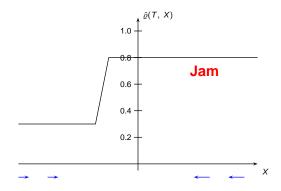


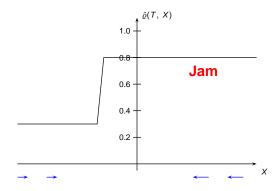


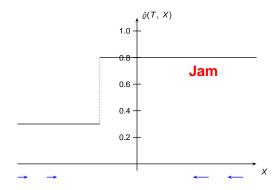


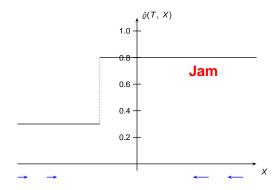


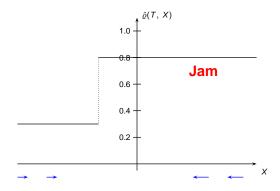


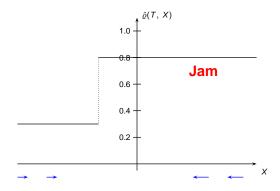


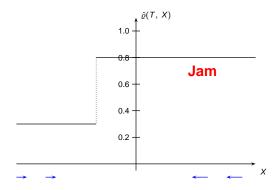


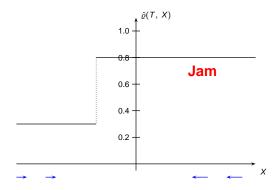


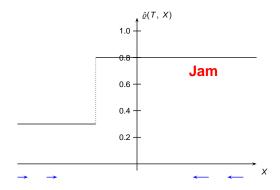


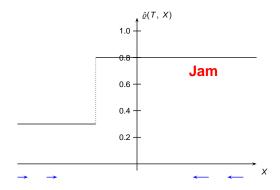


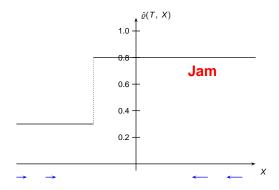


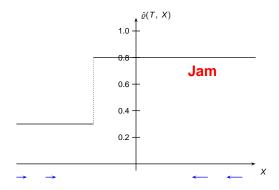


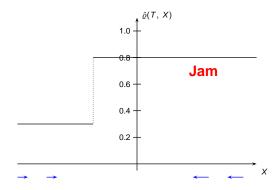


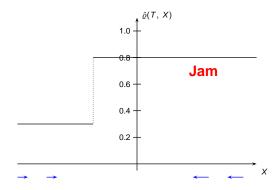


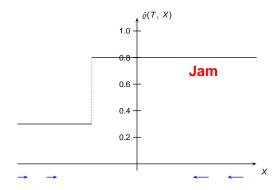


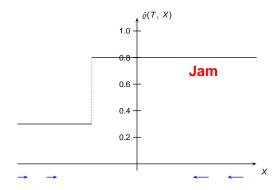


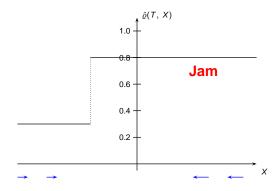


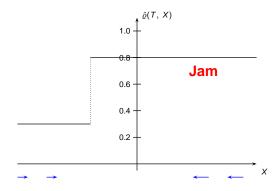


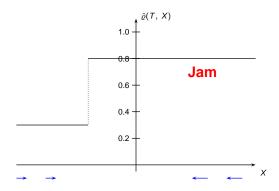


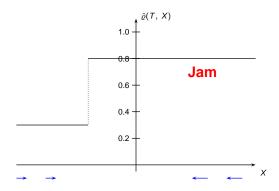


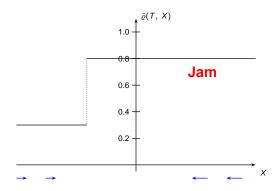


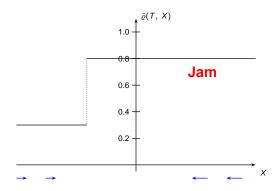


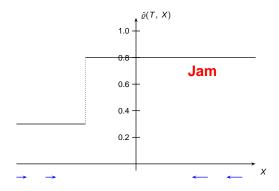


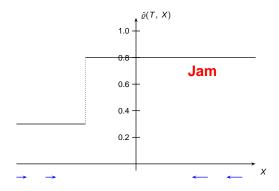


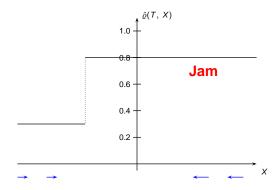


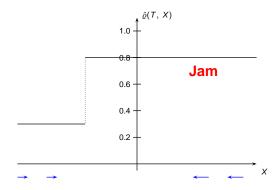


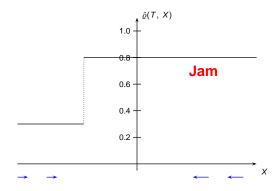


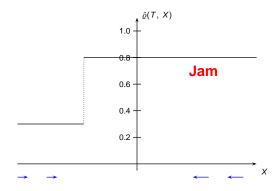


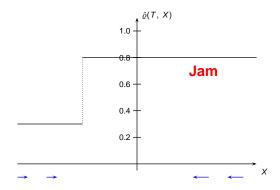


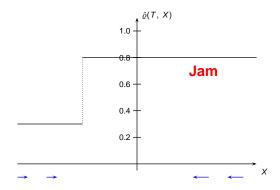


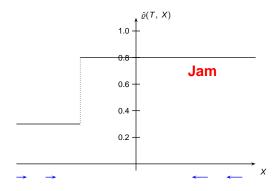


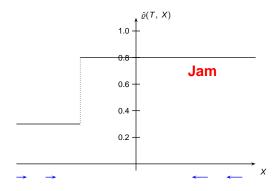


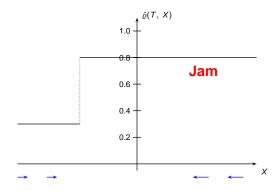


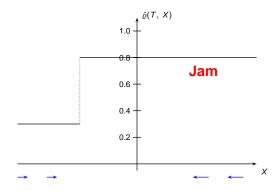


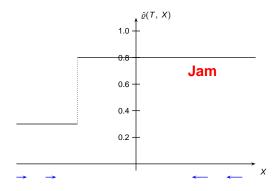


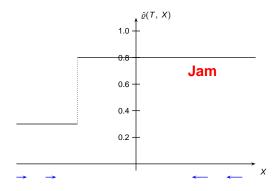


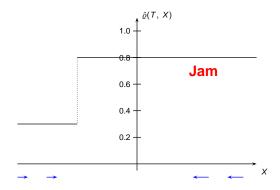


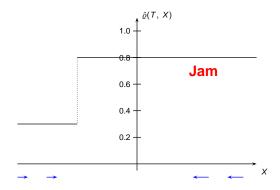


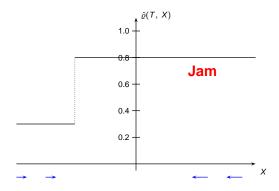


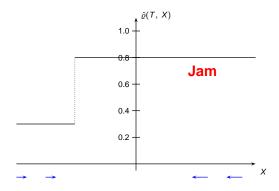


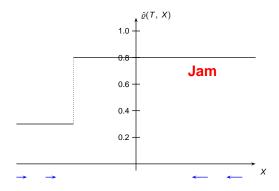


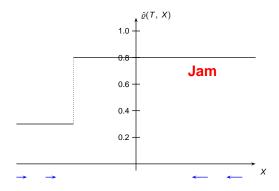


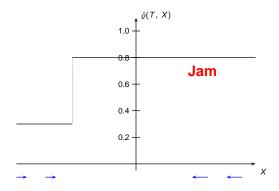


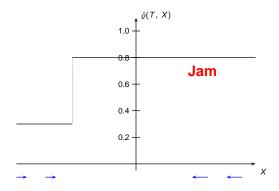


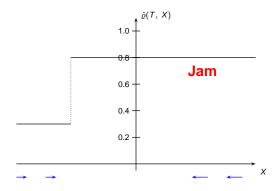


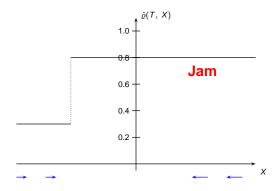


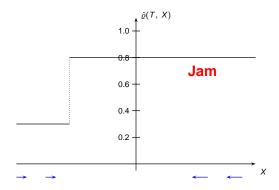


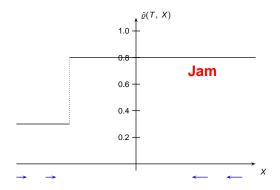






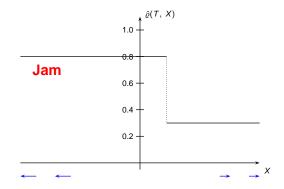


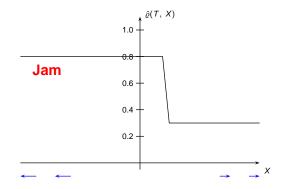


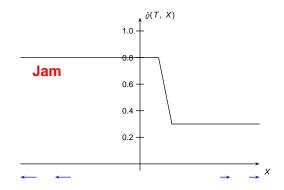


 $\dot{X}(T) = 1 - 2\hat{\varrho}$

Shock

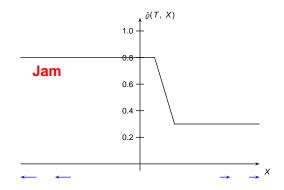


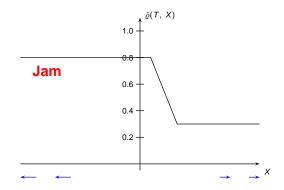


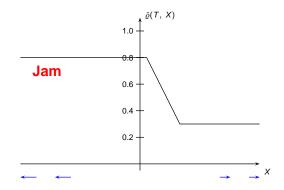


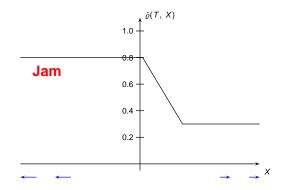
ocks Rarefaction waves

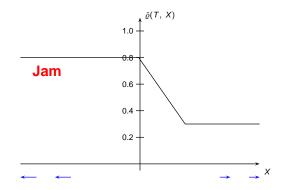
On large scales

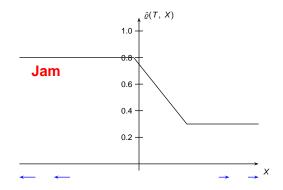


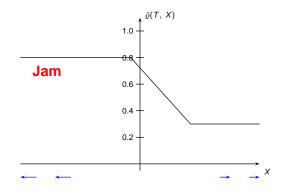


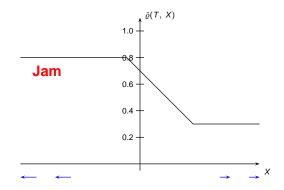


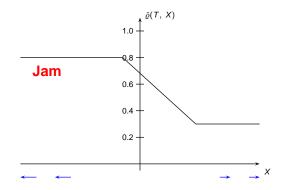


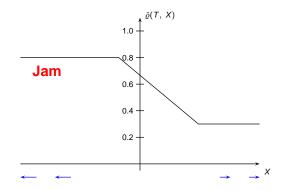


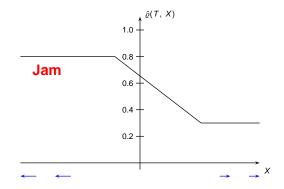


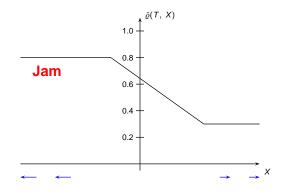


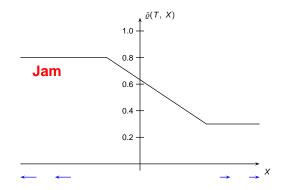


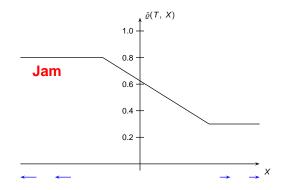


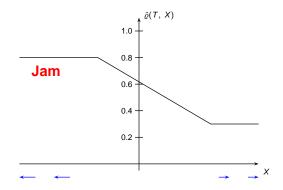


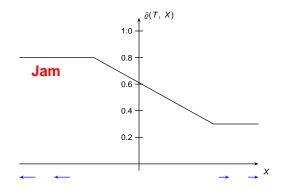


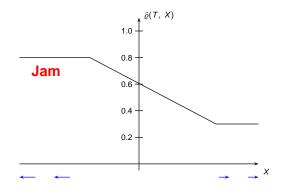


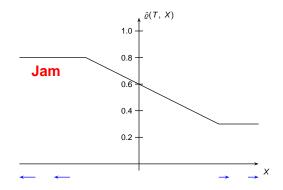


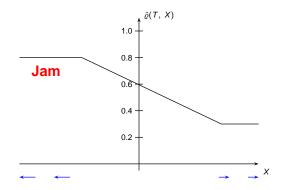


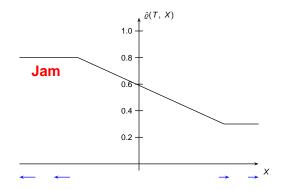


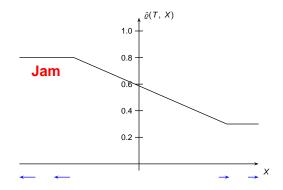


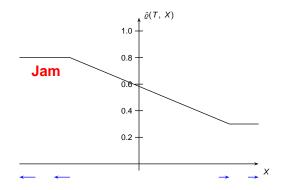


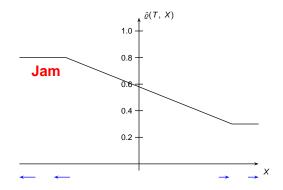


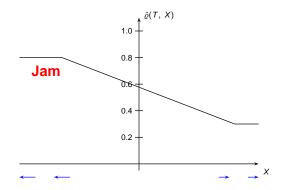


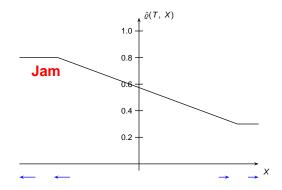


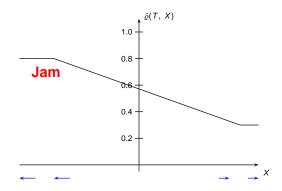


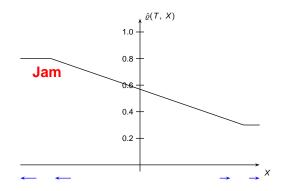


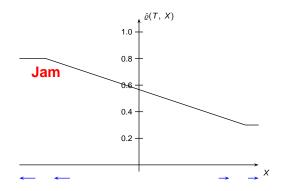


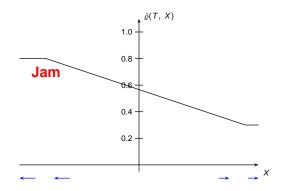












 $\dot{X}(T) = 1 - 2\hat{\varrho}$

Rarefaction wave

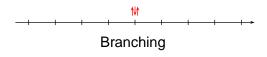
The second class particle: non-attractive case

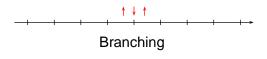
We are facing a

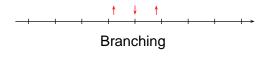
- nearest neighbour
- parity conserving
- branching
- annihilating process
- on the dynamic background of first class particles.

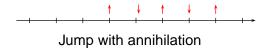
The aim is to control the number of \dagger and \downarrow 's. Idea from Bálint Tóth.

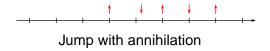
∽ homog2.avi

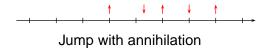


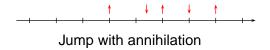


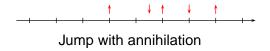


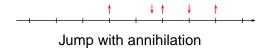


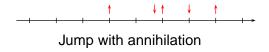


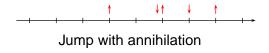


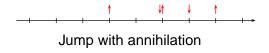


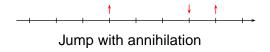


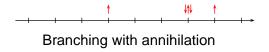




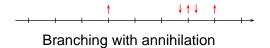








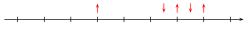




A model we can say something about:

Branching with annihilation

A model we can say something about:



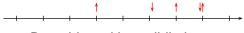
Branching with annihilation

A model we can say something about:

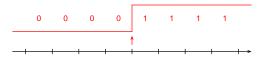
A model we can say something about:

A model we can say something about:

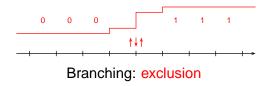
A model we can say something about:

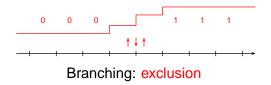


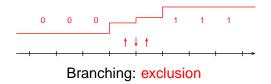
A model we can say something about:

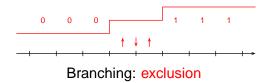


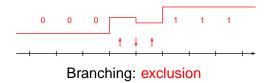


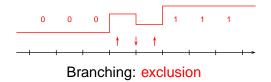


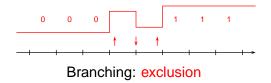


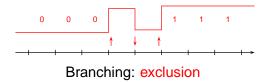


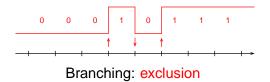


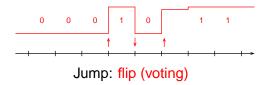


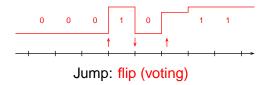


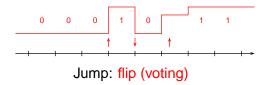


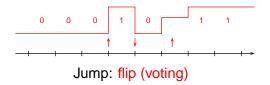


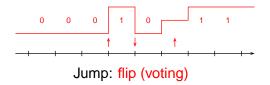


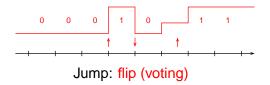


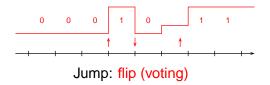


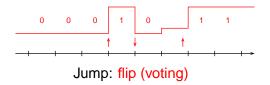


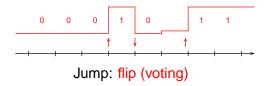


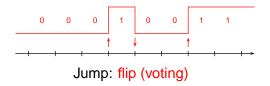


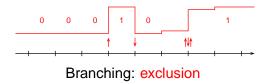


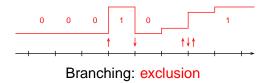


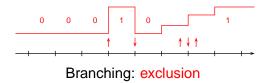


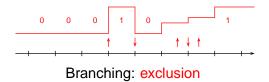


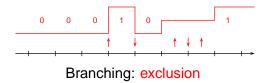


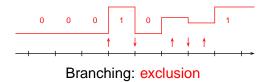


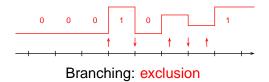


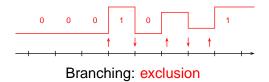


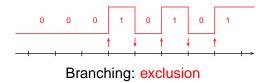




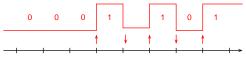


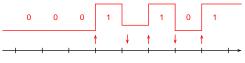






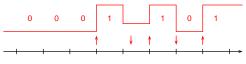
A model we can say something about:



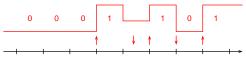


Jump with annihilation: flip (voting)

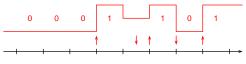
A model we can say something about:



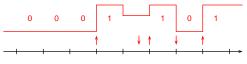
A model we can say something about:



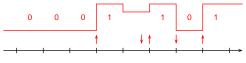
A model we can say something about:



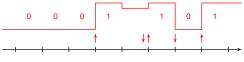
A model we can say something about:



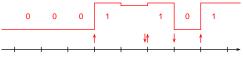
A model we can say something about:



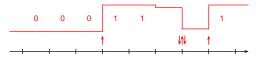
A model we can say something about:



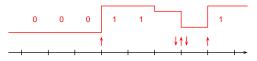
A model we can say something about:



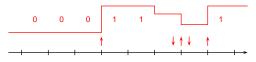
Jump with annihilation: flip (voting)



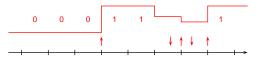
Branching with annihilation: exclusion



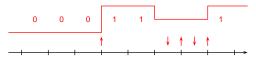
Branching with annihilation: exclusion



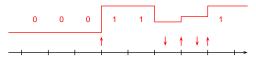
Branching with annihilation: exclusion



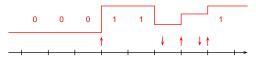
Branching with annihilation: exclusion



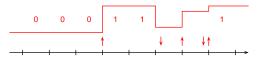
Branching with annihilation: exclusion



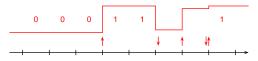
Branching with annihilation: exclusion



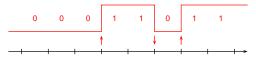
Branching with annihilation: exclusion



Branching with annihilation: exclusion

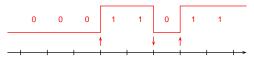


Branching with annihilation: exclusion



Branching with annihilation: exclusion

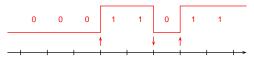
A model we can say something about:



Branching with annihilation: exclusion

Double branching-annihilating random walks (DBARW)

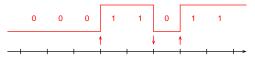
A model we can say something about:



Branching with annihilation: exclusion

- Double branching-annihilating random walks (DBARW)
- ^'s and \is always alternate;

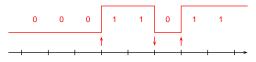
A model we can say something about:



Branching with annihilation: exclusion

- Double branching-annihilating random walks (DBARW)
- t's and is always alternate;
- their algebraic sum is constant in time.

A model we can say something about:



Branching with annihilation: exclusion

- Double branching-annihilating random walks (DBARW)
- ^'s and \is always alternate;
- their algebraic sum is constant in time.
- Nothing is monotone.

A model we can say something about:

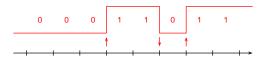


Branching with annihilation: exclusion

- Double branching-annihilating random walks (DBARW)
- I's and I's always alternate;
- their algebraic sum is constant in time.
- Nothing is monotone.

Question: Is the process, as seen by the leftmost 1, recurrent?

First instance of DBARW we could find in the literature: A. Sudbury '90. Positive recurrence: V. Belitsky, P.A. Ferrari, M.V. Menshikov and S.Y. Popov '01; A. Sturm and J.M. Swart '08. *Results are very sensitive to the details of branching.*



First instance of DBARW we could find in the literature: A. Sudbury '90. Positive recurrence: V. Belitsky, P.A. Ferrari, M.V. Menshikov and S.Y. Popov '01; A. Sturm and J.M. Swart '08. *Results are very sensitive to the details of branching.*

But: true second class particles interact (*common background* of first class particles).

First instance of DBARW we could find in the literature: A. Sudbury '90. Positive recurrence: V. Belitsky, P.A. Ferrari, M.V. Menshikov and S.Y. Popov '01; A. Sturm and J.M. Swart '08. *Results are very sensitive to the details of branching.*

But: true second class particles interact (*common background* of first class particles).

→ Repeat the Sturm-Swart proof with configuration dependent jump rates. Jump rates can depend on the whole configuration.

Conditions on the jumping and branching rates:

Translation invariance.

- Translation invariance.
- Uniform lower bound on jumping rates: no particles are stuck.

- Translation invariance.
- Uniform lower bound on jumping rates: no particles are stuck.
- Bounds on the branching rates.

- Translation invariance.
- Uniform lower bound on jumping rates: no particles are stuck.
- Bounds on the branching rates.
- ▶ Bounds on the difference for branching rates of t's and ↓'s.

- Translation invariance.
- Uniform lower bound on jumping rates: no particles are stuck.
- Bounds on the branching rates.
- ▶ Bounds on the difference for branching rates of *t*'s and *t*'s.
- Weak dependence on particles far away.

- Translation invariance.
- Uniform lower bound on jumping rates: no particles are stuck.
- Bounds on the branching rates.
- ▶ Bounds on the difference for branching rates of *t*'s and *t*'s.
- Weak dependence on particles far away.
- No repulsion in the jumping rates between particles. (A bit of repulsion locally is still OK.)

Theorem

Then, starting from a single t:

 The process takes finitely many steps in finite time (construction).

Theorem

- The process takes finitely many steps in finite time (construction).
- The width of the process has all moments finite.

Theorem

- The process takes finitely many steps in finite time (construction).
- The width of the process has all moments finite.
- The process as seen from the leftmost t is positive recurrent.

Theorem

- The process takes finitely many steps in finite time (construction).
- The width of the process has all moments finite.
- The process as seen from the leftmost t is positive recurrent.
- The stationary distribution sees a finite expected number of particles.

Theorem

- The process takes finitely many steps in finite time (construction).
- The width of the process has all moments finite.
- The process as seen from the leftmost t is positive recurrent.
- The stationary distribution sees a finite expected number of particles.
- (Extension of all this to non nearest neighbour symmetric branching.)

An example

- Branching rates: constant.
- Jump rate to the right:

$$\frac{1}{2} + \sum_{\text{particle on right}} \frac{1}{\text{distance}^{\alpha}},$$

jump rate to the left:

 $\alpha > 1.$

An example

- Branching rates: constant.
- Jump rate to the right:

$$\frac{1}{2} + \sum_{\text{particle on right}} \frac{1}{\text{distance}^{\alpha}},$$

jump rate to the left:
$$\frac{1}{2} + \sum_{\text{particle on left}} \frac{1}{\text{distance}^{\alpha}},$$

α > **1**.

Unfortunately we do not seem to be there yet... This is not covered at the moment. But a small modification that respects parity in a peculiar way works.

Another example

- Branching rates: constant.
- Jump rate to the right:

$$rac{1}{2} + \sum_{ ext{gaps } L_i ext{ on the right }} rac{1}{L_i^{lpha}}$$

jump rate to the left:

$$\frac{1}{2} + \sum_{\text{gaps } L_i \text{ on the left }} \frac{1}{L_i^{\alpha}}$$

 $\alpha >$ 1. (\sim like a rank dependent model but decreasing with distance.)

Another example

- Branching rates: constant.
- Jump rate to the right:

$$rac{1}{2} + \sum_{ ext{gaps } L_i ext{ on the right }} rac{1}{L_i^{lpha}}$$

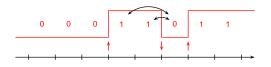
jump rate to the left:

$$\frac{1}{2} + \sum_{\text{gaps } L_i \text{ on the left }} \frac{1}{L_i^{\alpha}}$$

 $\alpha >$ 1. (\sim like a rank dependent model but decreasing with distance.)

This one is fine.

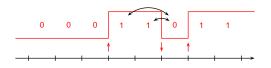
Two words on the proof



Main tool 1: the number of inversions, i.e., wrongly ordered 1-0 pairs.

If there are too many of them, the generator is negative on the number of these pairs.

Two words on the proof



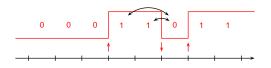
Main tool 1: the number of inversions, i.e., wrongly ordered 1-0 pairs.

If there are too many of them, the generator is negative on the number of these pairs.

<u>Main tool 2:</u> if the process is not tight, then on the long run there cannot be any finite number of particles:

$$\frac{1}{T} \int_0^T \mathbf{P}\{\text{number}(t) < N\} \, \mathrm{d}t \to 0 \qquad (\forall N).$$

Two words on the proof



Main tool 1: the number of inversions, i.e., wrongly ordered 1-0 pairs.

If there are too many of them, the generator is negative on the number of these pairs.

<u>Main tool 2:</u> if the process is not tight, then on the long run there cannot be any finite number of particles:

$$\frac{1}{T} \int_0^T \mathbf{P}\{\text{number}(t) < N\} \, \mathrm{d}t \to \mathbf{0} \qquad (\forall N).$$

Thank you.