A gentle introduction to the Exclusion Process: traffic jams, hydrodynamics and fluctuations

Márton Balázs

School of Mathematics
University of Bristol, UK

BSM Colloquium, 23 July, 2014

Traffic jams
Arriving to a traffic jam
Leaving a traffic jam
Being ageless

Totally Asymmetric Simple Exclusion Process
Stationary distribution
The infinite model

On large scales
Start of the traffic jam
End of the traffic jam
Surprise!

Arriving to a traffic jam

岡 舟 舟

Arriving to a traffic jam

Arriving to a traffic jam

E

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

亿ー

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

இி

Arriving to a traffic jam

ஷー

Arriving to a traffic jam

Arriving to a traffic jam

E
कー

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

なー

Arriving to a traffic jam

亿安

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Arriving to a traffic jam

Arriving to a traffic jam

亿0

雨 我 乐

Arriving to a traffic jam

囚े

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

た

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

ती ती ति

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

Arriving to a traffic jam

We notice the slow cars \rightsquigarrow strong braking immediately.
Arriving to a traffic jam is always sharp.

Arriving to a traffic jam

We notice the slow cars \rightsquigarrow strong braking immediately.
Arriving to a traffic jam is always sharp.
This is one aspect that makes motorways dangerous places.

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Leaving a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Leaving a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Leaving a traffic jam

Col

Leaving a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Leaving a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Leaving a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Leaving a traffic jam

Traffic jams Ageless TASEP Large scales Surprise! Start End

Leaving a traffic jam

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam

Continuous, long acceleration for those starting from the rear
Leaving a traffic jam is always soft, "blurry".

Leaving a traffic jam

Continuous, long acceleration for those starting from the rear
Leaving a traffic jam is always soft, "blurry".
Why is there such a difference between the two ends of a traffic jam?

Leaving a traffic jam

Continuous, long acceleration for those starting from the rear
Leaving a traffic jam is always soft, "blurry".
Why is there such a difference between the two ends of a traffic jam?

Totally asymmetric simple exclusion process: an explanation

Being ageless

We first seek a random time that does not remember its past.
Let $\tau>0$ be a random time such that

$$
\mathbf{P}\{\tau>t\}=\mathrm{e}^{-t} \quad \text { for all } t>0 . \quad \text { (Exponential distribution) }
$$

Being ageless

We first seek a random time that does not remember its past.
Let $\tau>0$ be a random time such that

$$
\mathbf{P}\{\tau>t\}=\mathrm{e}^{-t} \quad \text { for all } t>0 . \quad \text { (Exponential distribution) }
$$

Suppose that this time has not passed yet at t. What is the probability that it will not pass before another s seconds?
That is, out of those cases when $\tau>t$ occurs, in what
percentage will $\tau>t+s$ also occur?

Being ageless

We first seek a random time that does not remember its past.
Let $\tau>0$ be a random time such that

$$
\mathbf{P}\{\tau>t\}=\mathrm{e}^{-t} \quad \text { for all } t>0 . \quad \text { (Exponential distribution) }
$$

Suppose that this time has not passed yet at t. What is the probability that it will not pass before another s seconds?
That is, out of those cases when $\tau>t$ occurs, in what
percentage will $\tau>t+s$ also occur?
The answer is:

$$
\frac{\mathbf{P}\{\tau>t+s\}}{\mathbf{P}\{\tau>t\}}=\frac{\mathrm{e}^{-(t+s)}}{\mathrm{e}^{-t}}=\mathrm{e}^{-s}
$$

Being ageless

We first seek a random time that does not remember its past.
Let $\tau>0$ be a random time such that

$$
\mathbf{P}\{\tau>t\}=\mathrm{e}^{-t} \quad \text { for all } t>0 . \quad \text { (Exponential distribution) }
$$

Suppose that this time has not passed yet at t. What is the probability that it will not pass before another s seconds?
That is, out of those cases when $\tau>t$ occurs, in what
percentage will $\tau>t+s$ also occur?
The answer is:

$$
\frac{\mathbf{P}\{\tau>t+\boldsymbol{s}\}}{\mathbf{P}\{\tau>t\}}=\frac{\mathrm{e}^{-(t+s)}}{\mathrm{e}^{-t}}=\mathrm{e}^{-s}=\mathbb{P}\{\tau>s\} .
$$

The same as $\mathbf{P}\{\tau>s\}$, regardless of t !

Being ageless

We first seek a random time that does not remember its past. Let $\tau>0$ be a random time such that

$$
\mathbf{P}\{\tau>t\}=\mathrm{e}^{-t} \quad \text { for all } t>0 . \quad \text { (Exponential distribution) }
$$

Suppose that this time has not passed yet at t. What is the probability that it will not pass before another s seconds?
That is, out of those cases when $\tau>t$ occurs, in what
percentage will $\tau>t+s$ also occur?
The answer is:

$$
\frac{\mathbf{P}\{\tau>t+\boldsymbol{s}\}}{\mathbf{P}\{\tau>t\}}=\frac{\mathrm{e}^{-(t+s)}}{\mathrm{e}^{-t}}=\mathrm{e}^{-s}=\mathbf{P}\{\tau>s\} .
$$

The same as $\mathbf{P}\{\tau>s\}$, regardless of t !
We have found the secret of being ageless.

Being ageless

Q \leftarrow This will be the ageless alarm clock that rings at time τ

Being ageless

Q \leftarrow This will be the ageless alarm clock that rings at time τ
\rightsquigarrow What is the probability that an rings within a small time t ?

Being ageless

Q \leftarrow This will be the ageless alarm clock that rings at time τ
\rightsquigarrow What is the probability that an rings within a small time t ?

$$
\mathbf{P}\{\tau \leq t\}=1-\mathbf{P}\{\tau>t\}=1-\mathrm{e}^{-t}=1-(1-t)+\mathfrak{o}(t)=t+\mathfrak{o}(t)
$$

Being ageless

Q2 \leftarrow This will be the ageless alarm clock that rings at time τ
\rightsquigarrow What is the probability that an rings within a small time t ?

$$
\mathbf{P}\{\tau \leq t\}=1-\mathbf{P}\{\tau>t\}=1-\mathrm{e}^{-t}=1-(1-t)+\mathfrak{o}(t)=t+\mathfrak{o}(t)
$$

\rightsquigarrow What is the probability that two independent (2) ${ }^{2}$ both ring within a small time t ?

Being ageless

Q $<$: This will be the ageless alarm clock that rings at time τ
\rightsquigarrow What is the probability that an \mathcal{S}^{2} rings within a small time t ?

$$
\mathbf{P}\{\tau \leq t\}=1-\mathbf{P}\{\tau>t\}=1-\mathrm{e}^{-t}=1-(1-t)+\mathfrak{o}(t)=t+\mathfrak{o}(t) .
$$

\rightsquigarrow What is the probability that two independent \mathbb{S}_{α}^{2} both ring within a small time t ?

$$
\mathbf{P}\{\tau \leq t\} \cdot \mathbf{P}\{\tau \leq t\}=t^{2}+\mathfrak{o}(t)=\mathfrak{o}(t) .
$$

Being ageless

Q $Q^{2} \leftarrow$ This will be the ageless alarm clock that rings at time τ
\rightsquigarrow What is the probability that an $\alpha_{~}$ rings within a small time t ?

$$
\mathbf{P}\{\tau \leq t\}=1-\mathbf{P}\{\tau>t\}=1-\mathrm{e}^{-t}=1-(1-t)+\mathfrak{o}(t)=t+\mathfrak{o}(t) .
$$

\rightsquigarrow What is the probability that two independent \mathbb{S}_{α}^{2} both ring within a small time t ?

$$
\mathbf{P}\{\tau \leq t\} \cdot \mathbf{P}\{\tau \leq t\}=t^{2}+\mathfrak{o}(t)=\mathfrak{o}(t) .
$$

\rightarrow More (3)'s, even smaller probability.

Being ageless

\rightsquigarrow What is the probability that none of k independent ${ }^{2}$'s ring within a small time t ?

Being ageless

\rightsquigarrow What is the probability that none of k independent ${ }^{2}$'s ring within a small time t ?

$$
\begin{aligned}
\mathbf{P}\{\text { none of them ring }\} & =\mathbf{P}\{\tau>t\}^{k} \\
& =\mathrm{e}^{-k t} \\
& =(1-k t)+\mathfrak{o}(t) .
\end{aligned}
$$

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ST 2. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{2}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{2}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{3}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{2}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{3}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{2}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{3}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{2}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own ${ }^{3}$. When that rings, the ball tries to jump to the right.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own Shen that rings, the ball tries to jump to the right. But sometimes it's blocked.

The Totally Asymmetric Simple Exclusion Process

TASEP

m balls in N possible slots.
Each listening to its own (3). When that rings, the ball tries to jump to the right. But sometimes it's blocked. Ageless, independent Q 2 's \Rightarrow if we know the present, no need to know the past. Markov property, makes things handy.

Stationary distribution

Random process \rightsquigarrow need to talk about distributions.

Stationary distribution

Random process \rightsquigarrow need to talk about distributions.
What is the stationary distribution the one that's unchanged in time?

Stationary distribution

Random process \rightsquigarrow need to talk about distributions.
What is the stationary distribution the one that's unchanged in time?

Theorem
With N and m fixed, the distribution that gives equal chance to each (m-ball) configuration, is stationary.

Stationary distribution

Random process \rightsquigarrow need to talk about distributions.
What is the stationary distribution the one that's unchanged in time?

Theorem
With N and m fixed, the distribution that gives equal chance to each (m-ball) configuration, is stationary.
$1^{\text {st }}$ remark.
In this case every configuration occurs with probability $1 /\binom{N}{m}$.

Stationary distribution

Random process \rightsquigarrow need to talk about distributions.
What is the stationary distribution the one that's unchanged in time?

Theorem
With N and m fixed, the distribution that gives equal chance to each (m-ball) configuration, is stationary.
$1^{\text {st }}$ remark.
In this case every configuration occurs with probability $1 /\binom{N}{m}$.
$2^{\text {nd }}$ remark.
With fixed N, m, there is no other stationary distribution.

Stationary distribution
Almost proof

Stationary distribution

Almost proof

Stationary distribution

Almost proof

Stationary distribution

Almost proof

pre-images of ω

$k=2$ pre-images

Stationary distribution

Almost proof

pre-images of ω

$k=2$ pre-images

The number of critical clocks for $\omega=$ the number of pre-images of $\omega=k$

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t ?

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t ?

$$
\mathbf{P}\{\omega \text { at time } s+t\}
$$

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t ?
$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\{\omega$ at time s and no jumps within time $t\}$
$+\mathbf{P}\{$ was a pre-image of ω at time s, and jumps to $\omega\}$
$+\mathfrak{o}(t)$ (at least two jumps occur within the small time t)

Stationary distribution

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t ?
$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\{\omega$ at time s and no jumps within time $t\}$
$+\mathbf{P}\{$ was a pre-image of ω at time s, and jumps to $\omega\}$
$+\mathfrak{o}(t)$ (at least two jumps occur within the small time t)
$=\mathbf{P}\left\{\omega\right.$ at time s and none of the k critical \mathbb{S}^{\prime} 's ring $\}$
$+\quad \sum \mathbf{P}\left\{\eta\right.$ at time s and the right critical Q^{2} rings $\}$
η is a pre-image of ω
$+\mathfrak{o}(t)$

Stationary distribution

Almost proof

$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\left\{\omega\right.$ at time s and none of the k critical © ${ }^{\prime}$'s ring $\}$
$+\quad \sum \mathbf{P}\left\{\eta\right.$ at time s and the right critical Q^{2} rings $\}$
η is a pre-image of ω
$+\mathfrak{o}(t)$

Stationary distribution

Almost proof

$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\{\omega$ at time s and none of the k critical 's, 's ring $\}$
$+\quad \sum \mathbf{P}\left\{\eta\right.$ at time s and the right critical \boldsymbol{Q}^{2} rings $\}$
η is a pre-image of ω
$+\mathfrak{o}(t)$
$=p \cdot(1-k t)+\sum_{\eta \text { is a pre-image of } \omega} p \cdot t+\mathfrak{o}(t)$

Stationary distribution

Almost proof

$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\{\omega$ at time s and none of the k critical (s)'s ring $\}$
$+\quad \sum \mathbf{P}\left\{\eta\right.$ at time s and the right critical \boldsymbol{Q}^{2} rings $\}$
η is a pre-image of ω
$+\mathfrak{o}(t)$
$=p \cdot(1-k t)+\sum_{\eta \text { is a pre-image of } \omega} p \cdot t+\mathfrak{o}(t)$
$=p \cdot(1-k t)+k \cdot p \cdot t+\mathfrak{o}(t)$

Stationary distribution

Almost proof

$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\{\omega$ at time s and none of the k critical (s)'s ring $\}$
$+\quad \sum \quad \mathbf{P}\left\{\eta\right.$ at time s and the right critical \mathbb{Q}^{2} rings $\}$
η is a pre-image of ω
$+\mathfrak{o}(t)$
$=p \cdot(1-k t)+\sum_{\eta \text { is a pre-image of } \omega} p \cdot t+\mathfrak{o}(t)$
$=p \cdot(1-k t)+k \cdot p \cdot t+\mathfrak{o}(t)=p+\mathfrak{o}(t)$.

Stationary distribution

Almost proof

$\mathbf{P}\{\omega$ at time $s+t\}$
$=\mathbf{P}\{\omega \text { at time } s \text { and none of the } k \text { critical }\}_{\gamma}^{\prime}$'s ring $\}$

η is a pre-image of ω
$+\mathfrak{o}(t)$
$=p \cdot(1-k t)+\sum_{\eta \text { is a pre-image of } \omega} p \cdot t+\mathfrak{o}(t)$
$=p \cdot(1-k t)+k \cdot p \cdot t+\mathfrak{o}(t)=p+\mathfrak{o}(t)$.
Take, say, 1 sec . and $t=\frac{1}{n}$. Then the errors $\mathfrak{o}(t)=\mathfrak{o}\left(\frac{1}{n}\right)$ stay small even if summed up: $\sum_{k=1}^{n} \mathfrak{o}\left(\frac{1}{n}\right) \rightarrow 0$ for large n.

Stationary distribution

Stationary distribution

$\left.\begin{array}{c}40 \% \\ 36 \% \\ 32 \% \\ 28 \% \\ 24 \%-- \\ 20 \% \\ 16 \% \\ 12 \% \\ 8 \% \\ - \\ 4 \% \\ 0 \%\end{array}\right]$

Stationary distribution

Stationary distribution

 $20 \%$$18 \%$
16%
14%
12%
10%
8%
6%
4%
2%
0%

Stationary distribution

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m / N \simeq \varrho$.

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m / N \simeq \varrho$.
ϱ is the density of particles, or the probability that a given slot has a ball.

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m / N \simeq \varrho$.
ϱ is the density of particles, or the probability that a given slot has a ball.

What is the probability of two neighboring slots with a ball each?

$$
\frac{\binom{N-2}{m-2}}{\binom{N}{m}}=\frac{m \cdot(m-1)}{N \cdot(N-1)} \rightarrow \varrho^{2} .
$$

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m / N \simeq \varrho$.
ϱ is the density of particles, or the probability that a given slot has a ball.

What is the probability of two neighboring slots with a ball each?

$$
\frac{\binom{N-2}{m-2}}{\binom{N}{m}}=\frac{m \cdot(m-1)}{N \cdot(N-1)} \rightarrow \varrho^{2} .
$$

What is the probability of two neighboring slots of ball-no ball?

$$
\frac{\binom{N-2}{m-1}}{\binom{N}{m}}=\frac{m \cdot(N-m)}{N \cdot(N-1)} \rightarrow \varrho \cdot(1-\varrho) .
$$

Etc.

The infinite model

Take now N (the number of slots) and m (the number of balls) to infinity such that $m / N \simeq \varrho$.
ϱ is the density of particles, or the probability that a given slot has a ball.

What is the probability of two neighboring slots with a ball each?

$$
\frac{\binom{N-2}{m-2}}{\binom{N}{m}}=\frac{m \cdot(m-1)}{N \cdot(N-1)} \rightarrow \varrho^{2} .
$$

What is the probability of two neighboring slots of ball-no ball?

$$
\frac{\binom{N-2}{m-1}}{\binom{N}{m}}=\frac{m \cdot(N-m)}{N \cdot(N-1)} \rightarrow \varrho \cdot(1-\varrho) .
$$

Etc. In the limit, on \mathbb{Z} : ball with probability ϱ, no ball with probability $1-\varrho$, independently for each slot.

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i}=\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i}
$$

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i} & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i} \\
& =\lim _{t \rightarrow 0} \frac{\mathbf{P}\left\{\omega_{i-1}=1, \omega_{i}=0\right\} t-\mathbf{P}\left\{\omega_{i}=1, \omega_{i+1}=0\right\} t+\mathfrak{o}(t)}{t}
\end{aligned}
$$

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i} & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i} \\
& =\lim _{t \rightarrow 0} \frac{\mathbf{P}\left\{\omega_{i-1}=1, \omega_{i}=0\right\} t-\mathbf{P}\left\{\omega_{i}=1, \omega_{i+1}=0\right\} t+\mathfrak{o}(t)}{t} \\
& =\varrho_{i-1}\left[1-\varrho_{i}\right]-\varrho_{i}\left[1-\varrho_{i+1}\right] .
\end{aligned}
$$

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i} & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i} \\
& =\lim _{t \rightarrow 0} \frac{\mathbf{P}\left\{\omega_{i-1}=1, \omega_{i}=0\right\} t-\mathbf{P}\left\{\omega_{i}=1, \omega_{i+1}=0\right\} t+\mathfrak{o}(t)}{t} \\
& =\varrho_{i-1}\left[1-\varrho_{i}\right]-\varrho_{i}\left[1-\varrho_{i+1}\right] .
\end{aligned}
$$

Define now $T=t \cdot \varepsilon, X=i \cdot \varepsilon, \hat{\varrho}(T, X)=\varrho_{i}(t)=\varrho_{\underline{X}}\left(\frac{T}{\varepsilon}\right)$.

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i} & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i} \\
& =\lim _{t \rightarrow 0} \frac{\mathbf{P}\left\{\omega_{i-1}=1, \omega_{i}=0\right\} t-\mathbf{P}\left\{\omega_{i}=1, \omega_{i+1}=0\right\} t+\mathfrak{o}(t)}{t} \\
& =\varrho_{i-1}\left[1-\varrho_{i}\right]-\varrho_{i}\left[1-\varrho_{i+1}\right] .
\end{aligned}
$$

Define now $T=t \cdot \varepsilon, X=i \cdot \varepsilon, \hat{\varrho}(T, X)=\varrho_{i}(t)=\varrho_{\underline{x}}\left(\frac{T}{\varepsilon}\right)$.

$$
\varepsilon \frac{\partial}{\partial T} \hat{\varrho}=\hat{\varrho}(T, X-\varepsilon)[1-\hat{\varrho}(T, X)]-\hat{\varrho}(T, X)[1-\hat{\varrho}(T, X+\varepsilon)]
$$

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i} & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i} \\
& =\lim _{t \rightarrow 0} \frac{\mathbf{P}\left\{\omega_{i-1}=1, \omega_{i}=0\right\} t-\mathbf{P}\left\{\omega_{i}=1, \omega_{i+1}=0\right\} t+\mathfrak{o}(t)}{t} \\
& =\varrho_{i-1}\left[1-\varrho_{i}\right]-\varrho_{i}\left[1-\varrho_{i+1}\right] .
\end{aligned}
$$

Define now $T=t \cdot \varepsilon, X=i \cdot \varepsilon, \hat{\varrho}(T, X)=\varrho_{i}(t)=\varrho_{\underline{X}}\left(\frac{T}{\varepsilon}\right)$.

$$
\begin{gathered}
\varepsilon \frac{\partial}{\partial T} \hat{\varrho}=\hat{\varrho}(T, X-\varepsilon)[1-\hat{\varrho}(T, X)]-\hat{\varrho}(T, X)[1-\hat{\varrho}(T, X+\varepsilon)] \\
\frac{\partial}{\partial T} \hat{\varrho}=\frac{\hat{\varrho}(T, X-\varepsilon)[1-\hat{\varrho}(T, X)]-\hat{\varrho}(T, X)[1-\hat{\varrho}(T, X+\varepsilon)]}{\varepsilon}
\end{gathered}
$$

On large scales

Let us now allow the density to change slowly in space. The change of density at position i :

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{i} & =\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} \omega_{i} \\
& =\lim _{t \rightarrow 0} \frac{\mathbf{P}\left\{\omega_{i-1}=1, \omega_{i}=0\right\} t-\mathbf{P}\left\{\omega_{i}=1, \omega_{i+1}=0\right\} t+\mathfrak{o}(t)}{t} \\
& =\varrho_{i-1}\left[1-\varrho_{i}\right]-\varrho_{i}\left[1-\varrho_{i+1}\right] .
\end{aligned}
$$

Define now $T=t \cdot \varepsilon, X=i \cdot \varepsilon, \hat{\varrho}(T, X)=\varrho_{i}(t)=\varrho_{\underline{X}}\left(\frac{T}{\varepsilon}\right)$.

$$
\begin{gathered}
\varepsilon \frac{\partial}{\partial T} \hat{\varrho}=\hat{\varrho}(T, X-\varepsilon)[1-\hat{\varrho}(T, X)]-\hat{\varrho}(T, X)[1-\hat{\varrho}(T, X+\varepsilon)] \\
\frac{\partial}{\partial T} \hat{\varrho}=\frac{\hat{\varrho}(T, X-\varepsilon)[1-\hat{\varrho}(T, X)]-\hat{\varrho}(T, X)[1-\hat{\varrho}(T, X+\varepsilon)]}{\varepsilon} \\
\frac{\partial}{\partial T} \hat{\varrho}+\frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})]=0 \quad \text { (Burgers eq.). }
\end{gathered}
$$

Burgers eq.: characteristics

$\frac{\partial}{\partial T} \hat{\varrho}+\frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})]=0 \quad$ Burgers eq.: nonlinear PDE.

Burgers eq.: characteristics

$\frac{\partial}{\partial T} \hat{\varrho}+\frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})]=0 \quad$ Burgers eq.: nonlinear PDE.
Characteristics: find a path $X(T)$ where $\hat{\varrho}(T, X(T))$ is a constant:

$$
\frac{\mathrm{d}}{\mathrm{~d} T} \hat{\varrho}(T, X(T))=0
$$

Burgers eq.: characteristics

$\frac{\partial}{\partial T} \hat{\varrho}+\frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})]=0 \quad$ Burgers eq.: nonlinear PDE.
Characteristics: find a path $X(T)$ where $\hat{\varrho}(T, X(T))$ is a constant:

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} T}(T, X(T))=0 \\
\frac{\partial}{\partial T} \hat{\varrho}+\dot{X}(T) \cdot \frac{\partial}{\partial X} \hat{\varrho}=0
\end{array}
$$

Burgers eq.: characteristics

$\frac{\partial}{\partial T} \hat{\varrho}+\frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})]=0 \quad$ Burgers eq.: nonlinear PDE.
Characteristics: find a path $X(T)$ where $\hat{\varrho}(T, X(T))$ is a constant:

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} T}(T, X(T))=0 \\
\frac{\partial}{\partial T} \hat{\varrho}+\dot{X}(T) \cdot \frac{\partial}{\partial X} \hat{\varrho}=0 \\
\frac{\partial}{\partial T} \hat{\varrho}+(1-2 \hat{\varrho}) \cdot \frac{\partial}{\partial X} \hat{\varrho}=0
\end{array}
$$

Burgers eq.: characteristics

$\frac{\partial}{\partial T} \hat{\varrho}+\frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})]=0 \quad$ Burgers eq.: nonlinear PDE.
Characteristics: find a path $X(T)$ where $\hat{\varrho}(T, X(T))$ is a constant:

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} T}(T, X(T))=0 \\
\frac{\partial}{\partial T} \hat{\varrho}+\dot{X}(T) \cdot \frac{\partial}{\partial X} \hat{\varrho}=0 \\
\frac{\partial}{\partial T} \hat{\varrho}+(1-2 \hat{\varrho}) \cdot \frac{\partial}{\partial X} \hat{\varrho}=0
\end{array}
$$

The characteristic velocity: $\dot{X}(T)=1-2 \hat{\varrho}$.

On large scales

$$
\dot{x}(T)=1-2 \hat{\varrho}
$$

On large scales

The start of the jam: sharpens.

On large scales

$$
\dot{x}(T)=1-2 \hat{\varrho}
$$

On large scales

End of the jam: smoothens.

Remarks.

In general, non-linear differential equations are fun. (And difficult.)
E.g., solitary waves were discovered by John Scott Russell in 1834: he chased one along a channel for miles!

http://youtu.be/MADng1fqECY

Remarks.

- Of course there are much more sophisticated models for traffic modelling.

Remarks.

- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M

Remarks.

- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M
- But TASEP is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.

The Central Limit Theorem

Add many iid. variables Y_{k} (with finite second moment), rescale, and you converge to the Normal distribution:

$$
\frac{Y_{1}+\cdots+Y_{n}-n \cdot \mathbf{E} Y_{1}}{\sqrt{n \cdot \operatorname{Var} Y_{1}}} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}(0,1)
$$

The Central Limit Theorem

Add many iid. variables Y_{k} (with finite second moment), rescale, and you converge to the Normal distribution:

$$
\frac{Y_{1}+\cdots+Y_{n}-n \cdot \mathbf{E} Y_{1}}{\sqrt{n \cdot \operatorname{Var} Y_{1}}} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}(0,1)
$$

Example. Take a single car on an empty road (the US still has those...), and Y_{k} the distance covered in the $k^{\text {th }}$ second, $Y_{1}+\cdots+Y_{t}$ is the position at time t.

The Central Limit Theorem

Add many iid. variables Y_{k} (with finite second moment), rescale, and you converge to the Normal distribution:

$$
\frac{Y_{1}+\cdots+Y_{n}-n \cdot \mathbf{E} Y_{1}}{\sqrt{n \cdot \operatorname{Var} Y_{1}}} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}(0,1)
$$

Example. Take a single car on an empty road (the US still has those...), and Y_{k} the distance covered in the $k^{\text {th }}$ second, $Y_{1}+\cdots+Y_{t}$ is the position at time t.
$\rightsquigarrow Y_{k} \sim$ Poisson(1), iid.; $\quad \mathbf{E} Y_{1}=1 ; \quad \operatorname{Var} Y_{1}=1$;

$$
\frac{Y_{1}+\cdots+Y_{t}-t}{\sqrt{t}} \underset{t \rightarrow \infty}{\Longrightarrow} \mathcal{N}(0,1)
$$

The Central Limit Theorem

Add many iid. variables Y_{k} (with finite second moment), rescale, and you converge to the Normal distribution:

$$
\frac{Y_{1}+\cdots+Y_{n}-n \cdot \mathbf{E} Y_{1}}{\sqrt{n \cdot \operatorname{Var} Y_{1}}} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}(0,1)
$$

Example. Take a single car on an empty road (the US still has those...), and Y_{k} the distance covered in the $k^{\text {th }}$ second, $Y_{1}+\cdots+Y_{t}$ is the position at time t.
$\rightsquigarrow Y_{k} \sim$ Poisson(1), iid.; $\quad \mathbf{E} Y_{1}=1 ; \quad \operatorname{Var} Y_{1}=1 ;$

$$
\frac{Y_{1}+\cdots+Y_{t}-t}{t^{1 / 2}} \underset{t \rightarrow \infty}{\Longrightarrow} \mathcal{N}(0,1)
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT?

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT?

$$
J(t)-\varrho^{2} \cdot t
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT? Nope.

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}}
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT? Nope.

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow}
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT? Nope.

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \text { Well, not } \mathcal{N} \text {. }
$$

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT? Nope.

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \text { Well, not } \mathcal{N} \text {. }
$$

It comes from the Tracy-Widom(II) distribution, and has something to do with random matrices.

The current

A traffic engineer walks with the characteristic velocity $1-2 \varrho$. He starts with $J(0)=0$, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time t he has the current $J(t)$.
The expectation is

$$
\mathbf{E} J(t)=(1-\varrho-(1-2 \varrho)) \cdot t \cdot \varrho=\varrho^{2} \cdot t .
$$

CLT? Nope.

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \text { Well, not } \mathcal{N} \text {. }
$$

It comes from the Tracy-Widom(II) distribution, and has something to do with random matrices. Surprise!

Tracy-Widom

Take an $N \times N$ Hermitian matrix with

$$
\begin{aligned}
M_{j k} & \sim \mathcal{N}\left(0, \frac{1}{2}\right)+i \cdot \mathcal{N}\left(0, \frac{1}{2}\right), & 1 \leq j<k \leq N \\
M_{j j} & \sim \mathcal{N}(0,1), & 1 \leq j \leq N
\end{aligned}
$$

(all \mathcal{N} 's independent).

Tracy-Widom

Take an $N \times N$ Hermitian matrix with

$$
\begin{aligned}
M_{j k} & \sim \mathcal{N}\left(0, \frac{1}{2}\right)+i \cdot \mathcal{N}\left(0, \frac{1}{2}\right), & 1 \leq j<k \leq N \\
M_{j j} & \sim \mathcal{N}(0,1), & 1 \leq j \leq N
\end{aligned}
$$

(all \mathcal{N} 's independent).
Denote the largest eigenvalue by $\lambda_{\max }$. Then

$$
\frac{\lambda_{\max }-\sqrt{2 N}}{\frac{1}{\sqrt{2}} \cdot N^{-1 / 6}} \underset{N \rightarrow \infty}{\Longrightarrow} \text { Tracy-Widom(II) distribution. }
$$

Scaling

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \text { Well, not } \mathcal{N} \text {. }
$$

Combinatorics and difficult analysis...

Scaling

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \text { Well, not } \mathcal{N} \text {. }
$$

Combinatorics and difficult analysis...
What we proved (with Timo Seppäläinen):

$$
0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var} J(t)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var} J(t)}{t^{2 / 3}}<\infty .
$$

Probabilistic techniques (auxiliary processes, couplings)...

Scaling

$$
\frac{J(t)-\varrho^{2} \cdot t}{t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \text { Well, not } \mathcal{N} \text {. }
$$

Combinatorics and difficult analysis...
What we proved (with Timo Seppäläinen):

$$
0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var} J(t)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var} J(t)}{t^{2 / 3}}<\infty .
$$

Probabilistic techniques (auxiliary processes, couplings)...

Thank you.

