A gentle introduction to the Exclusion Process: traffic jams, hydrodynamics and fluctuations

Márton Balázs

School of Mathematics University of Bristol, UK

BSM Colloquium, 23 July, 2014

Traffic jams Arriving to a traffic jam Leaving a traffic jam

Being ageless

Totally Asymmetric Simple Exclusion Process Stationary distribution The infinite model

On large scales Start of the traffic jam End of the traffic jam

Surprise!

ב

(ALA)

(alà

á

ú

á

á

íst?

6

We notice the slow cars ~> strong braking immediately.

Arriving to a traffic jam is always sharp.

We notice the slow cars ~> strong braking immediately.

Arriving to a traffic jam is always sharp.

This is one aspect that makes motorways dangerous places.

Continuous, long acceleration for those starting from the rear

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, "blurry".

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, "blurry".

Why is there such a difference between the two ends of a traffic jam?

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, "blurry".

Why is there such a difference between the two ends of a traffic jam?

Totally asymmetric simple exclusion process: an explanation

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

 $\mathbf{P}{\tau > t} = e^{-t}$ for all t > 0. (Exponential distribution)

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

 $\mathbf{P}{\tau > t} = e^{-t}$ for all t > 0. (Exponential distribution)

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

 $\mathbf{P}{\tau > t} = e^{-t}$ for all t > 0. (Exponential distribution)

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

The answer is:

$$\frac{\mathbf{P}\{\tau > t + s\}}{\mathbf{P}\{\tau > t\}} = \frac{\mathrm{e}^{-(t+s)}}{\mathrm{e}^{-t}} = \mathrm{e}^{-s}.$$

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

 $\mathbf{P}{\tau > t} = e^{-t}$ for all t > 0. (Exponential distribution)

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

The answer is:

$$\frac{\mathsf{P}\{\tau > t + s\}}{\mathsf{P}\{\tau > t\}} = \frac{\mathrm{e}^{-(t+s)}}{\mathrm{e}^{-t}} = \mathrm{e}^{-s} = \mathsf{P}\{\tau > s\}.$$

The same as $P{\tau > s}$, regardless of *t*!

We first seek a random time that does not remember its past. Let $\tau > 0$ be a random time such that

 $\mathbf{P}{\tau > t} = e^{-t}$ for all t > 0. (Exponential distribution)

Suppose that this time has not passed yet at *t*. What is the probability that it will not pass before another *s* seconds? That is, out of those cases when $\tau > t$ occurs, in what percentage will $\tau > t + s$ also occur?

The answer is:

$$\frac{\mathsf{P}\{\tau > t + s\}}{\mathsf{P}\{\tau > t\}} = \frac{\mathrm{e}^{-(t+s)}}{\mathrm{e}^{-t}} = \mathrm{e}^{-s} = \mathsf{P}\{\tau > s\}.$$

The same as $P{\tau > s}$, regardless of t!We have found the secret of being ageless.

 $egin{array}{c} \Theta \leftarrow \end{array}$ This will be the ageless alarm clock that rings at time au

 $\mathfrak{Q} \leftarrow$ This will be the ageless alarm clock that rings at time au

 \rightsquigarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

 $egin{array}{c} \Theta \leftarrow \end{array}$ This will be the ageless alarm clock that rings at time au

 \rightarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

$$\mathbf{P}\{\tau \le t\} = \mathbf{1} - \mathbf{P}\{\tau > t\} = \mathbf{1} - e^{-t} = \mathbf{1} - (\mathbf{1} - t) + \mathfrak{o}(t) = t + \mathfrak{o}(t).$$

 $egin{array}{c} \Theta \leftarrow \end{array}$ This will be the ageless alarm clock that rings at time au

 \rightsquigarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

$$\mathbf{P}\{\tau \le t\} = \mathbf{1} - \mathbf{P}\{\tau > t\} = \mathbf{1} - e^{-t} = \mathbf{1} - (\mathbf{1} - t) + \mathfrak{o}(t) = t + \mathfrak{o}(t).$$

 \rightsquigarrow What is the probability that *two* independent $\mathfrak{P} \mathfrak{P}$ both ring within a small time *t*?

 $egin{array}{c} \Theta \leftarrow \end{array}$ This will be the ageless alarm clock that rings at time au

 \rightsquigarrow What is the probability that an ${\mathfrak S}$ rings within a small time t?

$$\mathbf{P}\{\tau \le t\} = \mathbf{1} - \mathbf{P}\{\tau > t\} = \mathbf{1} - e^{-t} = \mathbf{1} - (\mathbf{1} - t) + \mathfrak{o}(t) = t + \mathfrak{o}(t).$$

 \rightsquigarrow What is the probability that *two* independent $\mathfrak{P} \mathfrak{P}$ both ring within a small time *t*?

$$\mathsf{P}\{ au \leq t\} \cdot \mathsf{P}\{ au \leq t\} = t^2 + \mathfrak{o}(t) = \mathfrak{o}(t).$$

 $egin{array}{c} \Theta \leftarrow \end{array}$ This will be the ageless alarm clock that rings at time au

 \sim What is the probability that an \mathfrak{B} rings within a small time *t*?

$$\mathbf{P}\{\tau \le t\} = \mathbf{1} - \mathbf{P}\{\tau > t\} = \mathbf{1} - e^{-t} = \mathbf{1} - (\mathbf{1} - t) + \mathfrak{o}(t) = t + \mathfrak{o}(t).$$

 \rightsquigarrow What is the probability that *two* independent $\mathfrak{P} \mathfrak{P}$ both ring within a small time *t*?

$$\mathbf{P}\{ au \leq t\} \cdot \mathbf{P}\{ au \leq t\} = t^2 + \mathfrak{o}(t) = \mathfrak{o}(t).$$

 \rightarrow More ${\mathfrak S}$'s, even smaller probability.

 \rightsquigarrow What is the probability that *none* of *k* independent \mathfrak{G} 's ring within a small time *t*?

 \rightsquigarrow What is the probability that *none* of *k* independent \mathfrak{P} 's ring within a small time *t*?

$$\mathbf{P}\{\text{none of them ring}\} = \mathbf{P}\{\tau > t\}^{k}$$
$$= e^{-kt}$$
$$= (1 - kt) + \mathfrak{o}(t).$$

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

m balls in *N* possible slots.

Each listening to its own $\begin{tabular}{ll} \end{tabular}$. When that rings, the ball tries to jump to the right. But sometimes it's blocked.

m balls in *N* possible slots.

Each listening to its own \mathfrak{D} . When that rings, the ball tries to jump to the right. But sometimes it's blocked. Ageless, independent \mathfrak{D} 's \Rightarrow if we know the present, no need to know the past. *Markov property*, makes things handy.

Random process ~> need to talk about *distributions*.

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

1st remark.

In this case every configuration occurs with probability $1/\binom{N}{m}$.

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

1st remark.

In this case every configuration occurs with probability $1/\binom{N}{m}$.

 2^{nd} remark. With fixed *N*, *m*, there is no other stationary distribution.

Almost proof

The number of critical clocks for ω = the number of pre-images of $\omega = \mathbf{k}$

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

 $\mathbf{P}\{\omega \text{ at time } \mathbf{s} + t\}$

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

- $\mathbf{P}\{\omega \text{ at time } \mathbf{s} + t\}$
- $= \mathbf{P}\{\omega \text{ at time } s \text{ and no jumps within time } t\}$
 - + **P**{was a pre-image of ω at time s, and jumps to ω }
 - + o(t) (at least two jumps occur within the small time t)

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

 $\mathbf{P}\{\omega \text{ at time } \mathbf{s} + t\}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and no jumps within time } t\}$

- + **P**{was a pre-image of ω at time s, and jumps to ω }
- + o(t) (at least two jumps occur within the small time t)
- $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\}$
 - $+ \sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ a$

$$+ o(t)$$
Almost proof

 $\mathbf{P}\{\omega \text{ at time } \mathbf{s} + t\}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\}$

+ $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P} \text{ rings}\}$ + $\mathfrak{o}(t)$

Almost proof

 $\begin{aligned} \mathbf{P}\{\omega \text{ at time } s+t\} \\ &= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\} \\ &+ \sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P} \text{ rings}\} \\ &+ \mathfrak{o}(t) \\ &= p \cdot (1-kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \mathfrak{o}(t) \end{aligned}$

Almost proof

 $\begin{aligned} \mathbf{P}\{\omega \text{ at time } s+t\} \\ &= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\} \\ &+ \sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P} \text{ rings}\} \\ &+ \mathfrak{o}(t) \\ &= p \cdot (1-kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \mathfrak{o}(t) \\ &= p \cdot (1-kt) + k \cdot p \cdot t + \mathfrak{o}(t) \end{aligned}$

Almost proof

 $\begin{aligned} \mathbf{P}\{\omega \text{ at time } s+t\} \\ &= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\} \\ &+ \sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P} \text{ rings}\} \\ &+ \mathfrak{o}(t) \\ &= p \cdot (1-kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \mathfrak{o}(t) \\ &= p \cdot (1-kt) + k \cdot p \cdot t + \mathfrak{o}(t) = p + \mathfrak{o}(t). \end{aligned}$

Almost proof

 $\begin{aligned} \mathbf{P}\{\omega \text{ at time } s+t\} \\ &= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\} \\ &+ \sum_{\substack{\eta \text{ is a pre-image of } \omega \\ + \mathfrak{o}(t)}} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P} \text{ rings}\} \\ &= p \cdot (1 - kt) + \sum_{\substack{\eta \text{ is a pre-image of } \omega \\ \eta \text{ is a pre-image of } \omega}} p \cdot t + \mathfrak{o}(t) \\ &= p \cdot (1 - kt) + k \cdot p \cdot t + \mathfrak{o}(t) = p + \mathfrak{o}(t). \end{aligned}$

Take, say, 1 sec. and $t = \frac{1}{n}$. Then the errors $\mathfrak{o}(t) = \mathfrak{o}(\frac{1}{n})$ stay small even if summed up: $\sum_{k=1}^{n} \mathfrak{o}(\frac{1}{n}) \to 0$ for large *n*.

ς**~**γ

Stationary distribution The infinite model

Stationary distribution The infinite model

Stationary distribution The infinite model

Stationary distribution The infinite model

Stationary distribution The infinite model

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

What is the probability of two neighboring slots with a ball each?

$$\frac{\binom{N-2}{m-2}}{\binom{N}{m}} = \frac{m \cdot (m-1)}{N \cdot (N-1)} \to \varrho^2.$$

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

What is the probability of two neighboring slots with a ball each?

$$\frac{\binom{N-2}{m-2}}{\binom{N}{m}} = \frac{m \cdot (m-1)}{N \cdot (N-1)} \to \varrho^2.$$

What is the probability of two neighboring slots of ball-no ball?

$$\frac{\binom{N-2}{m-1}}{\binom{N}{m}} = \frac{m \cdot (N-m)}{N \cdot (N-1)} \rightarrow \varrho \cdot (1-\varrho).$$

Etc.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

What is the probability of two neighboring slots with a ball each?

$$\frac{\binom{N-2}{m-2}}{\binom{N}{m}} = \frac{m \cdot (m-1)}{N \cdot (N-1)} \to \varrho^2.$$

What is the probability of two neighboring slots of ball-no ball?

$$\frac{\binom{N-2}{m-1}}{\binom{N}{m}} = \frac{m \cdot (N-m)}{N \cdot (N-1)} \rightarrow \varrho \cdot (1-\varrho).$$

Etc. In the limit, on \mathbb{Z} : ball with probability ϱ , no ball with probability $1 - \varrho$, independently for each slot.

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$
$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_i = 0\}t - \mathbf{P}\{\omega_i = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_i = 0\}t - \mathbf{P}\{\omega_i = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_i] - \varrho_i[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{\frac{X}{\varepsilon}}(\frac{T}{\varepsilon})$.

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{\frac{X}{\varepsilon}}(\frac{T}{\varepsilon})$.

$$\varepsilon \frac{\partial}{\partial T} \hat{\varrho} = \hat{\varrho}(T, X - \varepsilon) \big[1 - \hat{\varrho}(T, X) \big] - \hat{\varrho}(T, X) \big[1 - \hat{\varrho}(T, X + \varepsilon) \big]$$

Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_i = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_i$$

=
$$\lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_i = 0\}t - \mathbf{P}\{\omega_i = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

=
$$\varrho_{i-1}[1 - \varrho_i] - \varrho_i[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{X}(\frac{T}{\varepsilon})$.

$$\varepsilon \frac{\partial}{\partial T} \hat{\varrho} = \hat{\varrho}(T, X - \varepsilon) \big[1 - \hat{\varrho}(T, X) \big] - \hat{\varrho}(T, X) \big[1 - \hat{\varrho}(T, X + \varepsilon) \big]$$

$$\frac{\partial}{\partial T}\hat{\varrho} = \frac{\hat{\varrho}(T, X - \varepsilon) \left[1 - \hat{\varrho}(T, X)\right] - \hat{\varrho}(T, X) \left[1 - \hat{\varrho}(T, X + \varepsilon)\right]}{\varepsilon}$$
Let us now allow the density to change slowly in space. The change of density at position *i*:

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho_{i} = \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}\omega_{i}$$

$$= \lim_{t \to 0} \frac{\mathbf{P}\{\omega_{i-1} = 1, \ \omega_{i} = 0\}t - \mathbf{P}\{\omega_{i} = 1, \ \omega_{i+1} = 0\}t + \mathfrak{o}(t)}{t}$$

$$= \varrho_{i-1}[1 - \varrho_{i}] - \varrho_{i}[1 - \varrho_{i+1}].$$

Define now $T = t \cdot \varepsilon$, $X = i \cdot \varepsilon$, $\hat{\varrho}(T, X) = \varrho_i(t) = \varrho_{\frac{X}{\varepsilon}}(\frac{T}{\varepsilon})$.

$$\varepsilon \frac{\partial}{\partial T} \hat{\varrho} = \hat{\varrho}(T, X - \varepsilon) \big[1 - \hat{\varrho}(T, X) \big] - \hat{\varrho}(T, X) \big[1 - \hat{\varrho}(T, X + \varepsilon) \big]$$

$$\frac{\partial}{\partial T}\hat{\varrho} = \frac{\hat{\varrho}(T, X - \varepsilon) \left[1 - \hat{\varrho}(T, X)\right] - \hat{\varrho}(T, X) \left[1 - \hat{\varrho}(T, X + \varepsilon)\right]}{\varepsilon}$$

$$\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad (Burgers \ eq.).$$

$$\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$$

$$\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0$$
 Burgers eq.: nonlinear PDE.

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}\big(T,\,X(T)\big)=0$$

$$\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$$

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

 $\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + (1 - 2\hat{\varrho}) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

$$\frac{\partial}{\partial T}\hat{\varrho} + \frac{\partial}{\partial X}[\hat{\varrho}(1-\hat{\varrho})] = 0 \qquad \text{Burgers eq.: nonlinear PDE.}$$

Characteristics: find a path X(T) where $\hat{\varrho}(T, X(T))$ is a constant:

$$\frac{\mathrm{d}}{\mathrm{d}T}\hat{\varrho}(T, X(T)) = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + \dot{X}(T) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$
$$\frac{\partial}{\partial T}\hat{\varrho} + (1 - 2\hat{\varrho}) \cdot \frac{\partial}{\partial X}\hat{\varrho} = 0$$

The characteristic velocity: $\dot{X}(T) = 1 - 2\hat{\varrho}$.

 $\dot{X}(T) = 1 - 2\hat{\varrho}$

The start of the jam: sharpens.

 $\dot{X}(T) = 1 - 2\hat{\varrho}$

End of the jam: smoothens.

In general, non-linear differential equations are fun. (And difficult.)

E.g., solitary waves were discovered by John Scott Russell in 1834: he chased one along a channel for miles!

http://youtu.be/MADnglfqECY

 Of course there are much more sophisticated models for traffic modelling.

- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M

- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M
- But TASEP is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.

Add many iid. variables Y_k (with finite second moment), rescale, and you converge to the Normal distribution:

$$\frac{Y_1 + \dots + Y_n - n \cdot \mathbf{E} \, Y_1}{\sqrt{n \cdot \operatorname{Var} Y_1}} \Longrightarrow_{n \to \infty} \mathcal{N}(0, \, 1).$$

Add many iid. variables Y_k (with finite second moment), rescale, and you converge to the Normal distribution:

$$\frac{Y_1 + \dots + Y_n - n \cdot \mathbf{E} Y_1}{\sqrt{n \cdot \operatorname{Var} Y_1}} \Longrightarrow_{n \to \infty} \mathcal{N}(0, \, 1).$$

Example. Take a single car on an empty road (the US still has those...), and Y_k the distance covered in the k^{th} second, $Y_1 + \cdots + Y_t$ is the position at time *t*.

Add many iid. variables Y_k (with finite second moment), rescale, and you converge to the Normal distribution:

$$\frac{Y_1 + \dots + Y_n - n \cdot \mathbf{E} Y_1}{\sqrt{n \cdot \operatorname{Var} Y_1}} \Longrightarrow_{n \to \infty} \mathcal{N}(0, \, 1).$$

Example. Take a single car on an empty road (the US still has those...), and Y_k the distance covered in the k^{th} second, $Y_1 + \cdots + Y_t$ is the position at time *t*.

$$→ Y_k \sim \text{Poisson(1), iid.;} \quad \mathbf{E} Y_1 = 1; \quad \mathbf{Var} Y_1 = 1;$$
$$\frac{Y_1 + \dots + Y_t - t}{\sqrt{t}} \Longrightarrow_{t \to \infty} \mathcal{N}(0, 1).$$

Add many iid. variables Y_k (with finite second moment), rescale, and you converge to the Normal distribution:

$$\frac{Y_1 + \dots + Y_n - n \cdot \mathbf{E} Y_1}{\sqrt{n \cdot \operatorname{Var} Y_1}} \Longrightarrow_{n \to \infty} \mathcal{N}(0, \, 1).$$

Example. Take a single car on an empty road (the US still has those...), and Y_k the distance covered in the k^{th} second, $Y_1 + \cdots + Y_t$ is the position at time *t*.

$$→ Y_k \sim \text{Poisson(1), iid.;} \quad \mathbf{E} Y_1 = 1; \quad \mathbf{Var} Y_1 = 1;$$
$$\frac{Y_1 + \dots + Y_t - t}{t^{1/2}} \Longrightarrow_{t \to \infty} \mathcal{N}(0, 1).$$
A traffic engineer walks with the characteristic velocity $1 - 2\varrho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

A traffic engineer walks with the characteristic velocity $1 - 2\varrho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT?

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT?

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT?

$$\underline{J(t)} - \varrho^2 \cdot t$$

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT? Nope.

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}}$$

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car. At time t he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT? Nope.

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow}$$

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car. At time t he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT? Nope.

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow} \text{Well, not } \mathcal{N}.$$

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT? Nope.

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow} \text{Well, not } \mathcal{N}.$$

It comes from the *Tracy-Widom(II)* distribution, and has something to do with random matrices.

A traffic engineer walks with the characteristic velocity $1 - 2\rho$. He starts with J(0) = 0, and

- he adds one to J every time a cars passes him;
- subtracts one from J every time he passes a car.

At time *t* he has the current J(t).

The expectation is

$$\mathbf{E}J(t) = (1 - \varrho - (1 - 2\varrho)) \cdot t \cdot \varrho = \varrho^2 \cdot t.$$

CLT? Nope.

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow} \text{Well, not } \mathcal{N}.$$

It comes from the *Tracy-Widom(II)* distribution, and has something to do with random matrices. **Surprise!**

Tracy-Widom

Take an $N \times N$ Hermitian matrix with

$$\begin{split} M_{jk} &\sim \mathcal{N}\big(0, \, \frac{1}{2}\big) + i \cdot \mathcal{N}\big(0, \, \frac{1}{2}\big), & 1 \leq j < k \leq N, \\ M_{jj} &\sim \mathcal{N}(0, \, 1), & 1 \leq j \leq N, \end{split}$$

(all \mathcal{N} 's independent).

Tracy-Widom

Take an $N \times N$ Hermitian matrix with

$$\begin{split} & M_{jk} \sim \mathcal{N}\big(0, \, \frac{1}{2}\big) + i \cdot \mathcal{N}\big(0, \, \frac{1}{2}\big), & 1 \leq j < k \leq N, \\ & M_{jj} \sim \mathcal{N}(0, \, 1), & 1 \leq j \leq N, \end{split}$$

(all \mathcal{N} 's independent).

Denote the largest eigenvalue by λ_{max} . Then

$$\frac{\lambda_{\max} - \sqrt{2N}}{\frac{1}{\sqrt{2}} \cdot N^{-1/6}} \underset{N \to \infty}{\Longrightarrow} \operatorname{Tracy-Widom(II) distribution.}$$

Scaling

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow} \text{Well, not } \mathcal{N}.$$

Combinatorics and difficult analysis...

Scaling

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow} \text{Well, not } \mathcal{N}.$$

Combinatorics and difficult analysis...

What we proved (with Timo Seppäläinen):

$$0 < \liminf_{t \to \infty} \frac{\operatorname{Var} J(t)}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var} J(t)}{t^{2/3}} < \infty.$$

Probabilistic techniques (auxiliary processes, couplings)...

Scaling

$$\frac{J(t)-\varrho^2\cdot t}{t^{1/3}} \underset{t\to\infty}{\Longrightarrow} \text{Well, not } \mathcal{N}.$$

Combinatorics and difficult analysis...

What we proved (with Timo Seppäläinen):

$$0 < \liminf_{t \to \infty} \frac{\operatorname{Var} J(t)}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var} J(t)}{t^{2/3}} < \infty.$$

Probabilistic techniques (auxiliary processes, couplings)...

Thank you.