How to initialise a second class particle? Joint with Attila László Nagy

Márton Balázs

University of Bristol

Eindhoven, YEP XIII (LD for IPS and PDE) 8 March, 2016.

The models Bricklayers

Hydrodynamics

The second class particle

Ferrari-Kipnis for TASEP

Let's generalise

► TASEP:

• $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.

► TASEP:

- $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
- Translation-invariant extremal stationary distributions are product Bernoulli(*ρ*).

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - Translation-invariant extremal stationary distributions are product Bernoulli(*ρ*).
- ► TAZRP:
 - $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \frown i + 1$ jump.

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - Translation-invariant extremal stationary distributions are product Bernoulli(*ρ*).
- ► TAZRP:
 - $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \frown i + 1$ jump.
 - We only consider non-decreasing *r* (attractivity).

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - Translation-invariant extremal stationary distributions are product Bernoulli(ρ).

► TAZRP:

- $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \frown i + 1$ jump.
- ▶ We only consider non-decreasing *r* (attractivity).
- Translation-invariant extremal stationary distributions are still product, and rather explicit in terms of r(·).

- ► TASEP:
 - $\omega_i \in \{0, 1\}$, rate 1 if jump is allowed.
 - Translation-invariant extremal stationary distributions are product Bernoulli(*ρ*).

► TAZRP:

- $\omega_i \in \mathbb{Z}^+$, rate is $r(\omega_i)$ for an $i \frown i + 1$ jump.
- We only consider non-decreasing r (attractivity).
- Translation-invariant extremal stationary distributions are still product, and rather explicit in terms of r(·).
- Examples:
 - $r(\omega_i) = \mathbf{1}\{\omega_i > 0\}$: classical zero range; $\omega_i \sim \text{Geom}(\theta)$.
 - $r(\omega_i) = \omega_i$: independent walkers; $\omega_i \sim \text{Poi}(\theta)$.

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[\mathbf{r}(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + \mathbf{r}(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

a brick is added with rate $[r(\omega_i) + r(-\omega_{i+1})]$

Extremal translation-invariant distributions are still product, and rather explicit in terms of $r(\cdot)$.

A special case:
$$r(\omega_i) = e^{\beta \omega_i}$$
: $\omega_i \sim \text{discrete Gaussian}(\frac{\theta}{\beta}, \frac{1}{\sqrt{\beta}})$.

Hydrodynamics (very briefly)

Define the *density* $\varrho := \mathbf{E}(\omega)$ and the *hydrodynamic flux* $H := H(\varrho) := \mathbf{E}^{\varrho}$ [growth rate].

Hydrodynamics (very briefly)

Define the *density* $\varrho := \mathbf{E}(\omega)$ and the *hydrodynamic flux* $H := H(\varrho) := \mathbf{E}^{\varrho}$ [growth rate].

The hydrodynamics is

$$\partial_T \varrho + \partial_X H(\varrho) = 0$$
 (conservation law).

Hydrodynamics (very briefly)

Define the *density* $\varrho := \mathbf{E}(\omega)$ and the *hydrodynamic flux* $H := H(\varrho) := \mathbf{E}^{\varrho}$ [growth rate].

The hydrodynamics is

 $\partial_T \varrho + \partial_X H(\varrho) = 0$ (conservation law).

• The characteristic velocity is $H'(\varrho)$.

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

 $H'(\varrho) \searrow$ (H concave)

Blue TASEP ω : Bernoulli(ϱ) for sites {..., -2, -1, 0}, Bernoulli(λ) for sites {1, 2, 3, ...}.

Black TASEP η : Bernoulli(ϱ) for sites {..., -3, -2, -1}, Bernoulli(λ) for sites {0, 1, 2, ...}.

 $h_i(t)$, $g_i(t)$ are the respective numbers of particles jumping over the edge (i, i + 1) by time t (i > 0).

First realization:

First realization:

• $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho)$ for i < 0

First realization:

- ω_i(0) = η_i(0) ∼ Bernoulli(ϱ) for i < 0</p>
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$ $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ

First realization:

- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho)$ for i < 0
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$ $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ

• $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\lambda)$ for i > 0

First realization:

- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho)$ for i < 0
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ρ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\rho - \lambda$ 2nd class particle $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ

• $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\lambda)$ for i > 0

First realization:

- $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\varrho)$ for i < 0
- $(\omega_0(0), \eta_0(0)) = (0, 0)$ w. prob. 1ϱ $(\omega_0(0), \eta_0(0)) = (1, 0)$ w. prob. $\varrho - \lambda$ $(\omega_0(0), \eta_0(0)) = (1, 1)$ w. prob. λ

• $\omega_i(0) = \eta_i(0) \sim \text{Bernoulli}(\lambda)$ for i > 0

 $\mathsf{E}h_i(t) - \mathsf{E}g_i(t) = \mathsf{E}(h_i(t) - g_i(t)) = (\varrho - \lambda) \cdot \mathsf{P}\{\mathsf{Q}(t) > i\}.$

Second realization:

Second realization:

 $\mathsf{E}h_i(t) - \mathsf{E}g_i(t) = \mathsf{E}(h_i(t) - g_i(t)) = \mathsf{E}(\eta_i(t) - \eta_i(0)) = \mathsf{E}\eta_i(t) - \mathsf{E}\eta_i(0).$

Thus,

Thus,

$$\mathbf{E}h_i(t) - \mathbf{E}g_i(t) = \mathbf{E}(h_i(t) - g_i(t)) = (\varrho - \lambda) \cdot \mathbf{P}\{Q(t) > i\},\\ \mathbf{E}h_i(t) - \mathbf{E}g_i(t) = \mathbf{E}(h_i(t) - g_i(t)) = \mathbf{E}\eta_i(t) - \mathbf{E}\eta_i(0),$$

$$\mathsf{P}\{\mathsf{Q}(t) > i\} = \frac{\mathsf{E}\eta_i(t) - \mathsf{E}\eta_i(0)}{\varrho - \lambda}.$$

Thus,

$$\mathbf{E}\mathbf{h}_{i}(t) - \mathbf{E}g_{i}(t) = \mathbf{E}(\mathbf{h}_{i}(t) - g_{i}(t)) = (\varrho - \lambda) \cdot \mathbf{P}\{\mathbf{Q}(t) > i\},\\ \mathbf{E}\mathbf{h}_{i}(t) - \mathbf{E}g_{i}(t) = \mathbf{E}(\mathbf{h}_{i}(t) - g_{i}(t)) = \mathbf{E}\eta_{i}(t) - \mathbf{E}\eta_{i}(0),$$

$$\mathsf{P}\{\mathsf{Q}(t) > i\} = \frac{\mathsf{E}\eta_i(t) - \mathsf{E}\eta_i(0)}{\varrho - \lambda}.$$

Combine with hydrodynamics to conclude

$$\frac{\mathsf{Q}(t)}{t} \Rightarrow \begin{cases} \text{shock velocity} & \text{in a shock,} \\ \mathsf{U}(\mathsf{H}'(\varrho), \, \mathsf{H}'(\lambda)) & \text{in a rarefaction wave.} \end{cases}$$

Let's generalise

Other models have more than 0 or 1 particles per site. How do we start the second class particle?

Shall we do

Let's generalise

Other models have more than 0 or 1 particles per site. How do we start the second class particle?

Shall we do

Let's generalise: problems with coupling

Fix $\lambda < \varrho \leq \lambda + 1$. Is there a joint distribution of (ω_0, η_0) such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;

•
$$\eta_0 \le \omega_0 \le \eta_0 + 1?$$

Let's generalise: problems with coupling

Fix $\lambda < \rho \leq \lambda + 1$. Is there a joint distribution of (ω_0, η_0) such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- $\eta_0 \le \omega_0 \le \eta_0 + 1?$

Proposition

Of course for Bernoulli (TASEP).

Let's generalise: problems with coupling

Fix $\lambda < \rho \leq \lambda + 1$. Is there a joint distribution of (ω_0, η_0) such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- $\eta_0 \le \omega_0 \le \eta_0 + 1?$

Proposition

- Of course for Bernoulli (TASEP).
- No for Geometric (classical TAZRP with $r(\omega_i) = \mathbf{1}\{\omega_i > \mathbf{0}\}$).
Let's generalise: problems with coupling

Fix $\lambda < \rho \leq \lambda + 1$. Is there a joint distribution of (ω_0, η_0) such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- $\eta_0 \le \omega_0 \le \eta_0 + 1?$

Proposition

- Of course for Bernoulli (TASEP).
- No for Geometric (classical TAZRP with $r(\omega_i) = \mathbf{1}\{\omega_i > \mathbf{0}\}$).
- ▶ No for Poisson (indep. walkers with $r(\omega_i) = \omega_i$).

Let's generalise: problems with coupling

Fix $\lambda < \rho \leq \lambda + 1$. Is there a joint distribution of (ω_0, η_0) such that

- the first marginal is $\omega_0 \sim$ stati. μ^{ϱ} ;
- the second marginal is $\eta_0 \sim$ stati. μ^{λ} ;
- $\eta_0 \le \omega_0 \le \eta_0 + 1?$

Proposition

- Of course for Bernoulli (TASEP).
- ▶ No for Geometric (classical TAZRP with $r(\omega_i) = \mathbf{1}\{\omega_i > \mathbf{0}\}$).
- ▶ No for Poisson (indep. walkers with $r(\omega_i) = \omega_i$).
- Yes for discrete Gaussian (bricklayers with $r(\omega_i) = e^{\beta \omega_i}$).

Keep calm and couple anyway.

Find a coupling measure ν with

- first marginal $\omega_0 \sim$ stati. μ^{ϱ} ;
- second marginal $\eta_0 \sim$ stati. μ^{λ} ;
- zero weight whenever $\omega_0 \notin \{\eta_0, \eta_0 + 1\}$.

Not many choices:

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- ► Good news: Who cares? No 2nd class particle there.

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- ► Good news: Who cares? No 2nd class particle there.
- Good news: $\nu(x + 1, x) \ge 0$ (attractivity).

$$\nu(\mathbf{x}, \mathbf{x}) = \mu^{\varrho} \{-\infty \dots \mathbf{x}\} - \mu^{\lambda} \{-\infty \dots \mathbf{x} - \mathbf{1}\},$$

$$\nu(\mathbf{x} + \mathbf{1}, \mathbf{x}) = \mu^{\lambda} \{-\infty \dots \mathbf{x}\} - \mu^{\varrho} \{-\infty \dots \mathbf{x}\},$$

$$\nu = \text{zero elsewhere.}$$

- Bad news: $\nu(x, x)$ can be negative (e.g., Geom., Poi).
- ► Good news: Who cares? No 2nd class particle there.
- Good news: $\nu(x + 1, x) \ge 0$ (attractivity).

We can still use the *signed measure* ν formally, as we only care about $\nu(x + 1, x)$. Scale this up to get the initial distribution at the site of the second class particle:

$$\mu(\omega_0, \eta_0) = \mu(\eta_0 + 1, \eta_0) = \frac{\nu(\eta_0 + 1, \eta_0)}{\sum_{\mathbf{x}} \nu(\mathbf{x} + 1, \mathbf{x})} = \frac{\nu(\eta_0 + 1, \eta_0)}{\varrho - \lambda}.$$

$$\mu(\omega_0, \eta_0) = \frac{\nu(\eta_0 + 1, \eta_0)}{\varrho - \lambda}$$

- is a proper probability distribution;
- actually agrees with the coupling measure ν conditioned on a 2nd class particle when ν behaves nicely (Bernoulli, discr.Gaussian);
- allows the extension of Ferrari-Kipnis:

Theorem
Starting in

$$\bigotimes_{i<0} \mu_i^{\varrho} \otimes \mu_0 \otimes \bigotimes_{i>0} \mu_i^{\lambda},$$

$$\lim_{N \to \infty} \mathbf{P} \Big\{ \frac{\mathbf{Q}(NT)}{N} > X \Big\} = \frac{\varrho(X, T) - \lambda}{\rho - \lambda}$$

where $\varrho(X, T)$ is the entropy solution of the hydrodynamic equation with initial data

- ϱ on the left
- λ on the right.

What do we have?

$$\lim_{N\to\infty} \mathbf{P}\Big\{\frac{\mathbf{Q}(NT)}{N} > X\Big\} = \frac{\varrho(X, T) - \lambda}{\varrho - \lambda}$$

 \rightsquigarrow The solution $\varrho(X, T)$ is the distribution of the velocity for Q.

- Shock: distribution is step function, velocity is deterministic (LLN).
- Rarefaction wave: distribution is continuous, velocity is random (e.g., Uniform for TASEP).

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

 $\omega_i = -1, 0, 1;$

 $\begin{array}{ll} (0,\,-1) \to (-1,\,0) & \mbox{ with rate } \frac{1}{2}, \\ (1,\,0) \to (0,\,1) & \mbox{ with rate } \frac{1}{2}, \\ (1,\,-1) \to (0,\,0) & \mbox{ with rate } 1, \\ (0,\,0) \to (-1,\,1) & \mbox{ with rate } c. \end{array}$

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Hydrodynamic flux $H(\varrho)$, for certain *c*:

Models Hydro 2nd cl F-K (TASEP) Gen.

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth) Here is what can happen (**R**: rarefaction wave, **S**: Shock):

A fun model (B., A.L. Nagy, I. Tóth, B. Tóth)

Examples for $\varrho(T, X)$:

$$\lim_{N\to\infty} \mathbf{P}\Big\{\frac{\mathbf{Q}(NT)}{N} > X\Big\} = \frac{\varrho(X, T) - \lambda}{\varrho - \lambda}$$

 \rightsquigarrow The solution $\varrho(X, T)$ is the distribution of the velocity for Q.

I haven't seen a walk with a random velocity of *mixed distribution* before.

A few more remarks

This work sheds light on a measure µ̂ we came up with in the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen). At that time we had no idea why µ̂. It just worked nice with our formulas.

As it turns out: $\hat{\mu} = \lim_{\lambda \nearrow \varrho} \mu$.

A few more remarks

This work sheds light on a measure µ̂ we came up with in the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen). At that time we had no idea why µ̂. It just worked nice with our formulas.

As it turns out: $\hat{\mu} = \lim_{\lambda \nearrow \varrho} \mu$.

We can do symmetric models too. SSEP's second class particle is a SSRW so boring, but the ones of other symmetric models are interesting. We get diffusive scaling and non-trivial CLT.

A few more remarks

This work sheds light on a measure µ̂ we came up with in the 1/3-fluctuations papers (B., J. Komjáthy, T. Seppäläinen). At that time we had no idea why µ̂. It just worked nice with our formulas.

As it turns out: $\hat{\mu} = \lim_{\lambda \nearrow \varrho} \mu$.

We can do symmetric models too. SSEP's second class particle is a SSRW so boring, but the ones of other symmetric models are interesting. We get diffusive scaling and non-trivial CLT.

Thank you.

Thank you.