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Product blocking measures

Can we have a reversible stationary distribution in product form:
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H(Q) . rate(g N gimi-i—1) — H(QimH—“) . rate(gimi-H N Q) ?
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Notice:

1 )
P{n,-:O}:1—g,-:71+(B)I._C asi— oo
q
1
P{ni=1}=0i= 57— asi— —
{ni =1} =o; (@t 1 00
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is p-a.s. finite.
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p() =Y pINC) =mu(NC) =n)= D" v"(u(N() = n).

Ergodic decomposition of jy with v"(-) : = pu(-| N(-) = n).

Let’s find the coefficients u(N(-) = n)!
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So,
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Solution:

discrete Gaussian.
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Euler’s identity; g-binomial theorem

Let
>

>

» But this is just a shift, so u (Np

N1 /> be the number of particles on the left of 5.
Condition on whether there is a particle or not at site 0.

This makes N°, , out of N, one way or another.

(o= k) c+1(Np —k)

» Transform out the +1 in /f“ and get a recurrence relation.

Solve it, get the p°-distribution of N1/2

That this sums to one is Euler’s identity.
Repeat the same with the number of particles in a finite
interval; get the g-binomial theorem.

1e(rn) = pet(n) g7 7 [m} =(-Z,q)m
q
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Durfee rectangles identity

» Recolor particles into holes, holes into particles. Get an

ASEP drifting left with finite number of particles on the right
and holes on the left.

» Now reflect this process spatially around % and watch

carefully where ¢ goes. Get back the original ASEP with a
new c this way.

» Follow through what happens to N1 /2"

K (N1p/2) T C(N1h/2)

> Add this to the convolution N = N1h/2 N1/2 to get the

Durfee rectangles identity.

[ee]

g

1
i:znz (@:Dn+i(@:9)i — (9:9)
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Second class particles

Much of the story aimed to figure out the distribution of
. These play ASEP too, except they give priority
to the original (first class) ASEP particles.

» Second class particles can be represented as an ASEP
with left drift that jumps on the heads of first class particles
only.

» The blocking measure is particularly nice: the jumps on the

heads happens on Z, this itself forming a half-line ASEP
blocking measure ( ).

> We get an explicit formula for the distribution of locations of
a fixed number of second class particles under p°.
» No new identities there, although some we have can be

reproved using the second class particles. They provide a
wormhole between ..., Q~1, Q0 Q1 ...



The ergodic measure

And, if N(n) = n,

ey oy B
v (ﬂ) = H(_/‘ N(Tl) = n) N(N(ﬂ) _ n)
p (i=C)n; q\ (i—e)(1—m) meim_ om
) Ig)(q) | 11(3) =
O(+(6)7) @70 (g%

This is the unique stationary distribution on Q".
1 1 _—
PN
ZCaZCa (o)
T T 1 T >
v v

v %
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Asymmetric zero range process

E(g) . I’ate(g N gif\vl'-i-1) — H(gimi+1) . rate(gimi+1 N g) ?

AZRP:

pilwi izt (wizt) - pH{w; > 0} = pi(wi — izt (wizt +1) - g

Solution:  p; ~ Geometric<1 — (g)i_conSt).
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~ The product measure stays stationary on the half-line.
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since stationary distributions of countable irreducible Markov
chains are unique.
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...and the same steps to the left.
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No two consecutive 0’s!
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Odd ground state:
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Lay down / stand up a bit differently

» No two consecutive 0’s!is a nonlocal constraint.

» The stood up model is nice otherwise. It has reversible
product blocking measures.

» Reversible measures survive forbidden jumps.



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

ASEP(q, 1)
Jump Rate Jump Rate
®— g'T+qg° — & q+q°
o g'+q3 e — q+q°
0~om g3 Do @
@o~0 (1+¢)g'+q° |ce~0 (1+g3)(q9+q°)

Identity: Has to do with the odd and even terms of Jacobi’s
triple product.



More

New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

A nice three-state model:

Jump Rate | Jump Rate
& — 1 — D q

— O 1 o — q
P~oe c 0~ @®c qc
o ~0 2 oo ~0 2q

Identity: Has to do with the square of Jacobi’s triple product.



New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

2-exclusion:
Jump Rate | Jump Rate
& — 1 — D q
— O 1 o — q
0~oco 1 0~do q
@ ~0 1 od~0 g

Identity: Looks new and interesting. . .
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New identities

The identities we get have to do with generalised Frobenius
partitions and generalised Young diagrams.

K-exclusion:

Identity: Rather nice generalisation using the K roots of unity.

Zero range:

Identity: The geometric sum formula. :-D

Thank you.
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Second class particles revealed

Theorem

The 1.°-probability of seeing d second class particles at
locations my < mo < --- <My is

(1-q)- g#=tm

T

d
H (1 + qc+d—j—mj)(1 + qc+d+1—j—m,-)
j=1

(ordered, otherwise independent Logistic distributions).
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