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The asymmetric zero range process (AZRP) [F. Spitzer ’70]

-3 -2 -1 0 1 2 3 4 i

•• •• • •

ωi ≥ 0

Particles jump
to the right with rate p · r(ωi)
to the left with rate q · r(ωi).

TAZRP: p = 1, q = 0.
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Exists?

... nice wishlist. :-) Is there such a Markov chain? Can we

construct it?

◮ Models introduced by [F. Spitzer ’70]

◮ Exclusion and zero range up to linear rates: [R. Holley ’70], [T.

Liggett ’72, ’73], [E. Andjel ’80]

◮ Up to exponential rates: [B. with F. Rassoul-Agha, T. Seppäläinen, S.

Sethuraman ’07]

◮ Improvements: [E. Andjel, I. Armendáriz, M. Jara ’21]
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Arriving to a traffic jam

We notice the slow cars strong braking immediately.

Arriving to a traffic jam is always sharp.

This is one aspect that makes motorways dangerous places.
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Leaving a traffic jam

Continuous, long acceleration for those starting from the rear

Leaving a traffic jam is always soft, “blurry”.

Why is there such a difference between the two ends of a traffic

jam?

TASEP: let’s go large scale!
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Rent a helicopter and view particles (cars) from high above.

That is, rescale space (X ) and time (T ) of TASEP.

Theorem (Hydrodynamics [H. Rost ’81])

The density ̺(T , X ) of particles satisfies

∂

∂T
̺+

∂

∂X
[̺(1 − ̺)] = 0

(Burgers equation).

The following are solutions of this equation:
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The start of the jam: sharpens. Shock
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End of the jam: smoothens. Rarefaction fan
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◮ Of course there are much more sophisticated models for

traffic modelling.
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On large scales

◮ Of course there are much more sophisticated models for

traffic modelling.

◮ https://youtu.be/7wm-pZp_mi0

https://youtu.be/7wm-pZp_mi0
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TASEP (R: rarefaction fan, S: Shock):

0

1

0 1

S

R
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A fun model [B., A. L. Nagy, I. Tóth, B. Tóth ’16]

Here is what can also happen (R: rarefaction fan, S: Shock):
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A fun model [B., A. L. Nagy, I. Tóth, B. Tóth ’16]

Examples for ̺(T , X ):

R-S-R S-R-S
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-3 -2 -1 0 1 2 3 4 i

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •••

⊕⊕

•

⊕

•

⊖

•

⊕

•

⊕ •• ∅ ◦• ⊖ ◦◦

pair creation from vacuum



CLT Models Hydro Surfaces 2nd cl Blocking LPP

A fun model [B., A. L. Nagy, I. Tóth, B. Tóth ’16]
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A fun model [B., A. L. Nagy, I. Tóth, B. Tóth ’16]

Here is what can also happen (R: rarefaction fan, S: Shock):
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What is this all good for?

Two ways to look at this:

◮ Misanthrope particles [C. Cocozza-Thivent ’85]: don’t like each

other

◮ Surface growth: fills in dips, slows down peaks

So,

◮ Cars on the road

◮ 1-dimensional transport e.g., red blood cells in capillaries

◮ Infection through crops

◮ Fire combusting paper or a forest

◮ . . . more to come.
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Integrated particle current

i

t=0

t

h t

0

0

hVt(t)

Vt

hVt(t) = height as seen by a moving observer of velocity V .

= net number of particles passing the window s 7→ Vs.

(Remember: particle current=change in height.)
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Theorem (CLT [P. A. Ferrari-L. R. Fontes ’94 (ASEP)]; [B. ’03 (TAZRP)])

lim
n→∞

hVt(t)− E hVt(t)

t1/2
→ N , lim

t→∞

Var(hVt(t))

t
= c · |C − V |

i

t=0

t

h t

0

0

hVt(t)

VtCt

Initial fluctuations are transported along on this scale.
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Abnormal fluctuations

Under some conditions, flat initial state,

On the line V = C,

Theorem (KPZ scaling [B., J. Komjáthy, T. Seppäläinen ’08-’12 (ASEP,

TAZRP)])

0 < lim inf
t→∞

Var(hCt(t))

t2/3
≤ lim sup

t→∞

Var(hCt(t))

t2/3
< ∞.

There is a huge literature now on limit distribution results

lim
t→∞

hCt(t)

t1/3
= . . . not N

KPZ universality class.
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The second class particle

States ω and ω only differ at one site.

Growth on the left:

rate≥rate

with rate-rate:

i

• ••
•• •• ••

••

A single discrepancy , the second class particle, is conserved.
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The second class particle

Under some conditions, flat initial state, for the location Q(t) of

the second class particle,

Theorem (KPZ scaling [B., J. Komjáthy, T. Seppäläinen ’08-’12 (ASEP,

TAZRP)])

0 < lim inf
t→∞

E |Q(t) − EQ(t)|
t2/3

≤ lim sup
t→∞

E |Q(t) − EQ(t)|
t2/3

< ∞.
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The second class particle

Under some conditions, flat initial state, for the location Q(t) of

the second class particle,

Theorem (KPZ scaling [B., J. Komjáthy, T. Seppäläinen ’08-’12 (ASEP,

TAZRP)])

0 < lim inf
t→∞

E |Q(t) − EQ(t)|
t2/3

≤ lim sup
t→∞

E |Q(t) − EQ(t)|
t2/3

< ∞.

Strong correlations in time, highly nontrivial motion.
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The second class particle

However,

◮ Place it in a shock, in some cases Q(t) becomes a simple

random walk (with CLT)! [B., L. Duffy, Gy. Farkas, P. Kovács, A. Rákos,

D. Pantelli ’16-’19]
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The second class particle

However,

◮ Place it in a shock, in some cases Q(t) becomes a simple

random walk (with CLT)! [B., L. Duffy, Gy. Farkas, P. Kovács, A. Rákos,

D. Pantelli ’16-’19]

◮ Place it in a rarefaction fan, and it won’t even know which

way it goes. [P. A. Ferrari, C. Kipnis ’95], [B., A. L. Nagy ’17]

lim
t→∞

Q(t)

t
→ something random.
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Blocking ASEP [T. Liggett ’76]

1 2 3 L

• • • • •

p > q, but particles are blocked. The resulting density profile:

u u u u u u u u u u u u u
u

u
u

u
u

u
u

u u u u u u u u u u u u

i

̺i

0

1
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Blocking AZRP

p > q: convex

1 2 3 L

• • • • ••
0

H

Particles jump
to the right with rate p · r(ωi)
to the left with rate q · r(ωi).
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Blocking AZRP

p < q: concave

1 2 3 L

•• • • • •

0

H

Particles jump
to the right with rate p · r(ωi)
to the left with rate q · r(ωi).
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Hills [J. Calvert, B., K. Michaelides ’18]

Rescaling this surface with weak aymmetry (p ≃ q) results in a

convection-diffusion type equation with boundary conditions.

And this explains a lot of things about hillslope evolution.
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Convex hills

Wikipedia
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Concave hills

Stockphotos4free
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The stationary slope
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Dynamics
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The OMG slides: blocking ASEP [D. Adams, B., J. Jay ’24+]

Theorem (Euler’s identity)

∞
∑

i=0

q
i(i−1)

2 z i

(q;q)i
= (−z;q)∞

(a; q)n =
n
∏

i=0

(1 − aqi)
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The OMG slides: blocking ASEP [D. Adams, B., J. Jay ’24+]

Theorem (q-binomial theorem)

m
∑

i=0

q
i(i−1)

2 z i

[

m

i

]

q

= (−z;q)m

(a; q)n =
n
∏

i=0

(1 − aqi)

[

n

m

]

q

= (q;q)n

(q;q)m·(q;q)n−m
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The OMG slides: blocking ASEP [D. Adams, B., J. Jay ’24+]

Theorem (Durfee rectangles identity)

∞
∑

i=n−

q i(n+i)

(q;q)n+i · (q;q)i
=

1

(q;q)∞

(a; q)n =
n
∏

i=0

(1 − aqi)
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The OMG slides: blocking ASEP and AZRP [B., R. Bowen ’18]

Theorem (Jacobi triple product)

∞
∑

i=−∞

q
i(i+1)

2 z i = (q;q)∞ · (−qz;q)∞ ·
(

−1

z
;q

)

∞

Plus: generalisations to the fun model and more [B., D. Fretwell, J.

Jay ’22]

(a; q)n =
n
∏

i=0

(1 − aqi)
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Last passage percolation

◮ Place i.i.d. random weights on Z
2.

◮ The geodesic from 0 to y is the heaviest up-right path from

0 to y . Its weight is G0,y , the time when square y becomes

occupied.

0

y
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Last passage percolation

Guess what? In some situations,

0 < lim inf
t→∞

Var(G0,yt)

t2/3
≤ lim sup

t→∞

Var(G0,yt)

t2/3
< ∞.

[B., T. Seppäläinen ’06]

There is a huge literature now on limit distribution results

lim
t→∞

G0,yt(t)

t1/3
= . . . not N

KPZ universality class.
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Last passage percolation

◮ Half-infinite geodesics exist, things stabilise [B., O. Busani, T.

Seppäläinen ’21]

0

y ր ∞
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Last passage percolation

◮ Half-infinite geodesics exist, things stabilise [B., O. Busani, T.

Seppäläinen ’21]

◮ But there are no doubly infinite geodesics [B., O. Busani, T.

Seppäläinen ’20]

0

y ր ∞
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LPP: Road network [B., R. Basu, S. Battacharjee, D. Harper, K. Das ’23-’24+]

Simulation by David Harper
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Simulation by David Harper
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Conclusion

Exclusion, its friends and relatives are absolutely everywhere.

And they are pretty interesting.

Thank you.
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