Markov chains from a distance: shocking particles

Márton Balázs

School of Mathematics

Matrix, University of Bristol, 2 December, 2020

Totally Asymmetric Simple Exclusion Process Stationary distribution The infinite model

Hydrodynamics

Characteristics End of the traffic jam Start of the traffic jam

Remarks

 $\textbf{A} \oplus \ominus \textbf{0} \textbf{ model}$

 $\mathfrak{S} \leftarrow$ This will be an *Exponential* alarm clock that rings at time τ . We like its *memoryless property*.

 $\mathfrak{S} \leftarrow$ This will be an *Exponential* alarm clock that rings at time τ . We like its *memoryless property*.

 \rightarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

 $\mathfrak{S} \leftarrow$ This will be an *Exponential* alarm clock that rings at time τ . We like its *memoryless property*.

 \rightarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

$$\mathbf{P}{\tau \le t} = 1 - \mathbf{P}{\tau > t} = 1 - e^{-t} \simeq 1 - (1 - t) + error = t + error.$$

 $\mathfrak{S} \leftarrow$ This will be an *Exponential* alarm clock that rings at time τ . We like its *memoryless property*.

 \rightsquigarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

$$\mathbf{P}{\tau \le t} = 1 - \mathbf{P}{\tau > t} = 1 - e^{-t} \simeq 1 - (1 - t) + \text{error} = t + \text{error}.$$

 \rightsquigarrow What is the probability that *two* independent $\mathfrak{P} \mathfrak{P}$ both ring within a small time *t*?

 $\mathfrak{S} \leftarrow$ This will be an *Exponential* alarm clock that rings at time τ . We like its *memoryless property*.

 \rightsquigarrow What is the probability that an \mathfrak{P} rings within a small time *t*?

$$\mathbf{P}{\tau \le t} = 1 - \mathbf{P}{\tau > t} = 1 - e^{-t} \simeq 1 - (1 - t) + error = t + error.$$

 \rightsquigarrow What is the probability that *two* independent $\mathfrak{G} \mathfrak{G}$ both ring within a small time *t*?

$$\mathbf{P}\{\tau \leq t\} \cdot \mathbf{P}\{\tau \leq t\} \simeq t^2 + \text{error} = \text{error}.$$

 $\mathfrak{S} \leftarrow$ This will be an *Exponential* alarm clock that rings at time τ . We like its *memoryless property*.

 \rightsquigarrow What is the probability that an \mathfrak{P} rings within a small time t?

$$\mathbf{P}{\tau \le t} = 1 - \mathbf{P}{\tau > t} = 1 - e^{-t} \simeq 1 - (1 - t) + error = t + error.$$

 \rightsquigarrow What is the probability that *two* independent $\mathfrak{G} \mathfrak{G}$ both ring within a small time *t*?

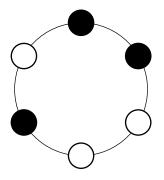
$$\mathbf{P}{\tau \leq t} \cdot \mathbf{P}{\tau \leq t} \simeq t^2 + \text{error} = \text{error}.$$

 \rightarrow More ${\mathfrak B}$'s, even smaller probability.

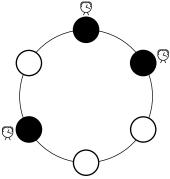
 \rightsquigarrow What is the probability that *none* of *k* independent \mathfrak{G} 's ring within a small time *t*?

 \rightsquigarrow What is the probability that *none* of *k* independent \mathfrak{P} 's ring within a small time *t*?

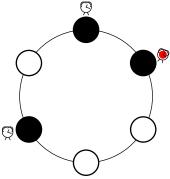
$$P\{\text{none of them ring}\} = P\{\tau > t\}^{k}$$
$$= e^{-kt}$$
$$\simeq (1 - kt) + \text{error.}$$



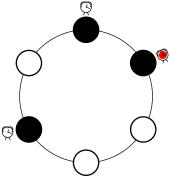
m balls in *N* possible slots.



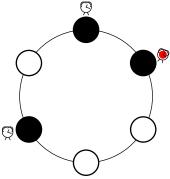
m balls in *N* possible slots.



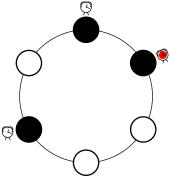
m balls in *N* possible slots.



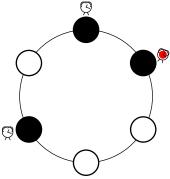
m balls in *N* possible slots.



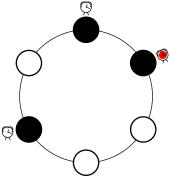
m balls in *N* possible slots.



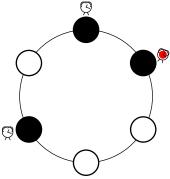
m balls in *N* possible slots.



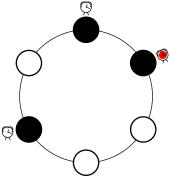
m balls in *N* possible slots.



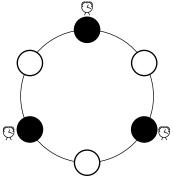
m balls in *N* possible slots.



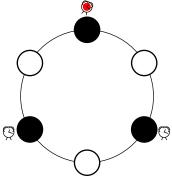
m balls in *N* possible slots.



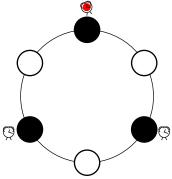
m balls in *N* possible slots.



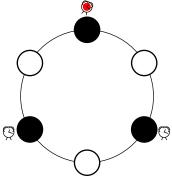
m balls in *N* possible slots.



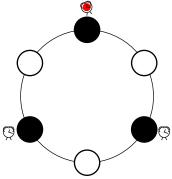
m balls in *N* possible slots.



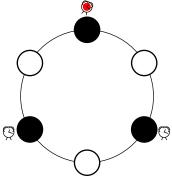
m balls in *N* possible slots.



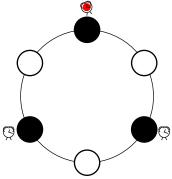
m balls in *N* possible slots.



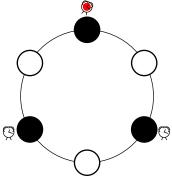
m balls in *N* possible slots.



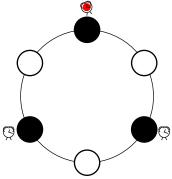
m balls in *N* possible slots.



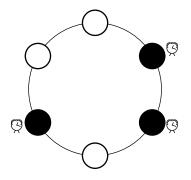
m balls in *N* possible slots.



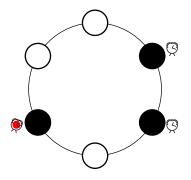
m balls in *N* possible slots.



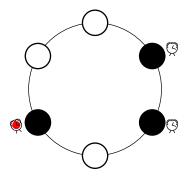
m balls in *N* possible slots.



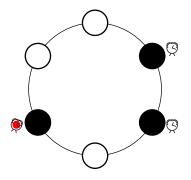
m balls in *N* possible slots.



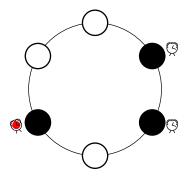
m balls in *N* possible slots.



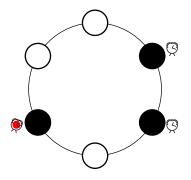
m balls in *N* possible slots.



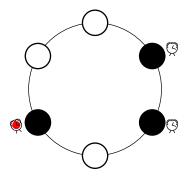
m balls in *N* possible slots.



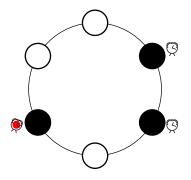
m balls in *N* possible slots.



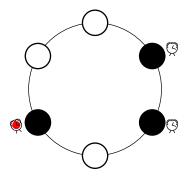
m balls in *N* possible slots.



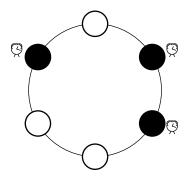
m balls in *N* possible slots.



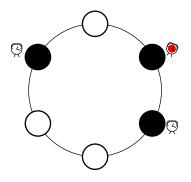
m balls in *N* possible slots.



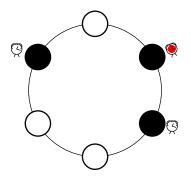
m balls in *N* possible slots.



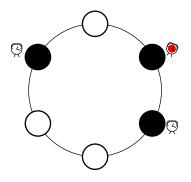
m balls in *N* possible slots.



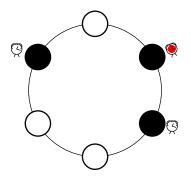
m balls in *N* possible slots.



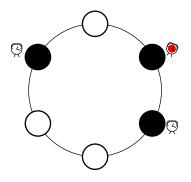
m balls in *N* possible slots.



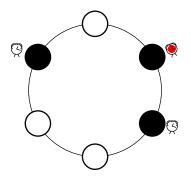
m balls in *N* possible slots.



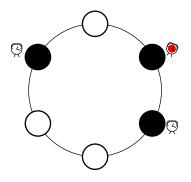
m balls in *N* possible slots.



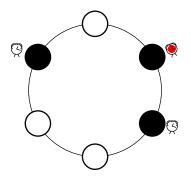
m balls in *N* possible slots.



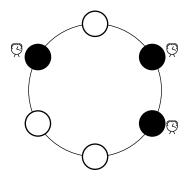
m balls in *N* possible slots.



m balls in *N* possible slots.

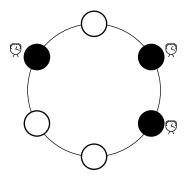


m balls in *N* possible slots.



m balls in *N* possible slots.

Each listening to its own O. When that rings, the ball tries to jump to the right. But sometimes it's blocked.



m balls in *N* possible slots.

Each listening to its own \mathfrak{P} . When that rings, the ball tries to jump to the right. But sometimes it's blocked. Memoryless, independent \mathfrak{P} 's \Rightarrow if we know the present, no need to know the past. *Markov property*, makes things handy.

Random process ~> need to talk about *distributions*.

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

Theorem

With N and m fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

1st remark.

In this case every configuration occurs with probability $1/\binom{N}{m}$.

Random process ~> need to talk about *distributions*.

What is the stationary distribution the one that's unchanged in time?

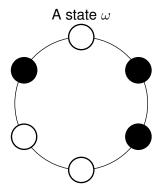
Theorem

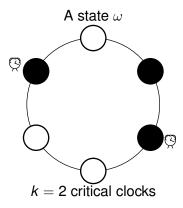
With N and m fixed, the distribution that gives equal chance to each (*m*-ball) configuration, is stationary.

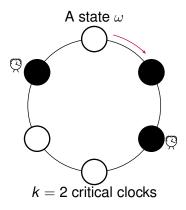
1st remark.

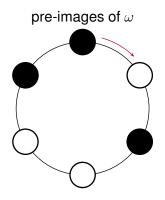
In this case every configuration occurs with probability $1/\binom{N}{m}$.

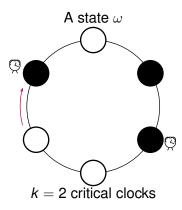
 2^{nd} remark. With fixed *N*, *m*, there is no other stationary distribution.

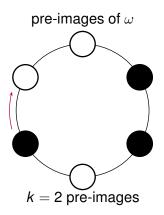




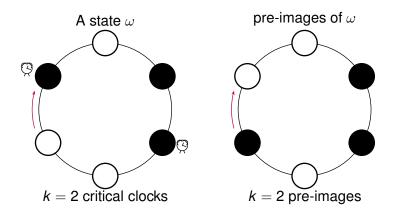








Almost proof



The number of critical clocks for ω = the number of pre-images of $\omega = \mathbf{k}$

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

 $\mathbf{P}\{\omega \text{ at time } s+t\}$

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

- $\mathbf{P}\{\omega \text{ at time } s+t\}$
- $= \mathbf{P}\{\omega \text{ at time } s \text{ and no jumps within time } t\}$
 - + **P**{was a pre-image of ω at time *s*, and jumps to ω }
 - + error (at least two jumps occur within the small time t)

Almost proof

Suppose that each configuration has the same probability p at time s. What is the probability of the state ω after a small time t?

 $\mathbf{P}{\omega \text{ at time } s+t}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and no jumps within time } t\}$

- + **P**{was a pre-image of ω at time *s*, and jumps to ω }
- + error (at least two jumps occur within the small time t)
- $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\}$
 - + $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ a$
 - + error

Almost proof

 $\mathbf{P}\{\omega \text{ at time } s+t\}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\}$

+ $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ a$

Almost proof

 $\mathbf{P}\{\omega \text{ at time } s+t\}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{Q} \text{ 's ring}\}$

+ $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ at tim$

$$= p \cdot (1-kt) + \sum_{\eta ext{ is a pre-image of } \omega} p \cdot t + ext{error}$$

Almost proof

 $\mathbf{P}\{\omega \text{ at time } s+t\}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\}$

+ $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ at tim$

$$= p \cdot (1 - kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \text{error}$$
$$= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error}$$

Almost proof

 $\mathbf{P}\{\omega \text{ at time } s+t\}$

 $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{Q} \text{ 's ring}\}$

+ $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ at tim$

$$= p \cdot (1 - kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \text{error}$$
$$= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error} = p + \text{error}.$$

Almost proof

 $\mathbf{P}\{\omega \text{ at time } s+t\}$

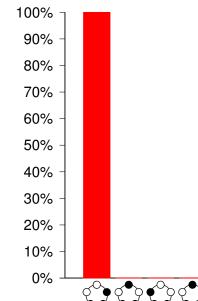
 $= \mathbf{P}\{\omega \text{ at time } s \text{ and none of the } k \text{ critical } \mathfrak{P} \text{ 's ring}\}$

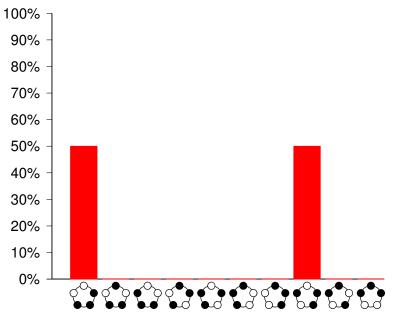
+ $\sum_{\eta \text{ is a pre-image of } \omega} \mathbf{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ and the right critical } \mathfrak{P}\{\eta \text{ at time } s \text{ at tim$

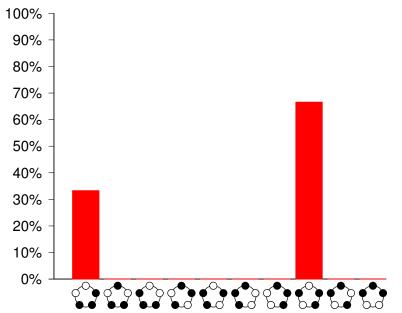
 $+ \, \text{error}$

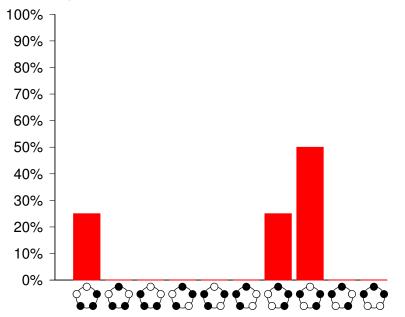
 $= p \cdot (1 - kt) + \sum_{\eta \text{ is a pre-image of } \omega} p \cdot t + \text{error}$ $= p \cdot (1 - kt) + k \cdot p \cdot t + \text{error} = p + \text{error}.$

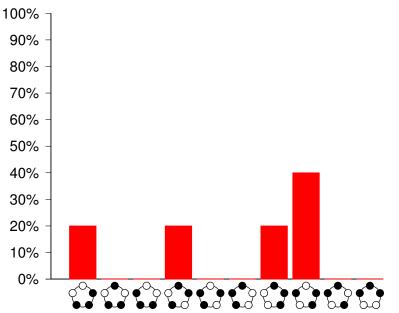
In fact error $\simeq t^2$, stays small if summed up for more and more smaller and smaller intervals of length *t*.

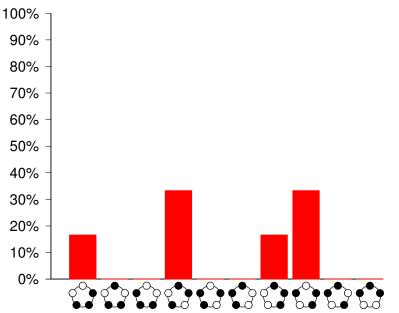


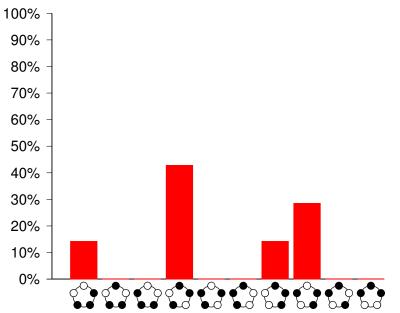


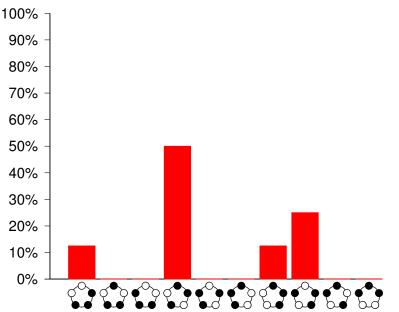


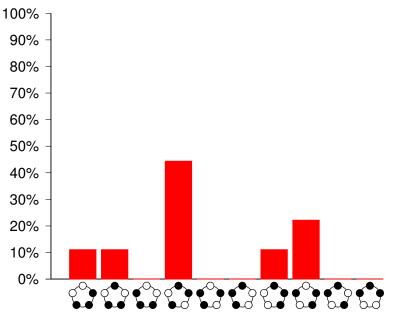


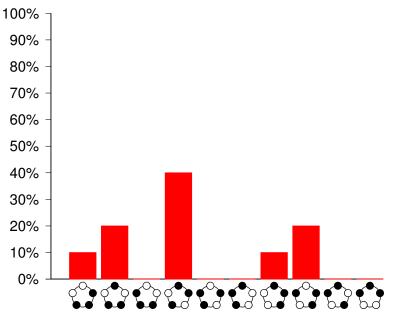


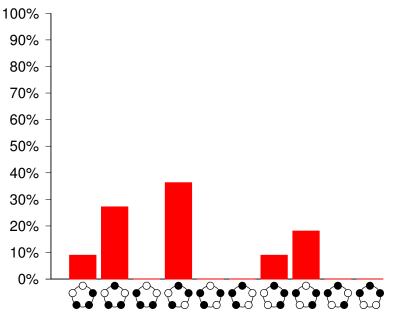


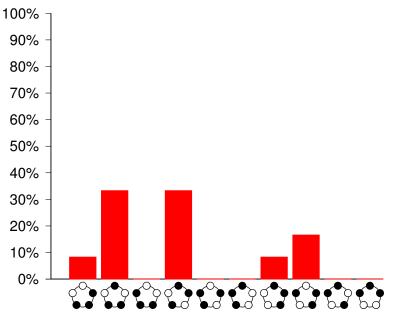


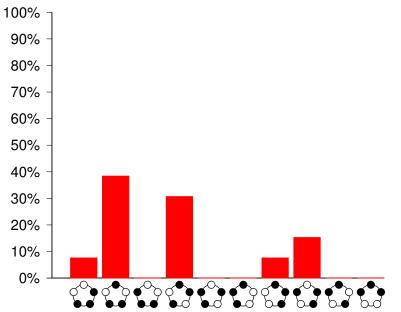


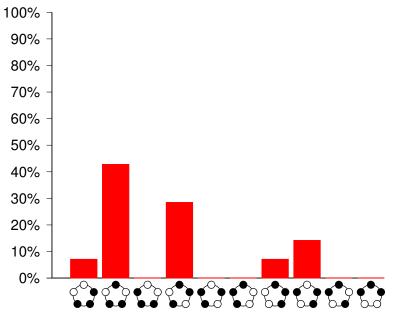


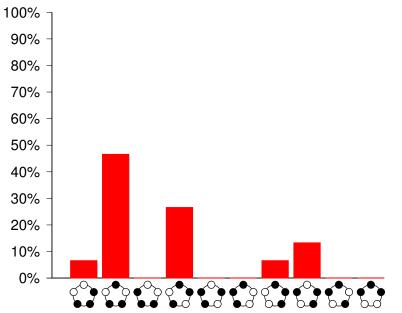


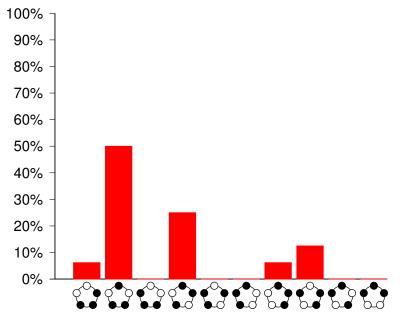


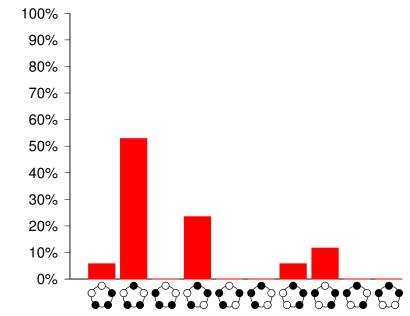


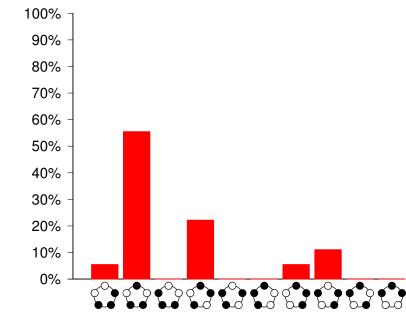


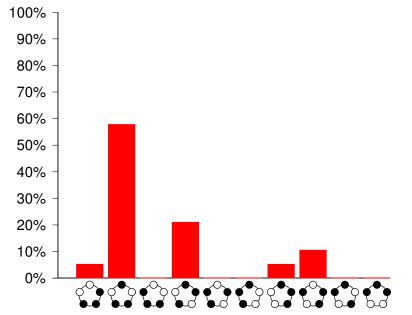


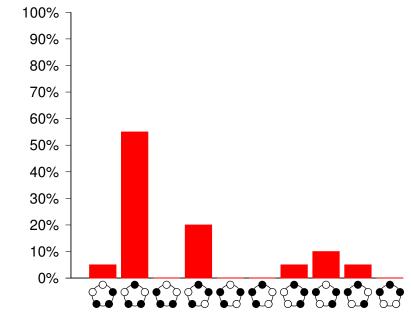


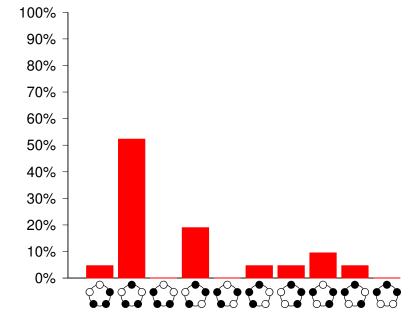


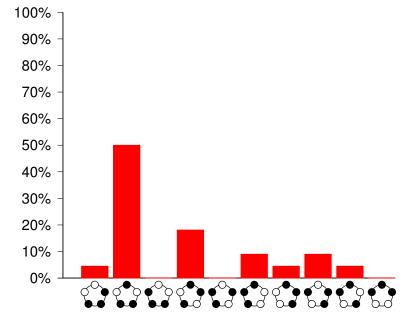


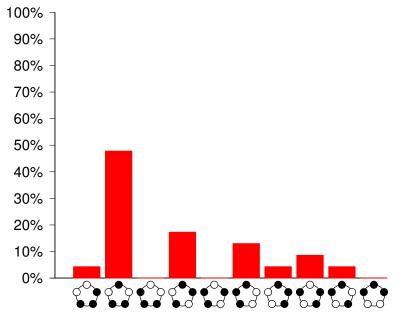


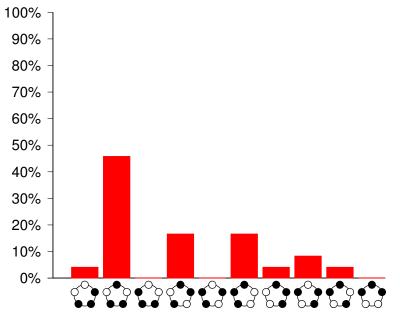


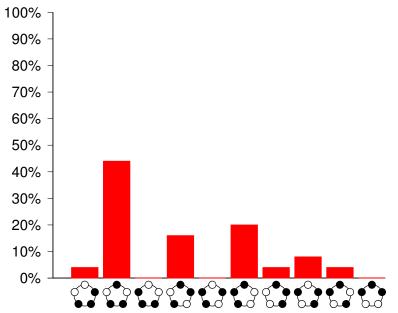


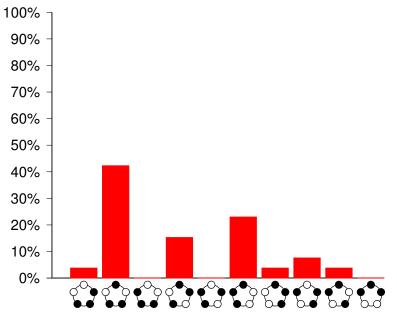


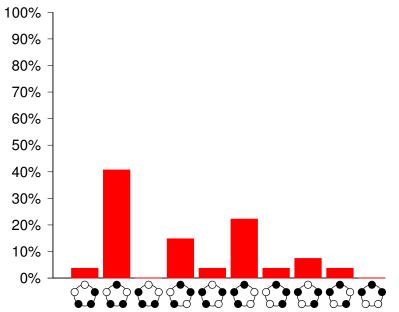


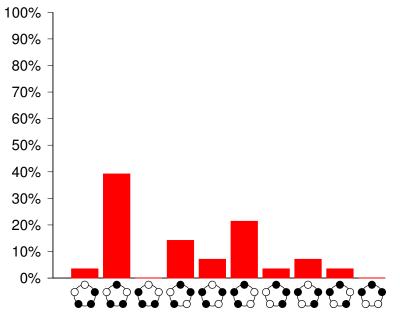


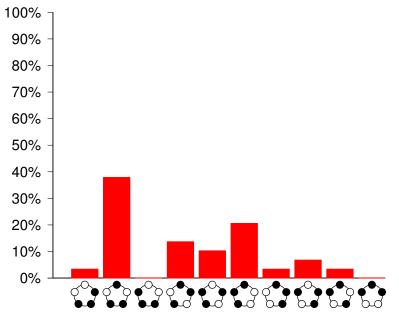


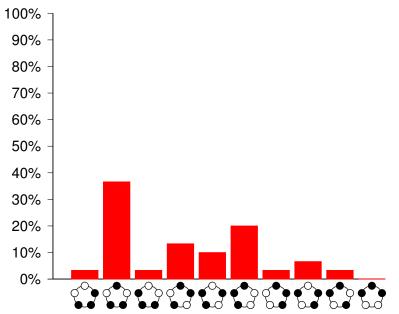


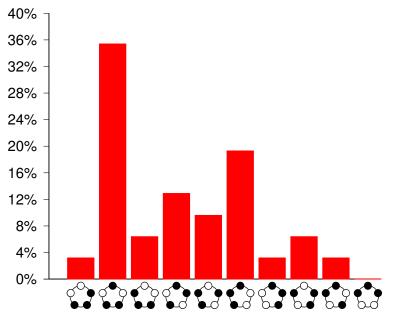


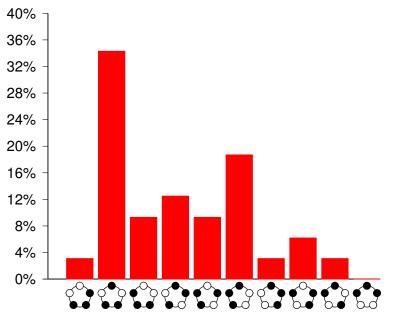


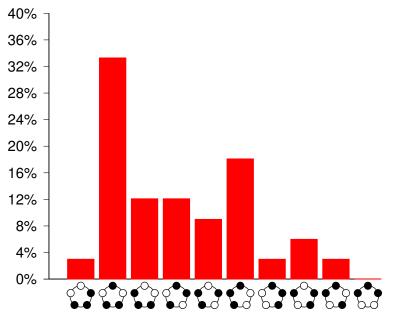


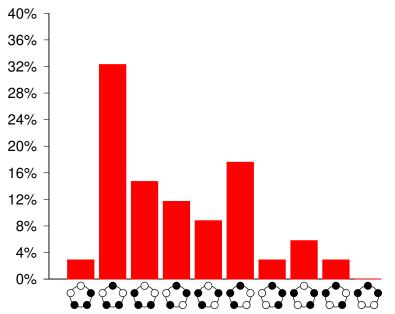


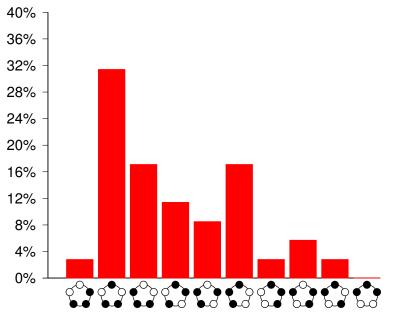


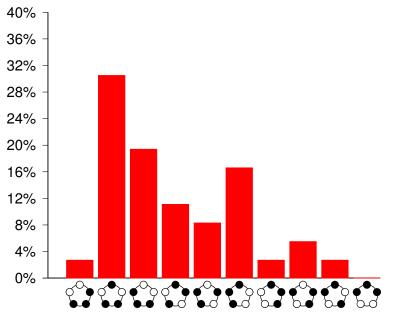


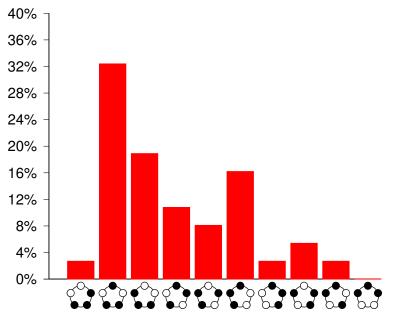


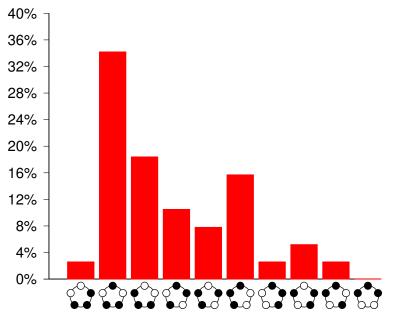


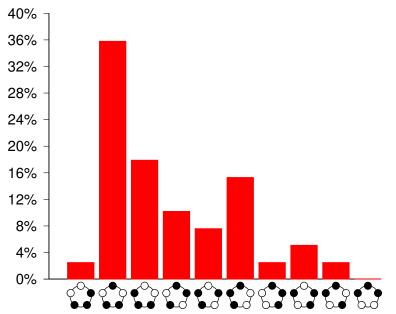


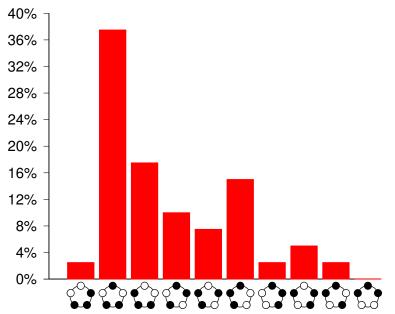


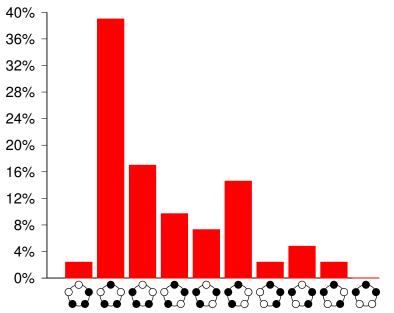


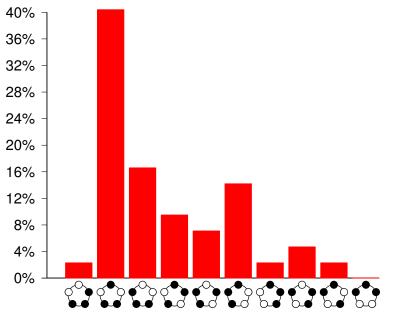


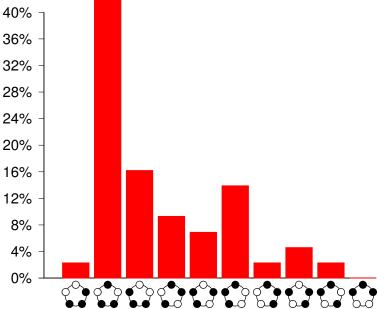


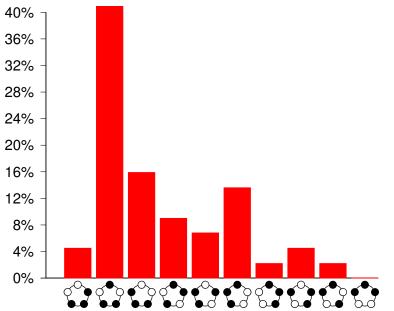


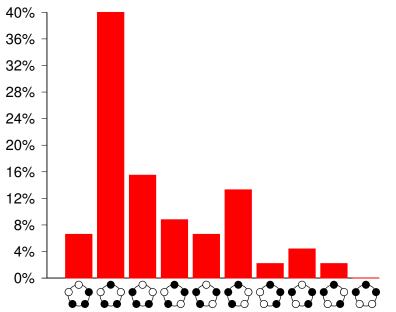


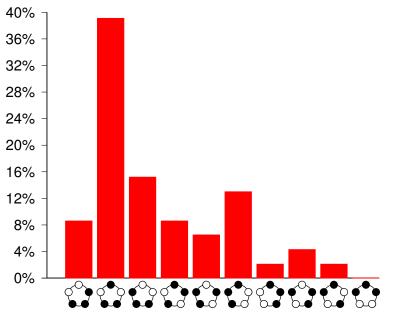


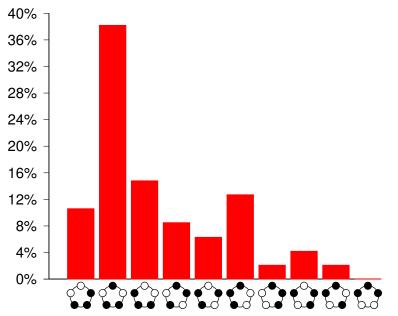


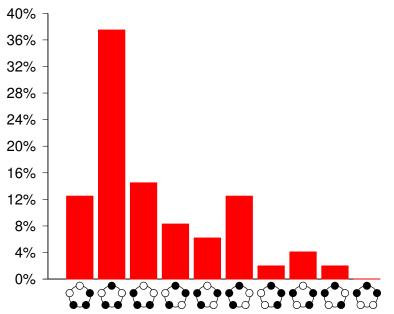


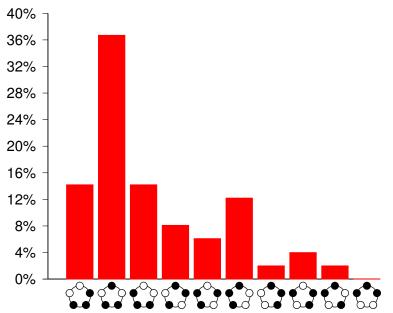


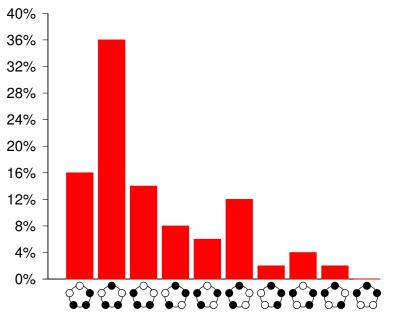


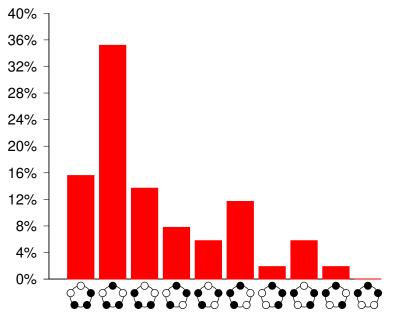


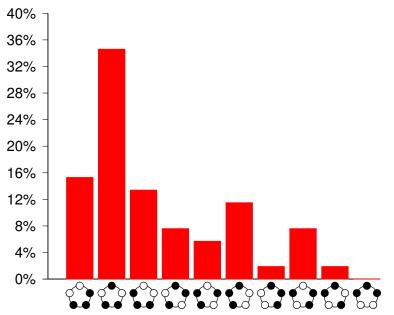


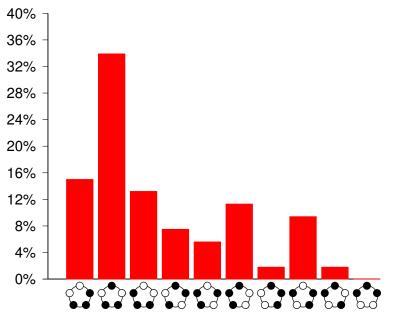


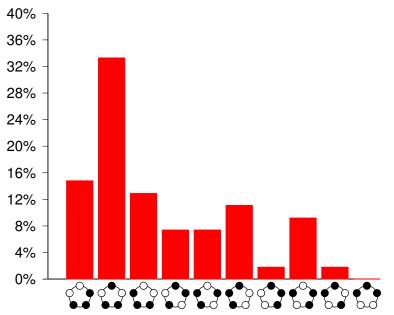


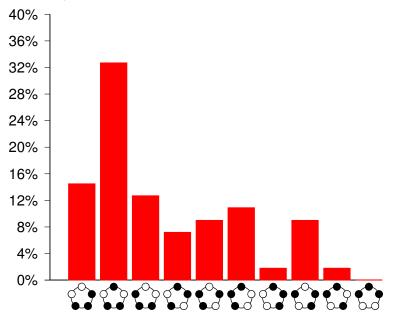


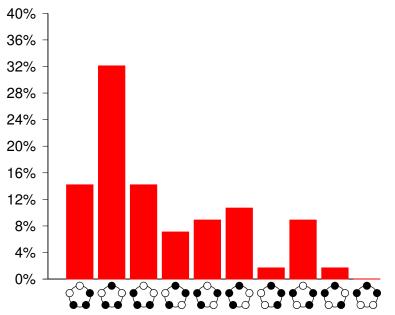


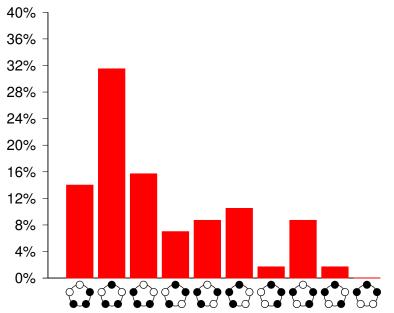


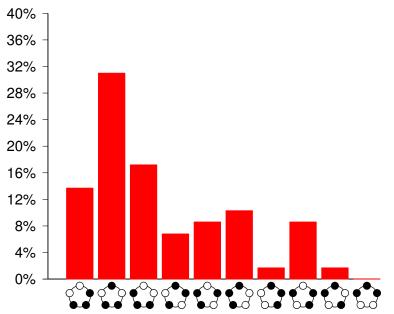


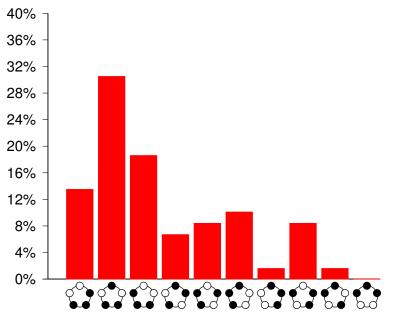


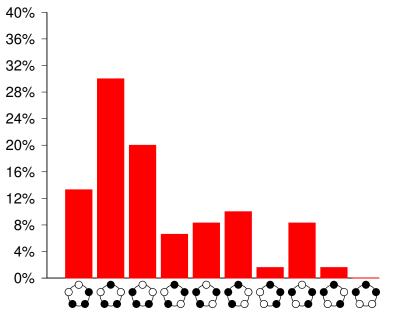


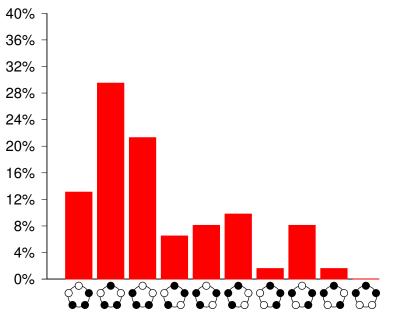


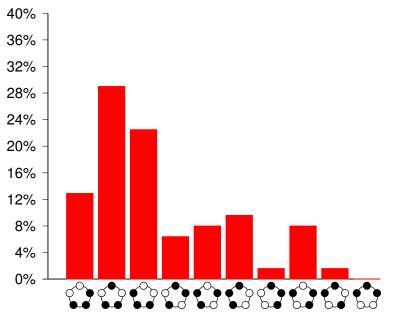




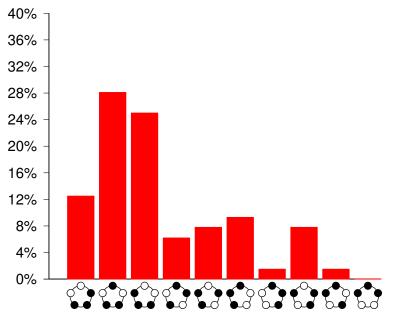


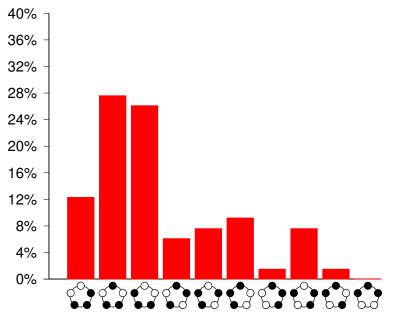


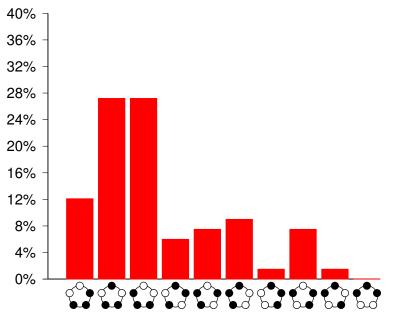


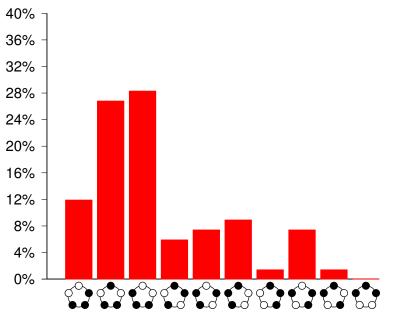


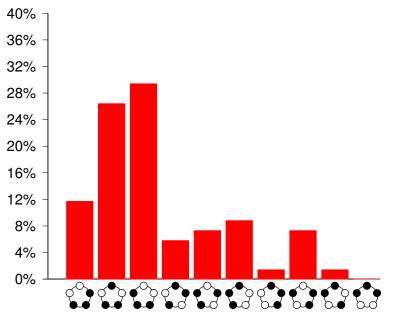


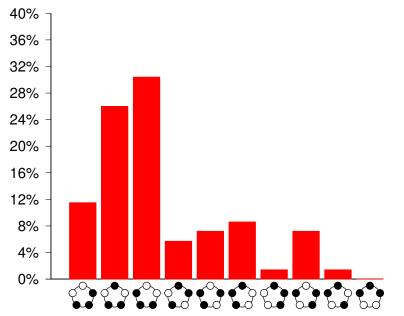


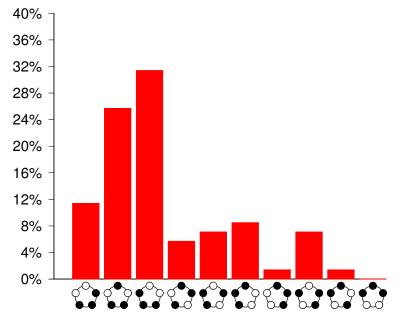


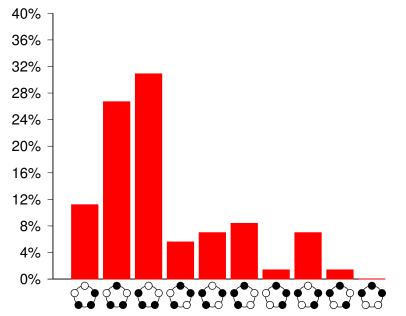


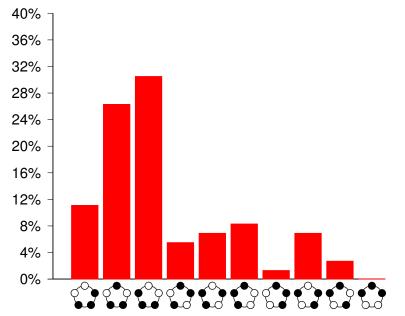


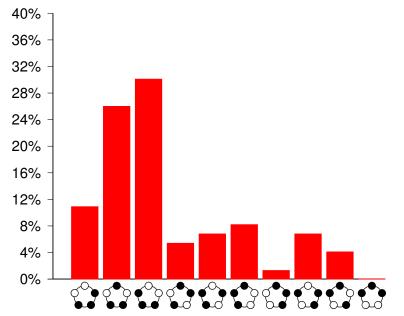


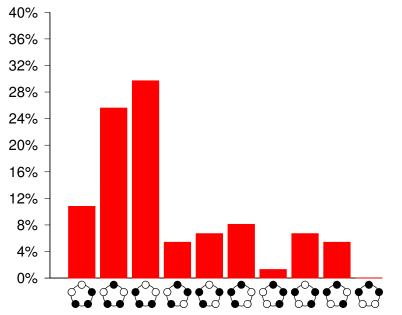


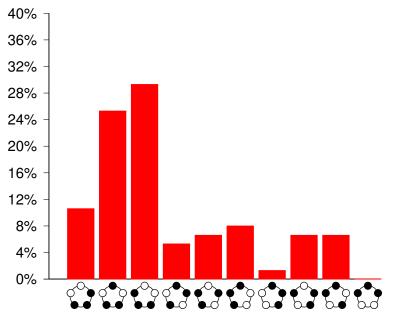


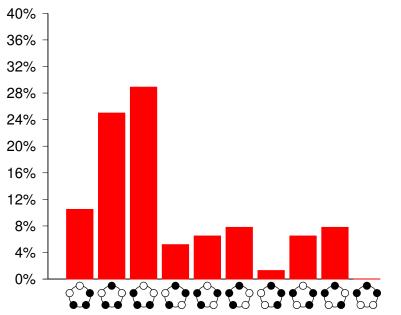


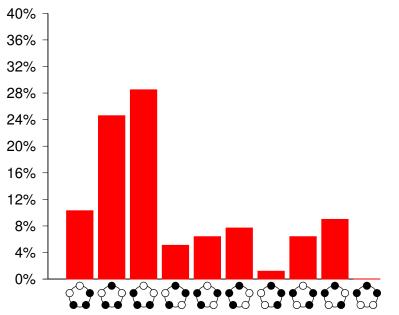


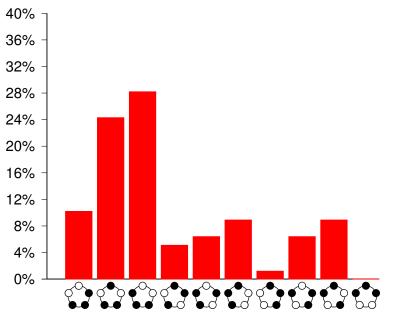


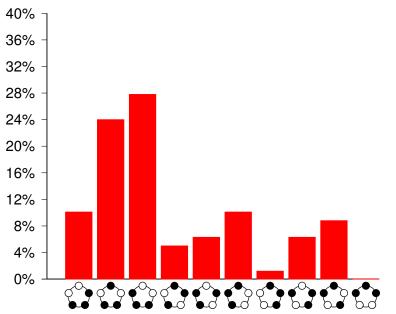


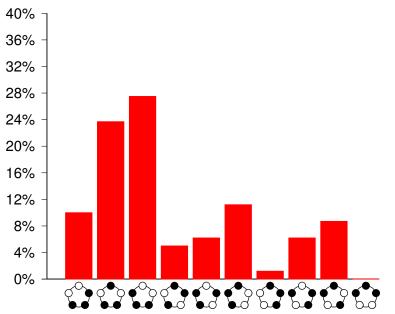


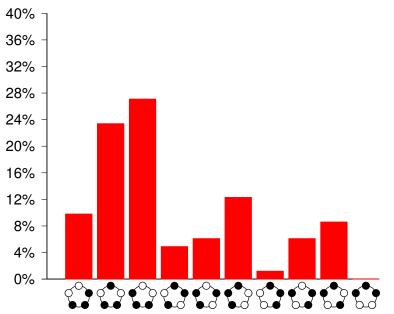


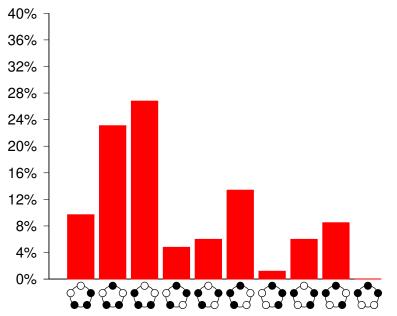


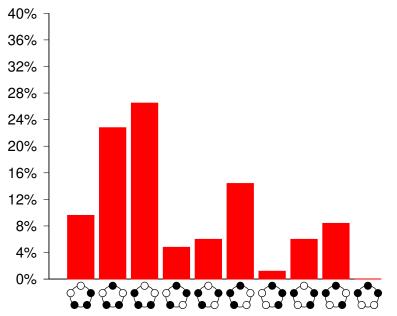


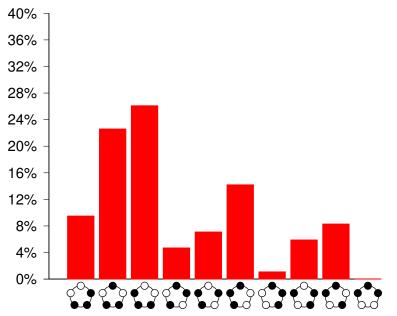


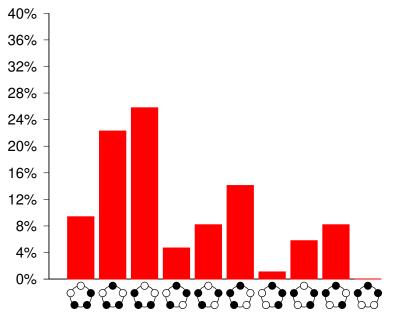


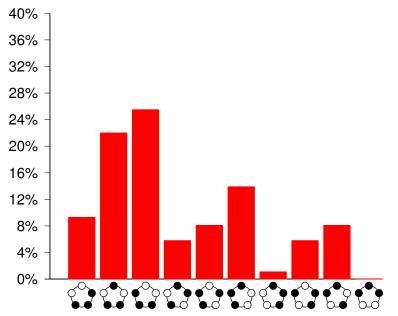


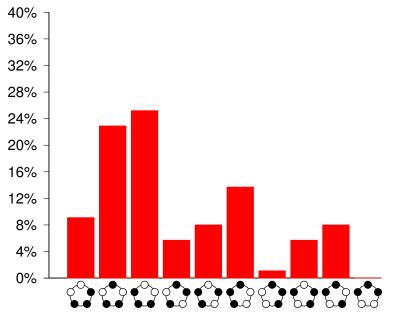


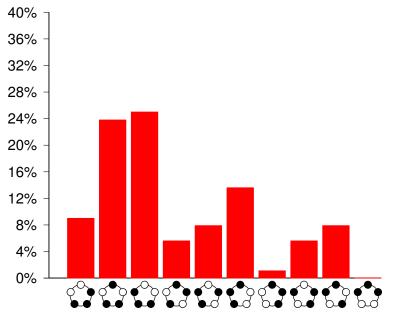


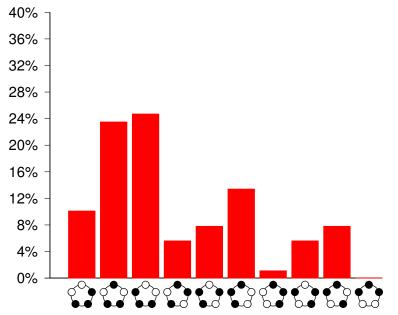


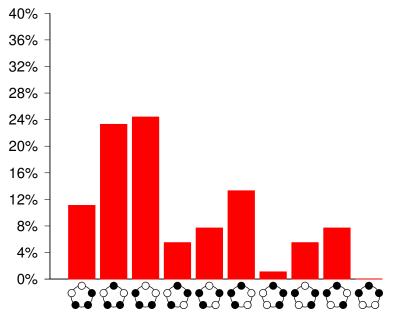


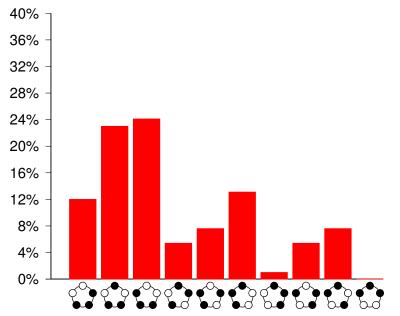


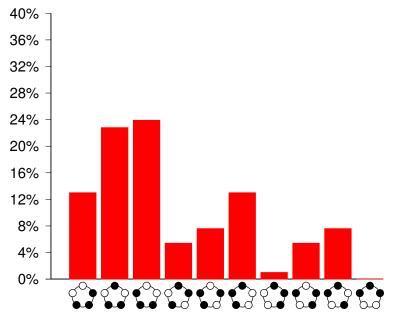


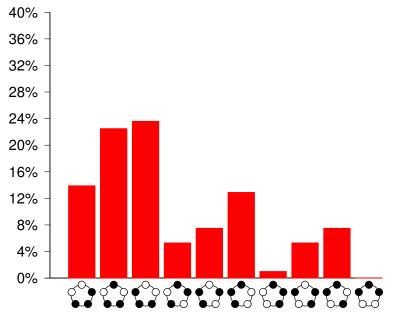


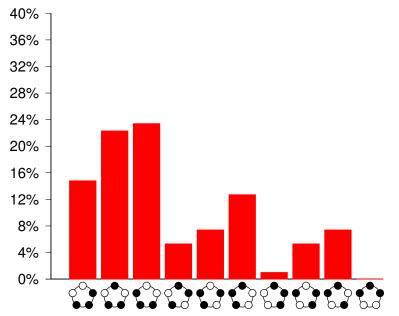


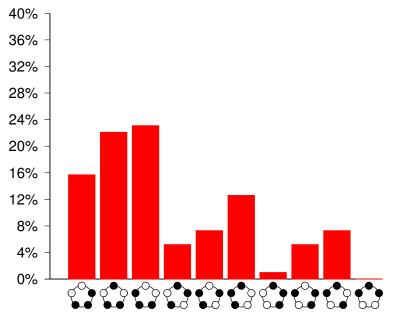


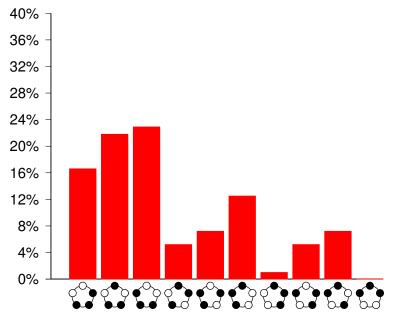


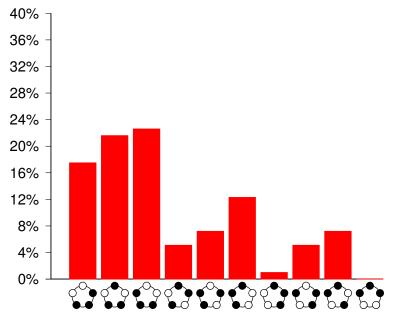


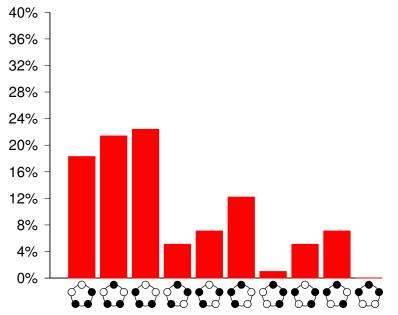


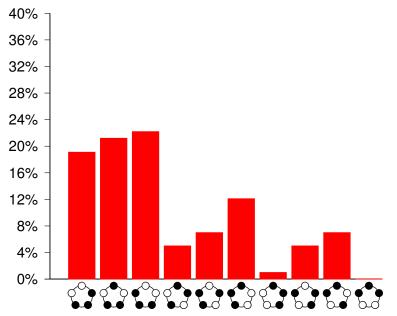


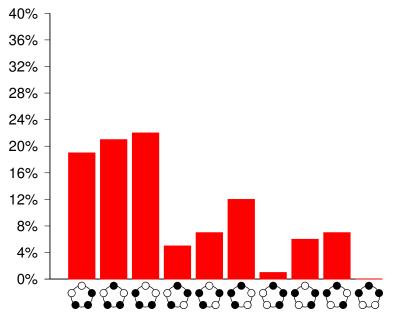


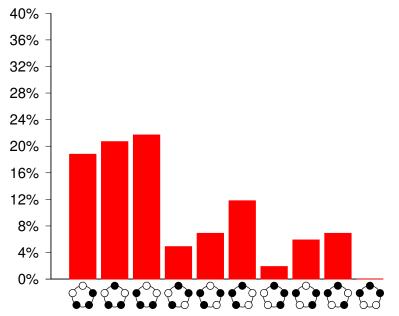


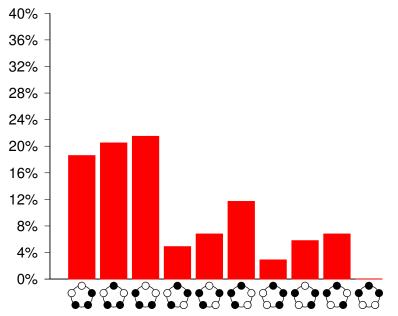


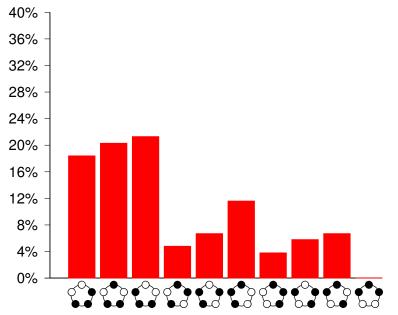


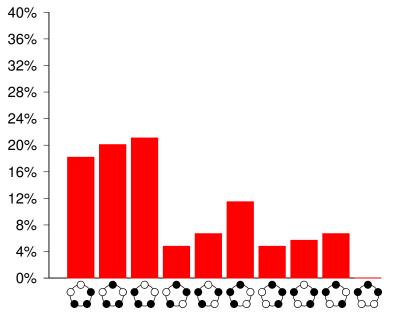


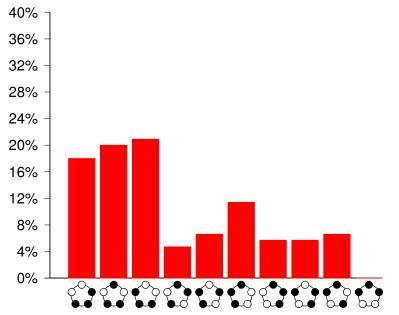


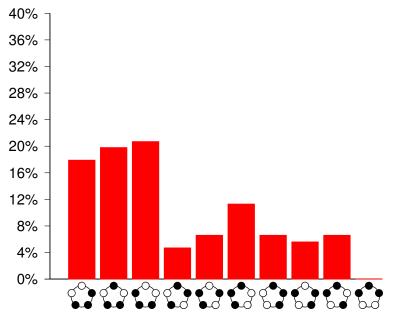


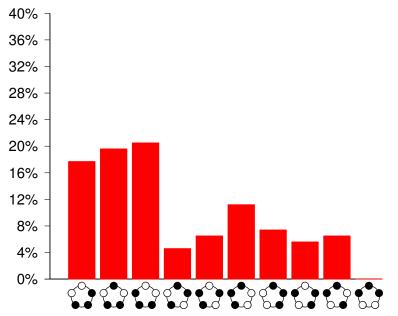


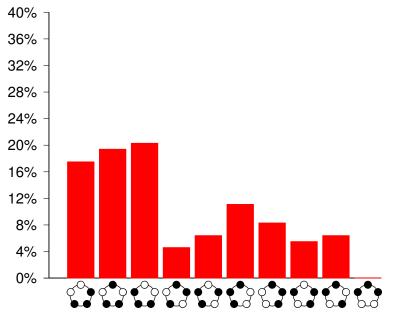


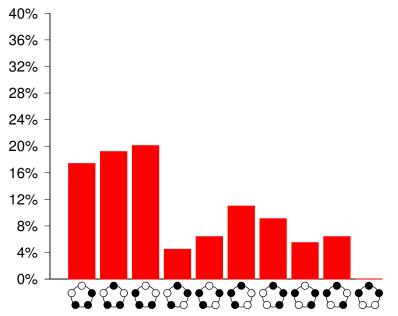


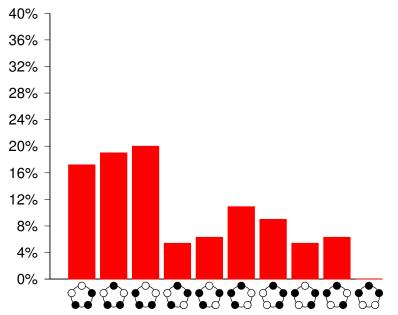


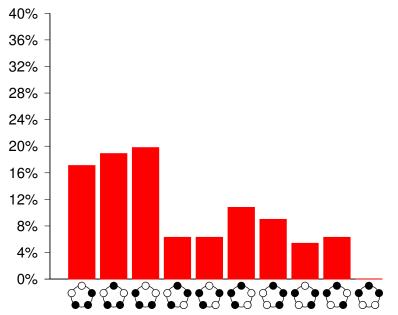


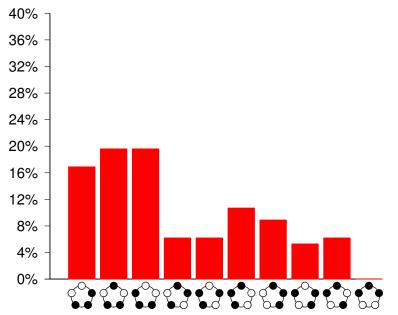


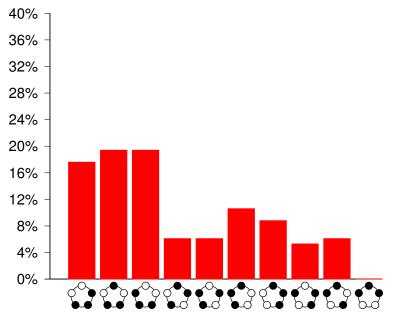


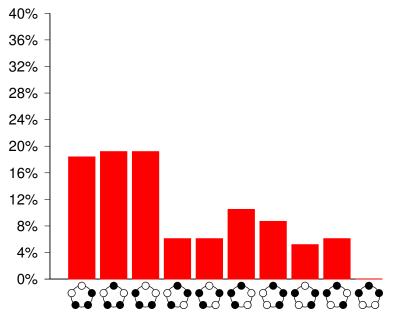


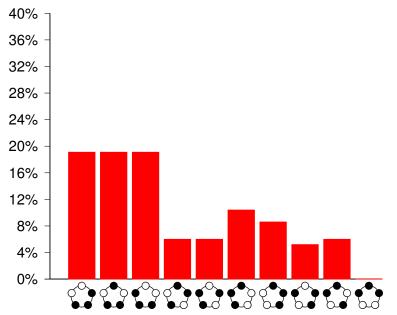


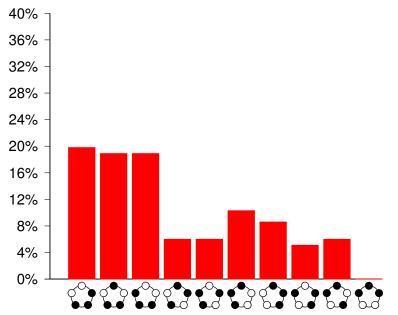


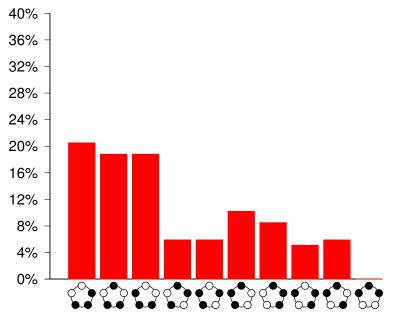


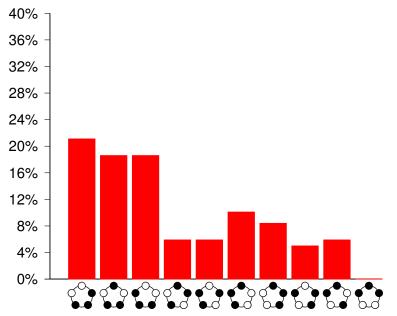


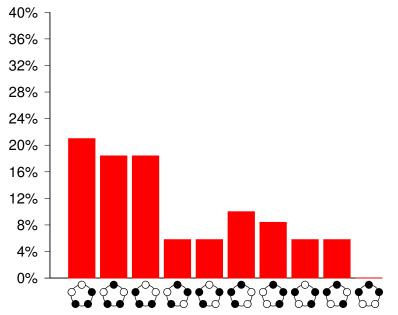


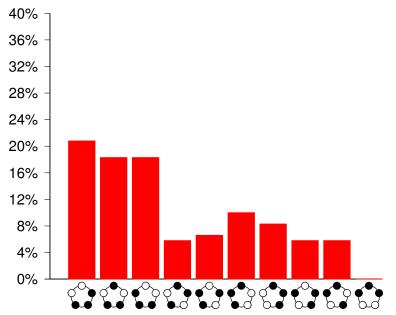


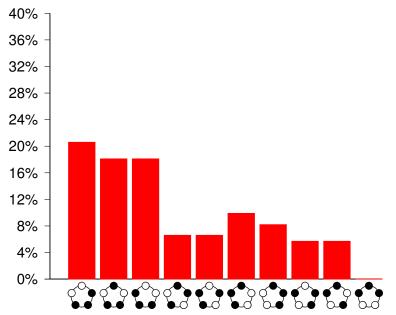


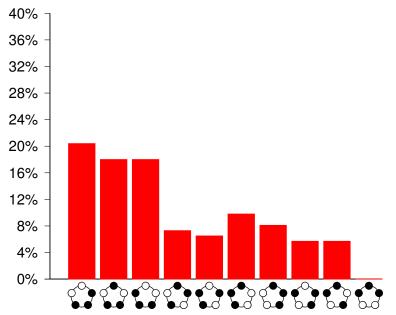


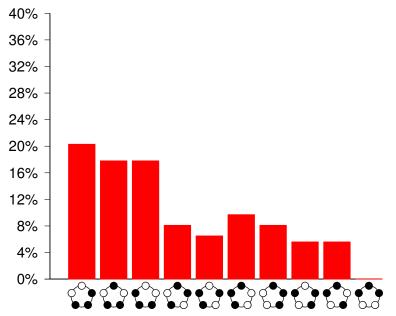


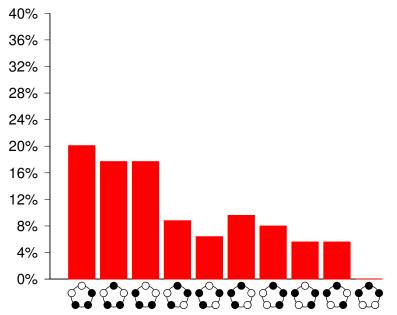


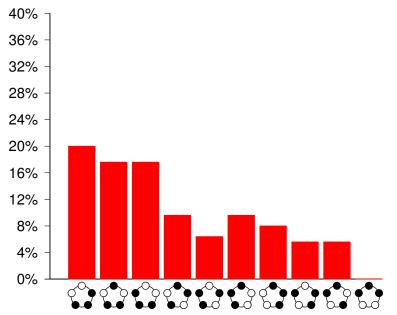


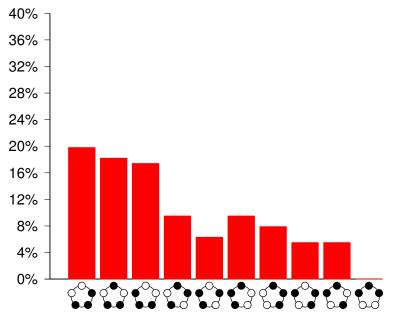


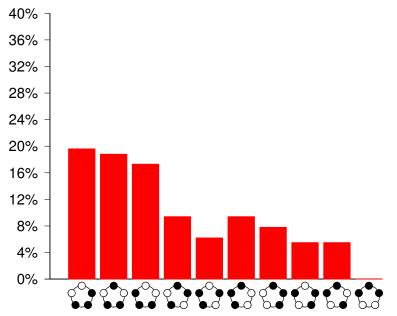


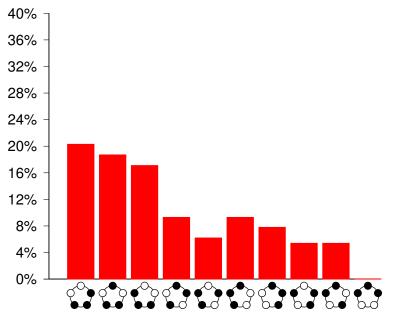


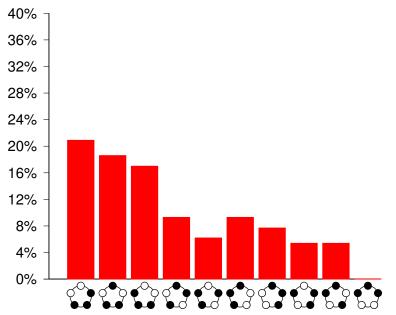


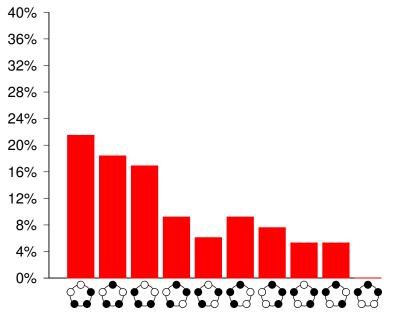


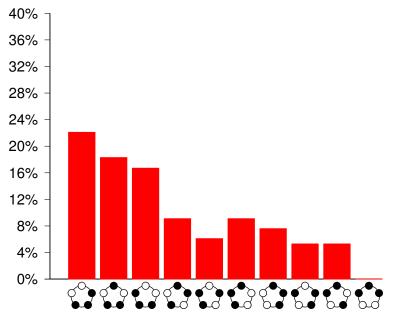


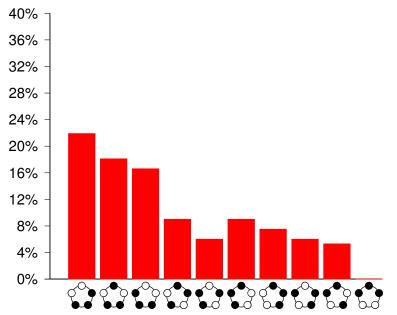


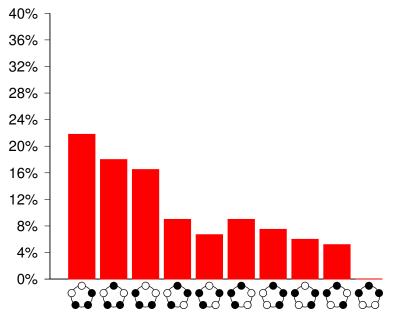


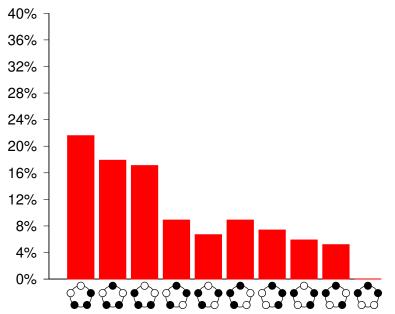


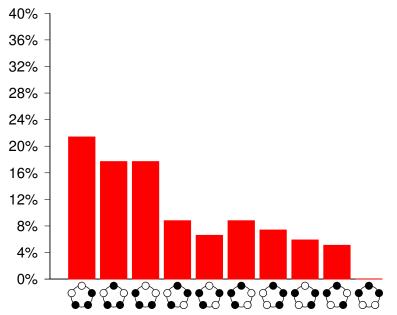


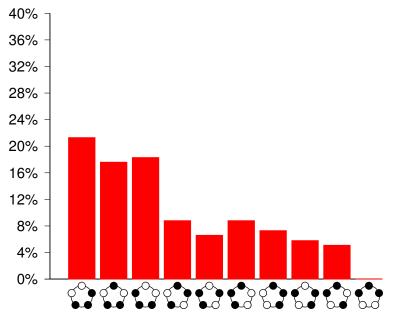


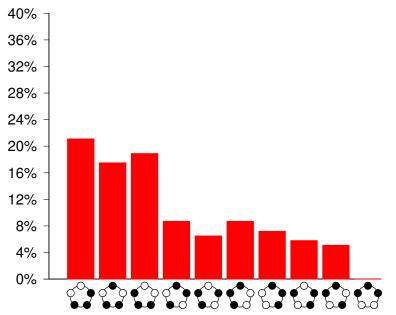


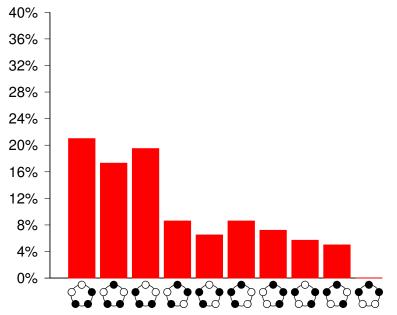


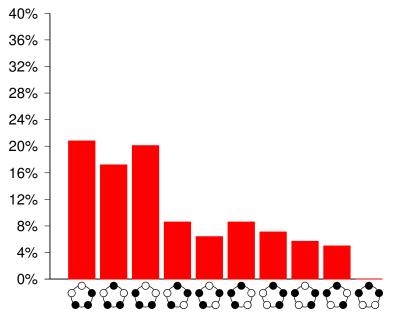


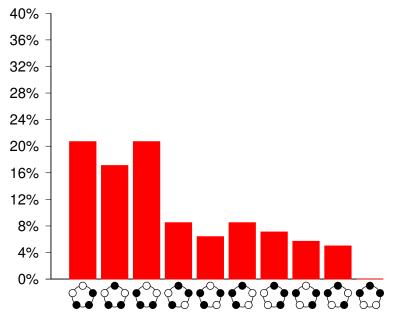


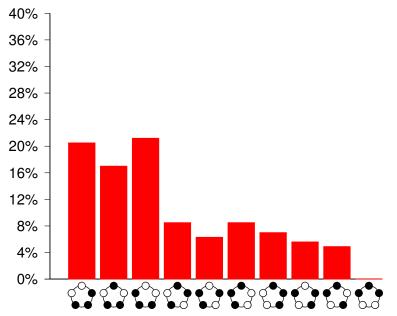


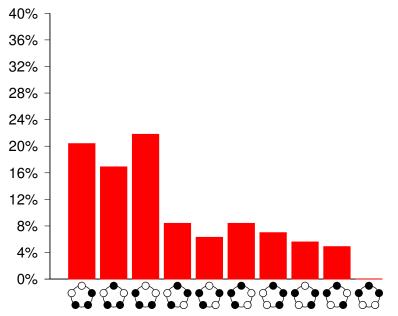


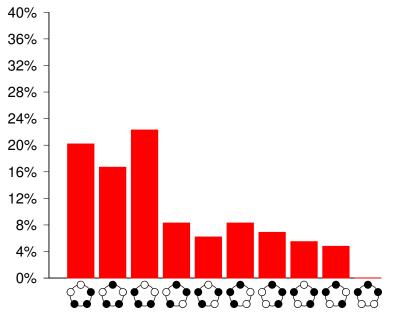


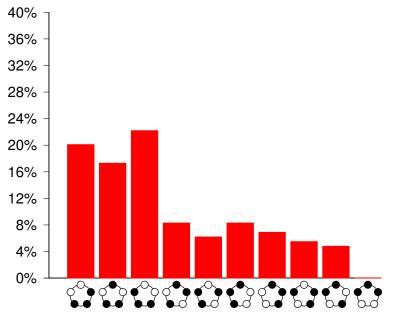


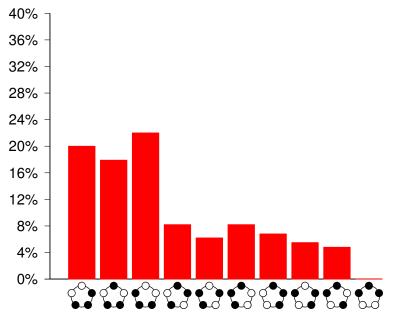


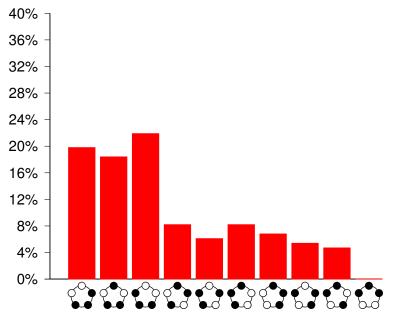


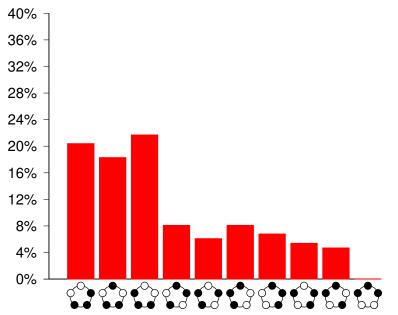


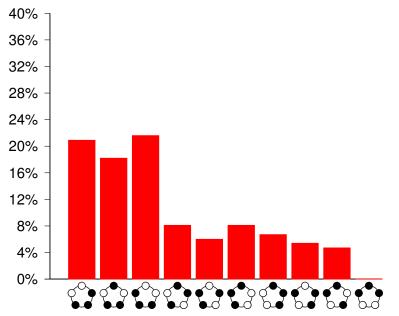


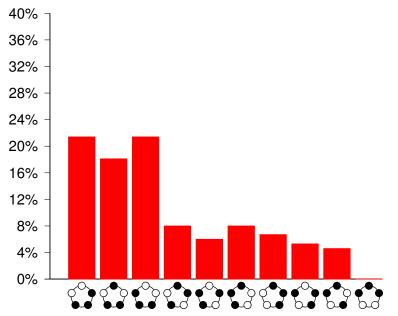


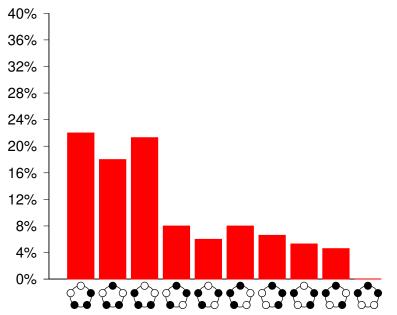


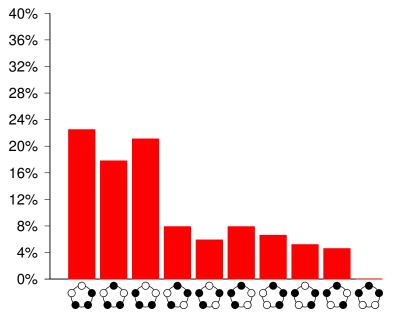


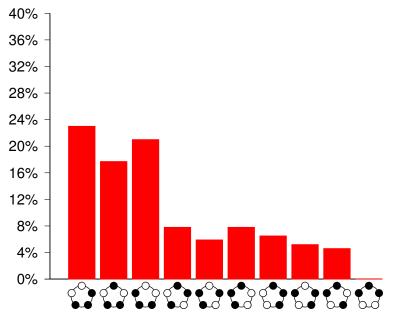


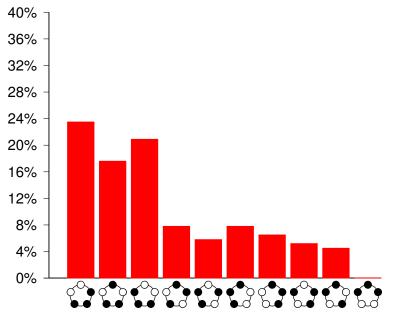


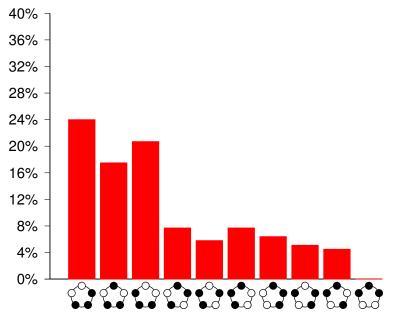


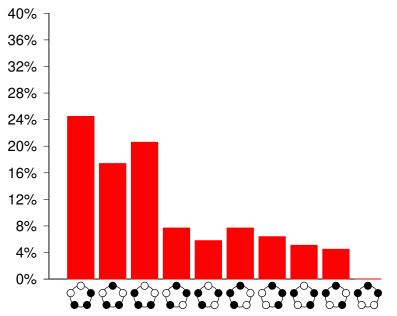


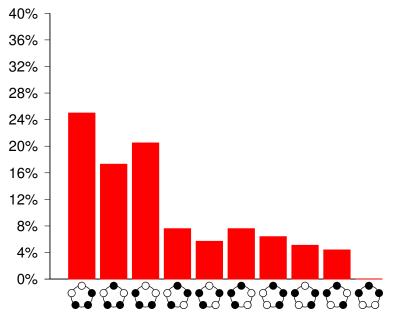


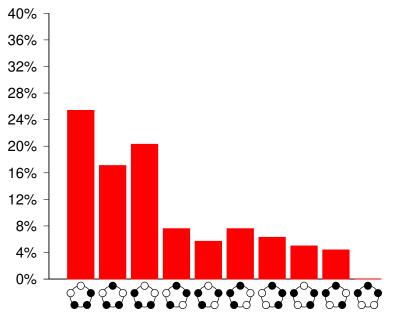


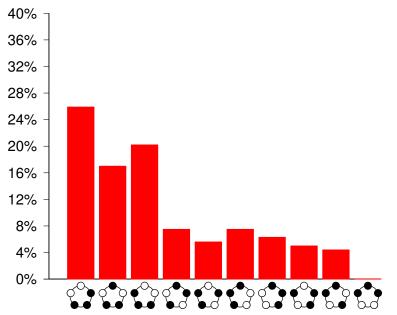


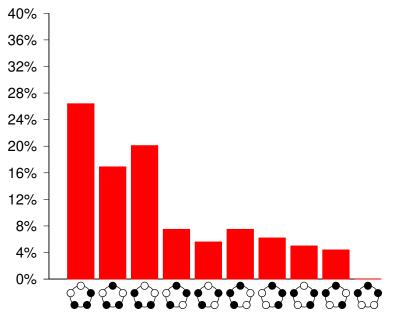


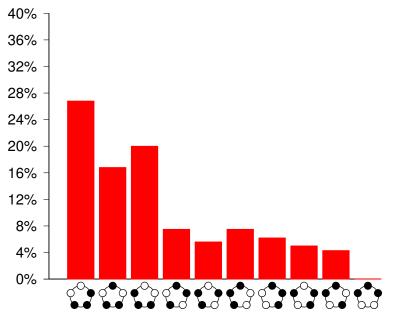


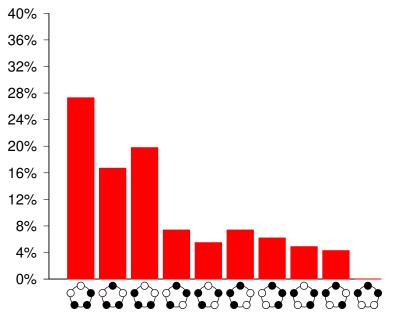


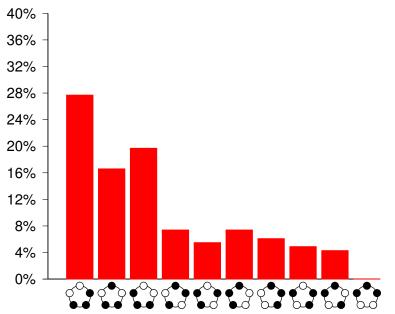


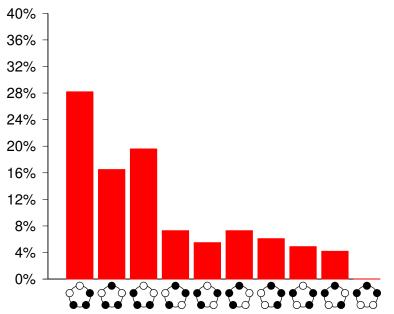


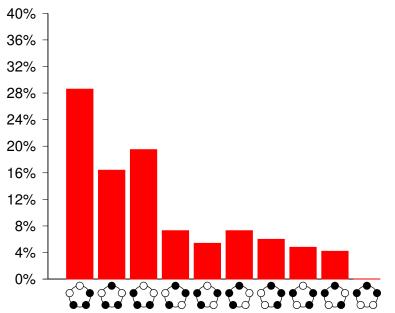


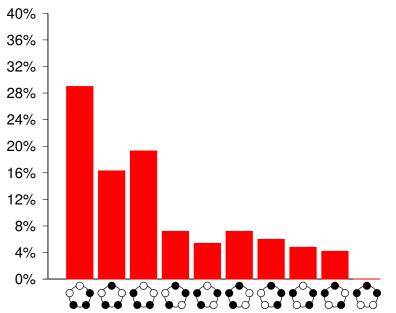


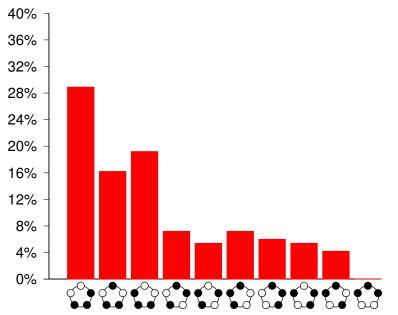


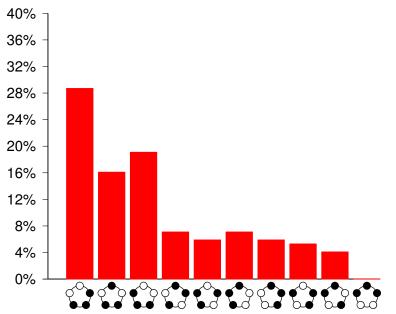


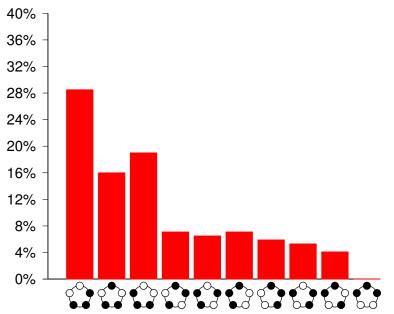


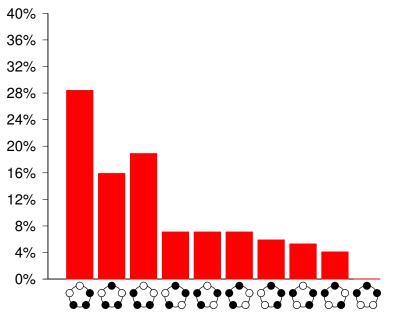


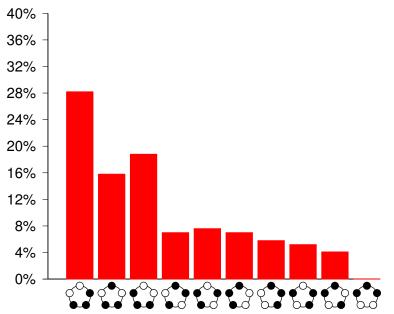


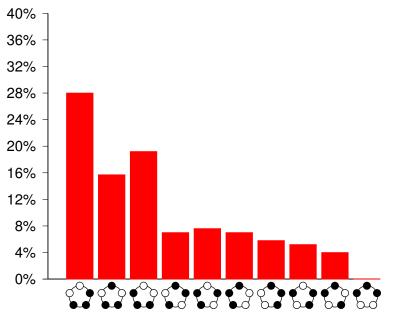


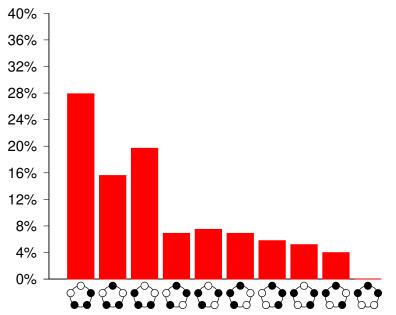


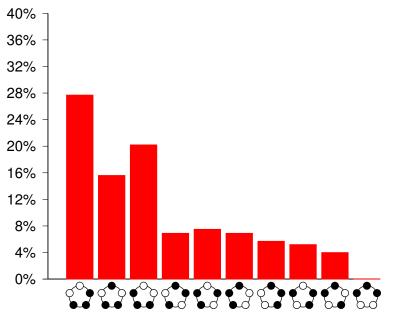


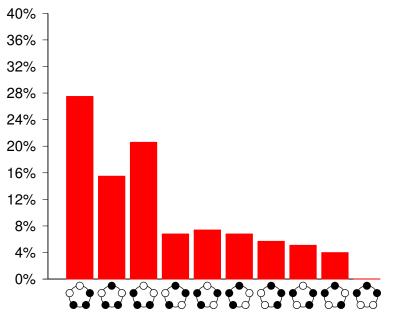


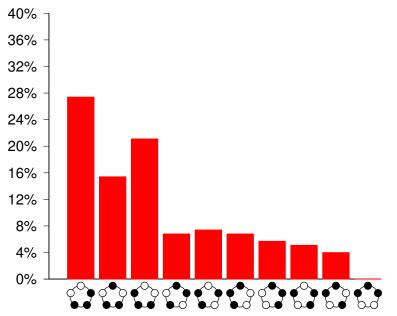


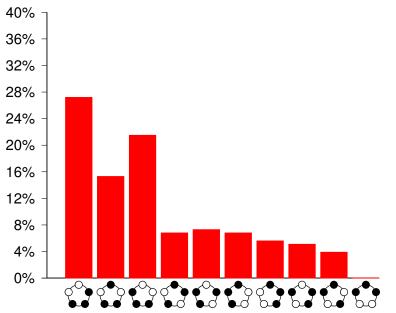


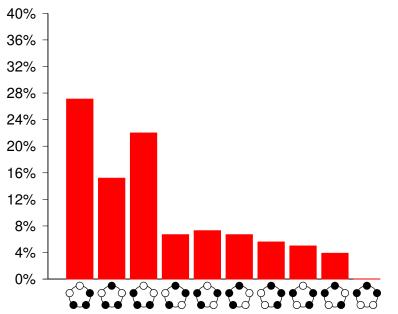


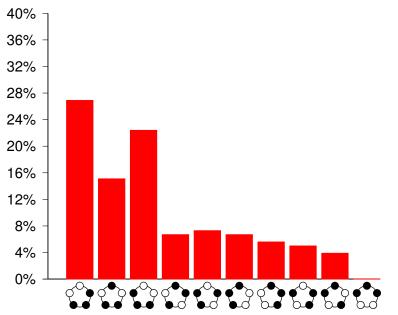


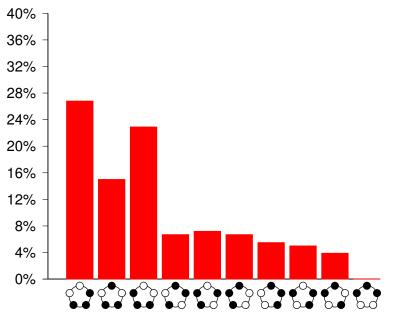


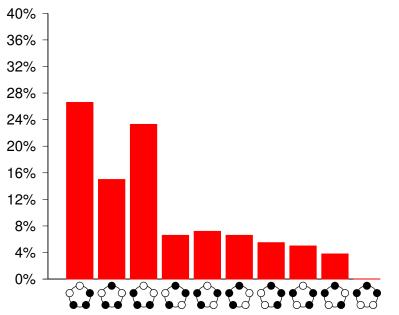


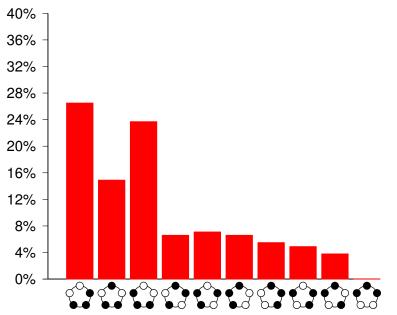


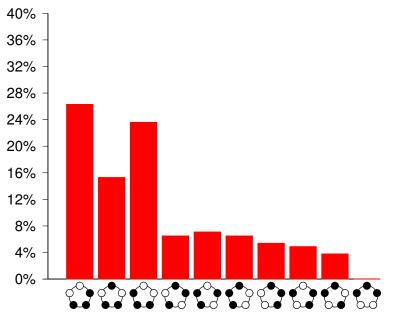


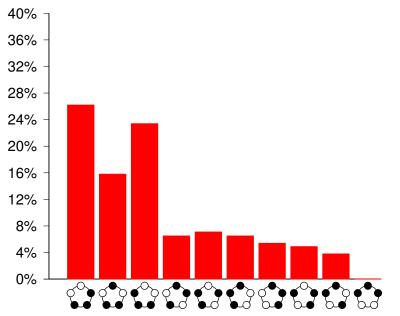


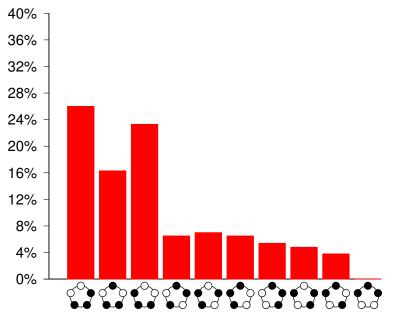


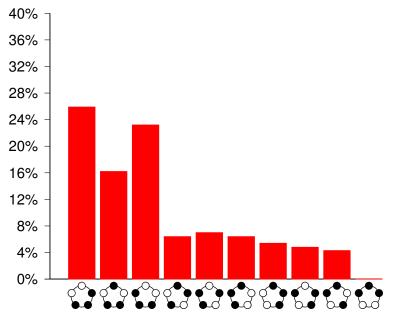


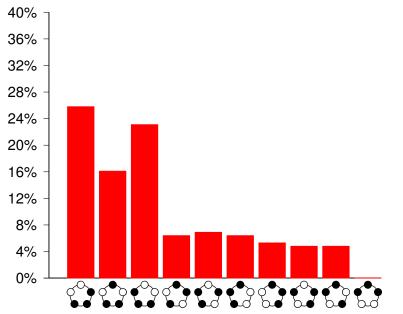


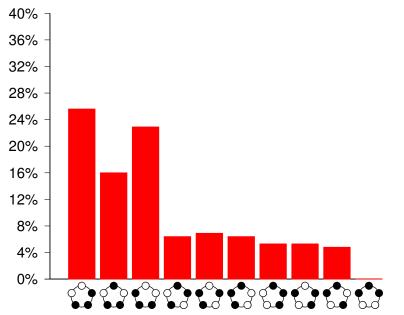


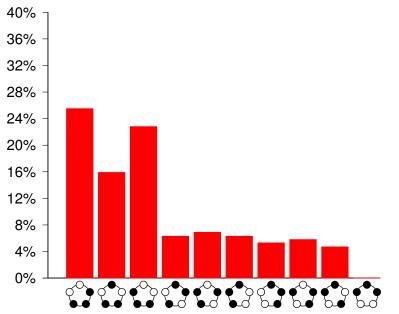


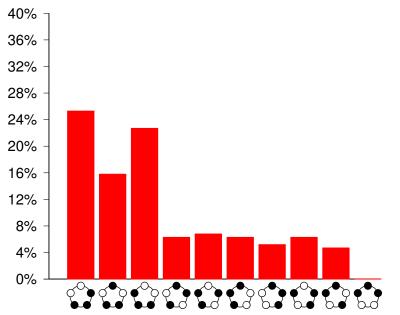


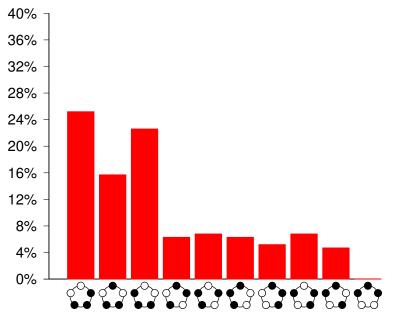


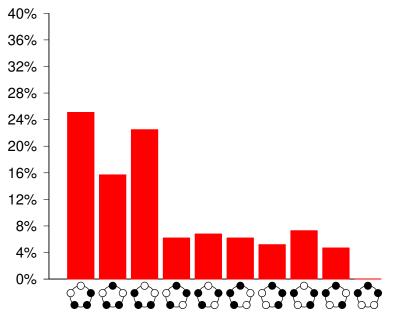


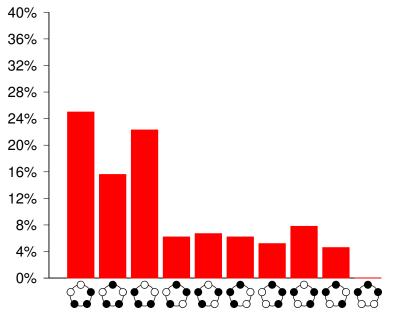


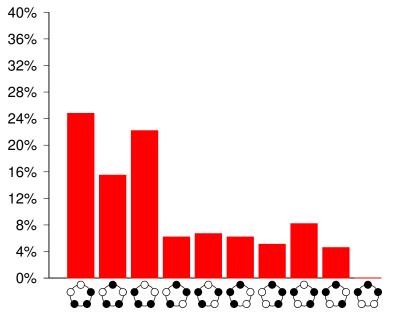


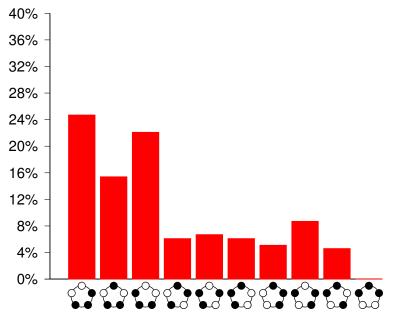


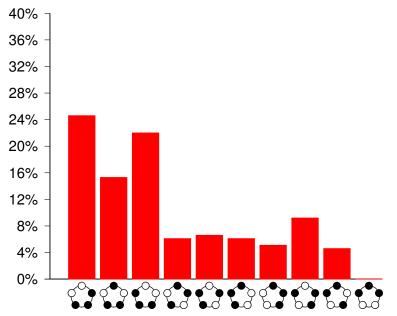


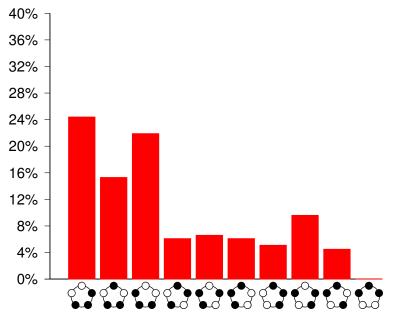


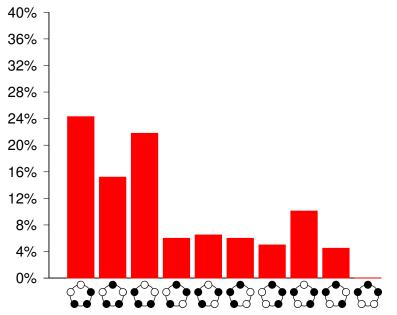


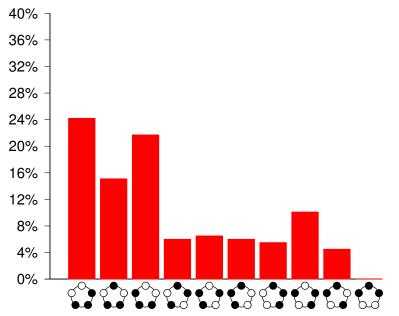


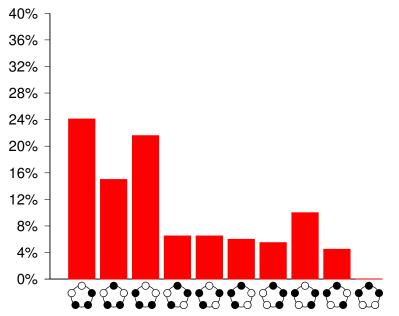


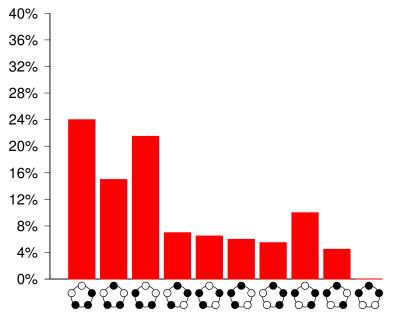


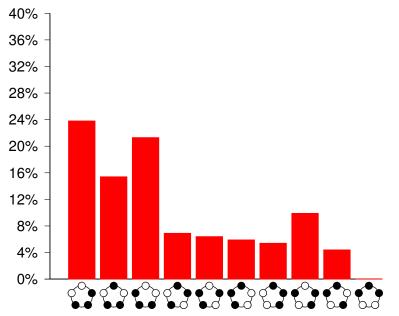


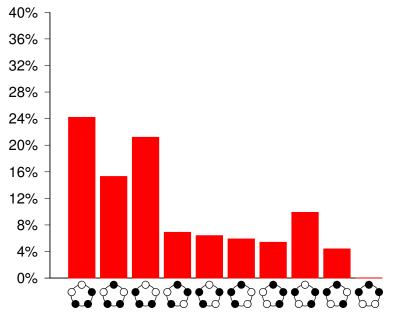


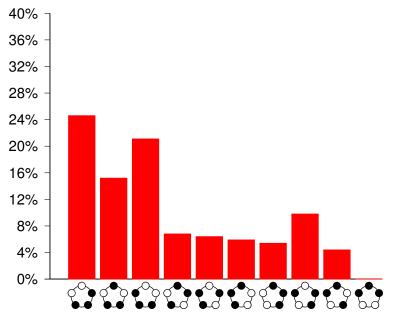


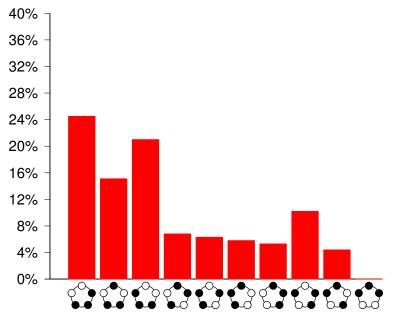


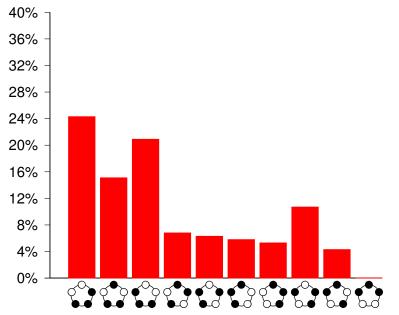


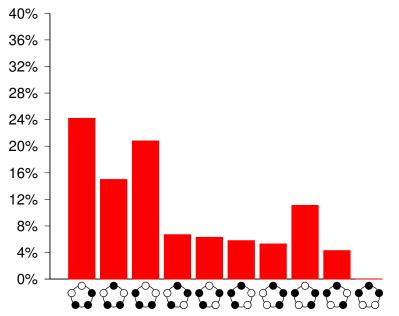


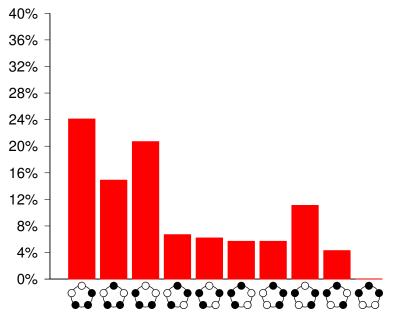


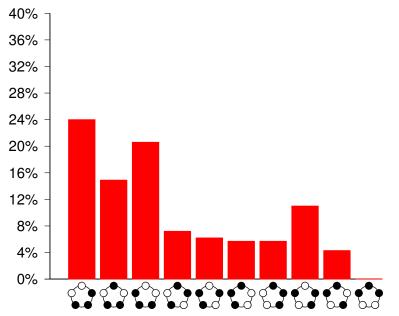


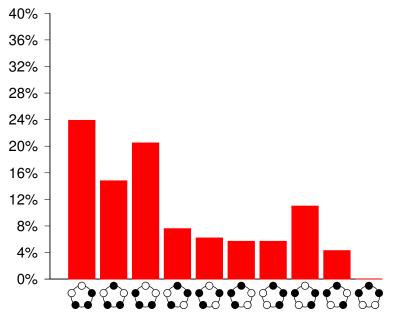


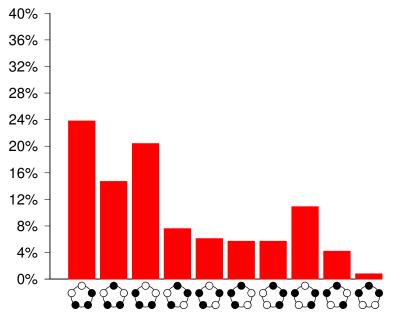


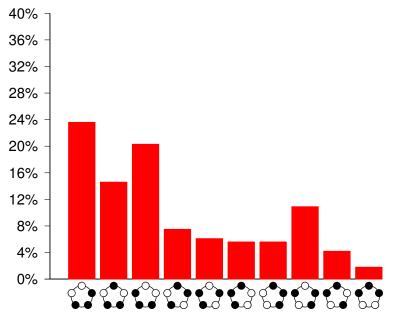


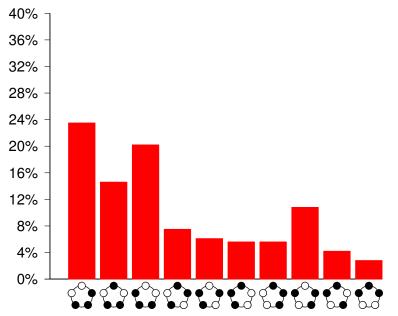


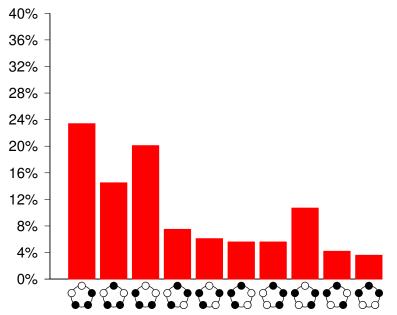


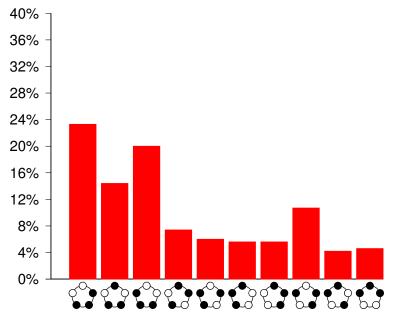


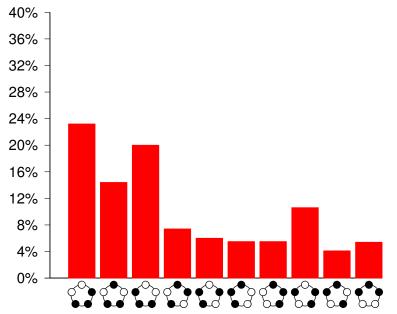


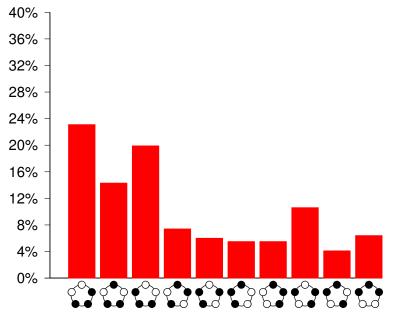


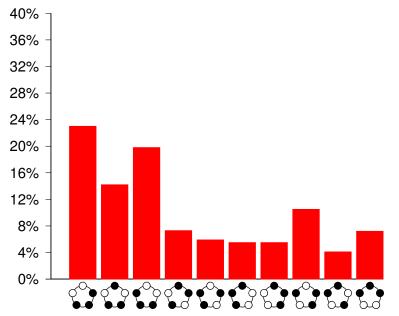


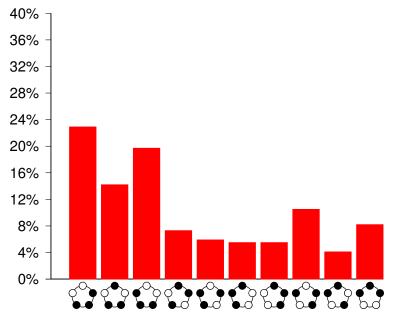




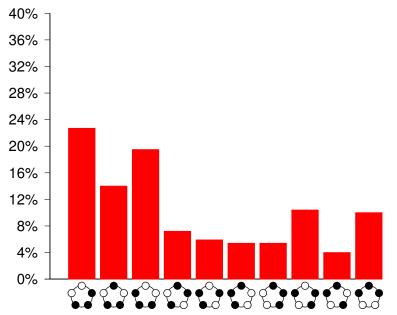


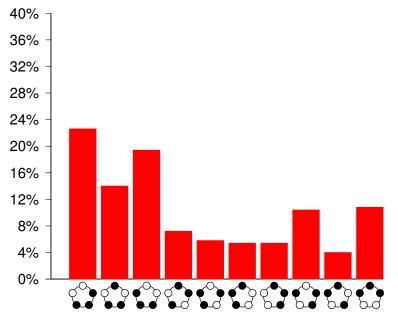


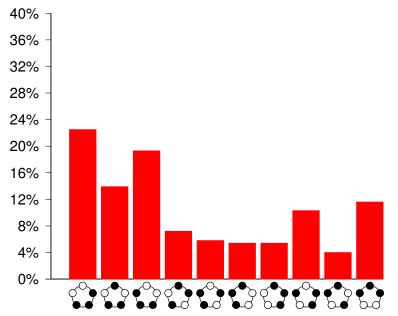


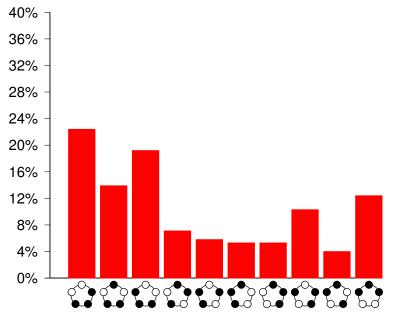


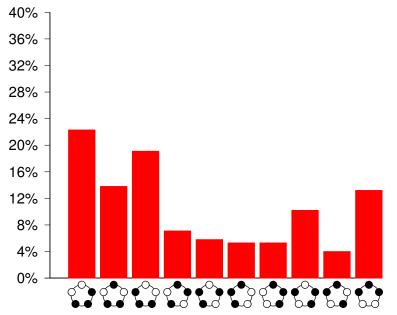


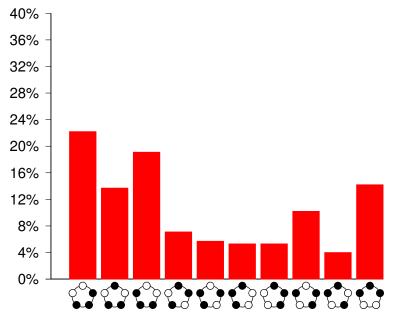


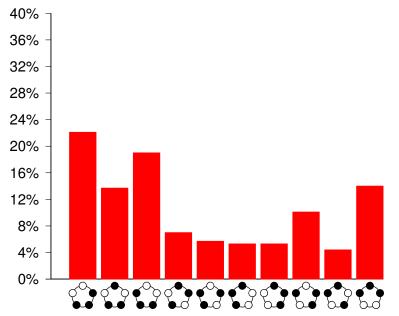


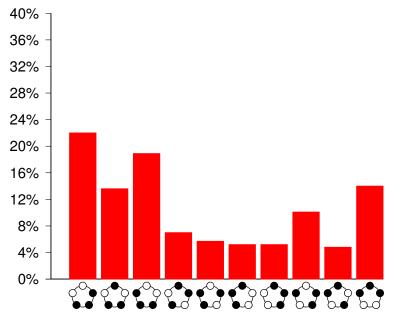


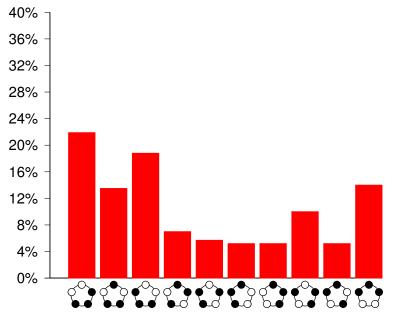


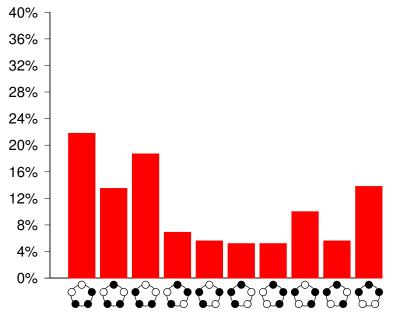


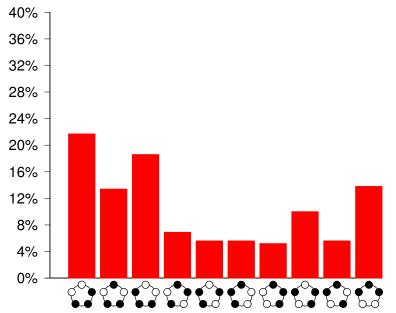


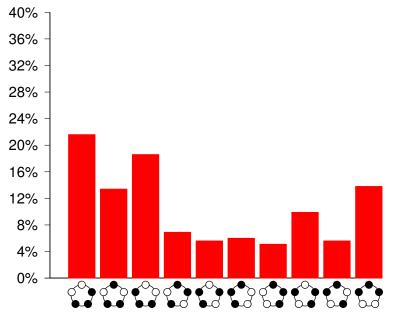


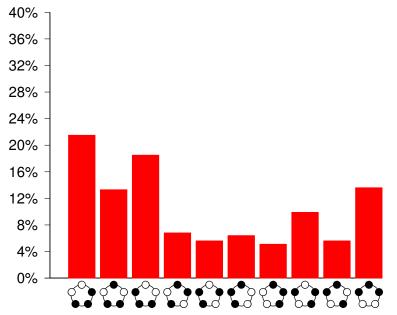


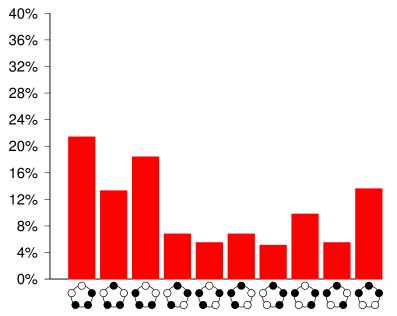


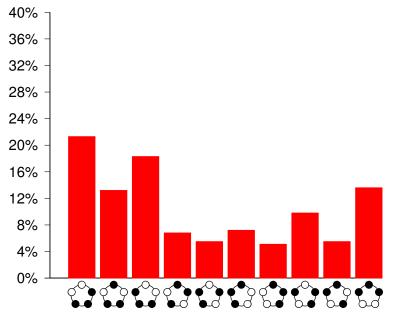


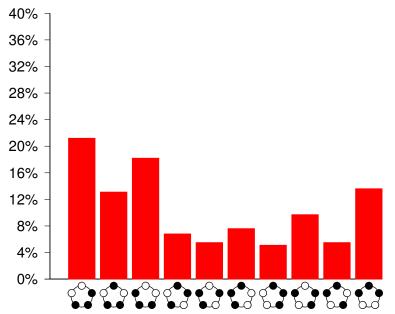


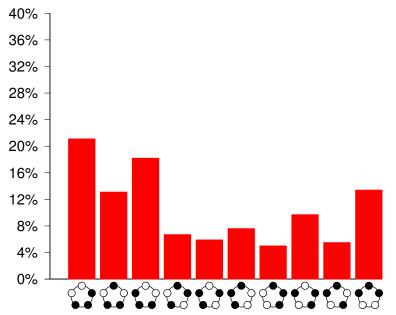


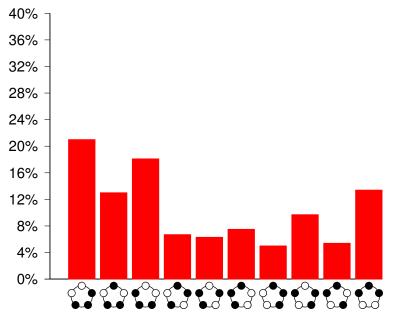


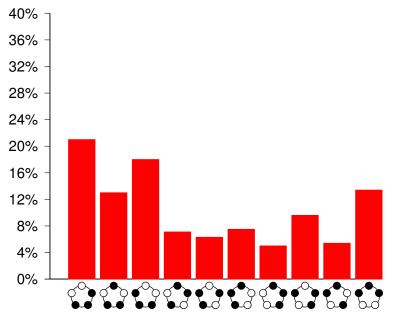


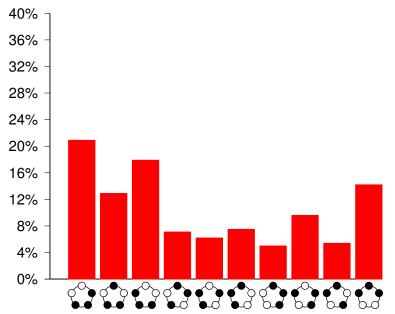


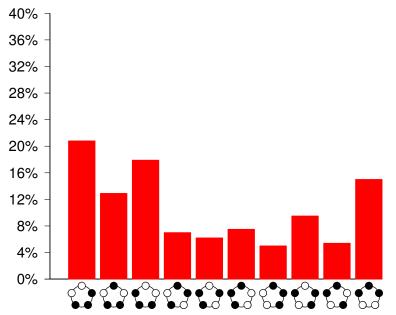


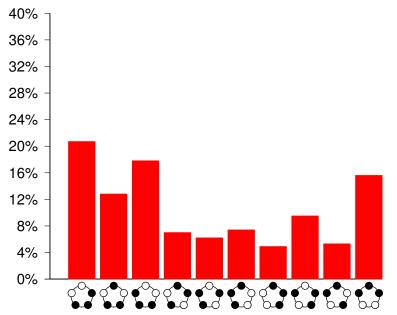


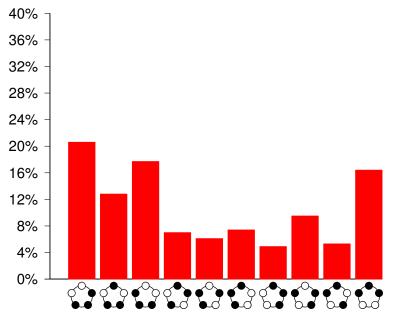


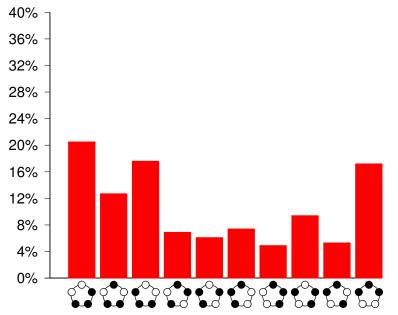


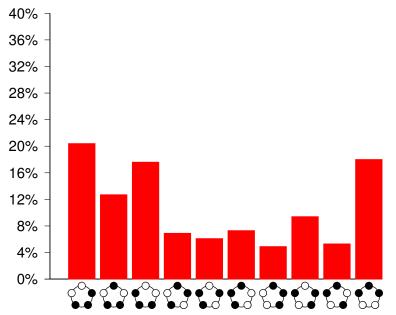


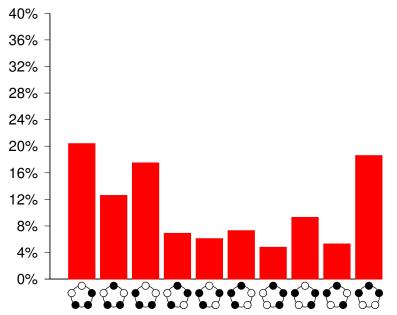


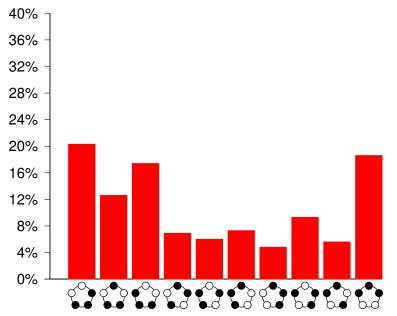


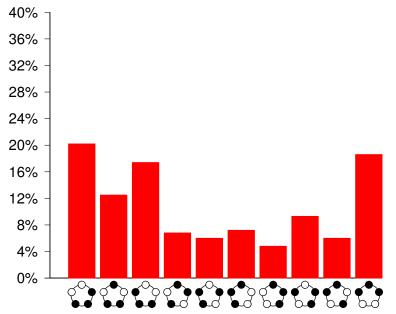


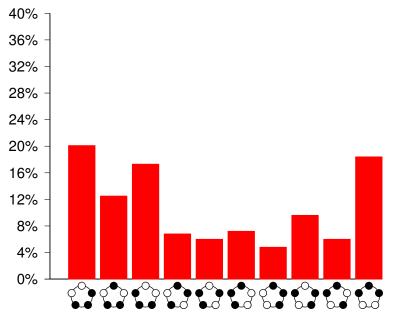


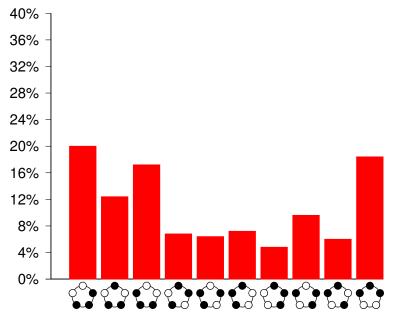


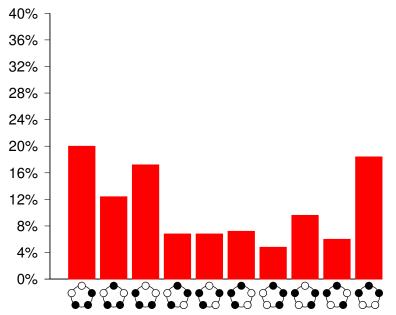


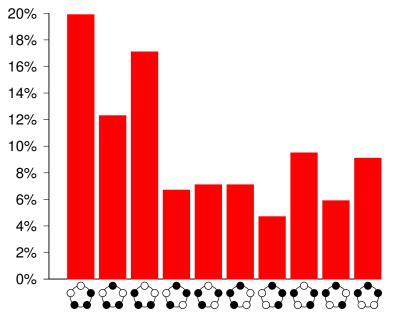


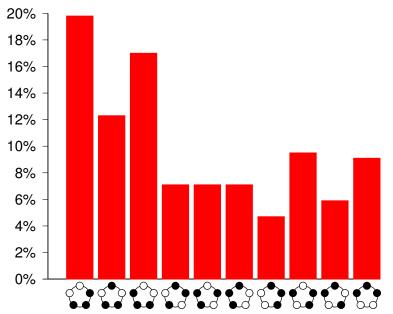


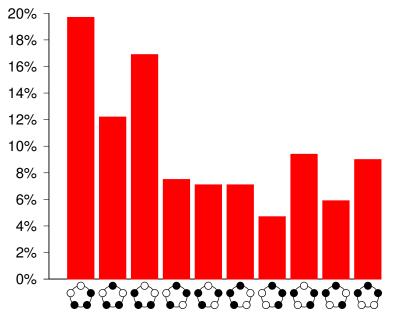


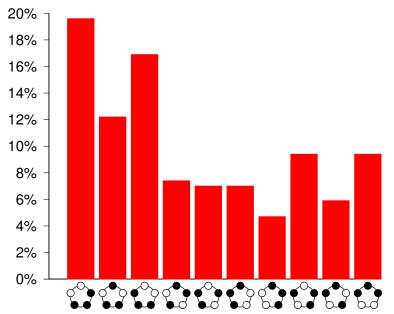


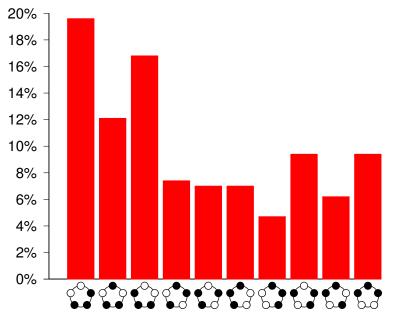


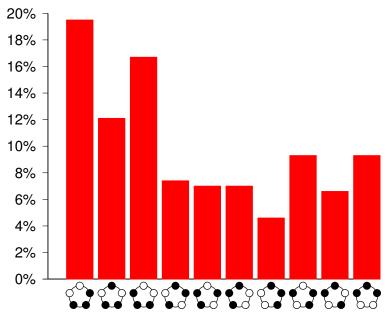


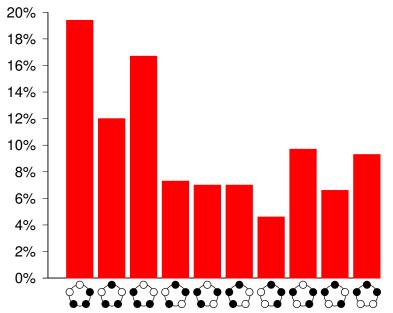


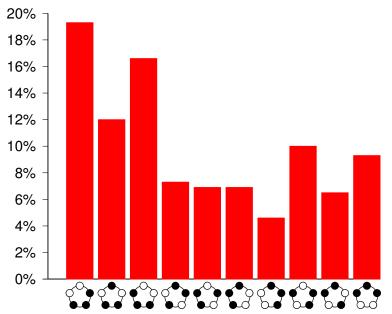


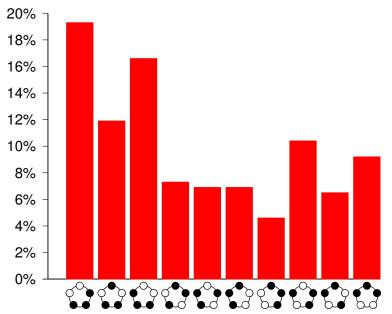


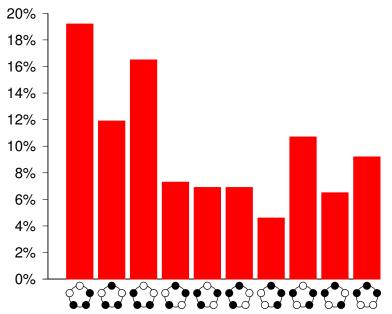


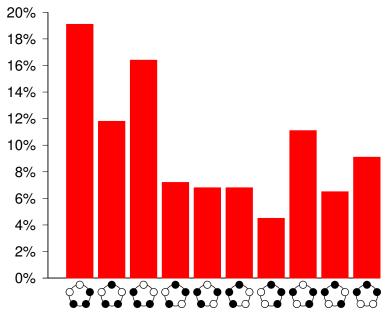


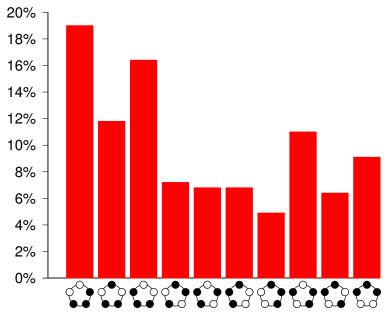


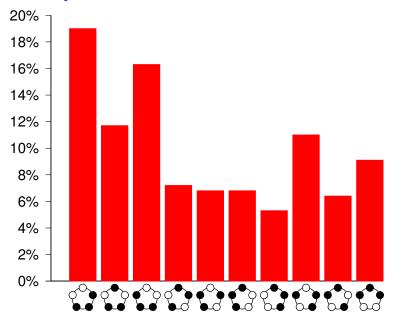


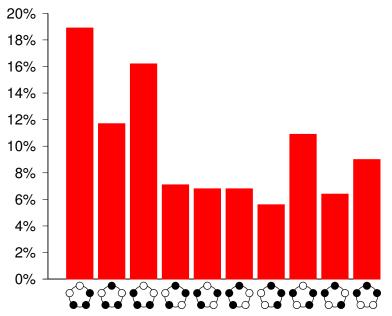


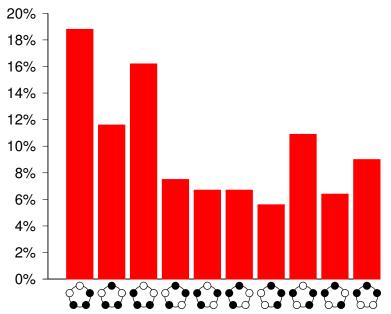


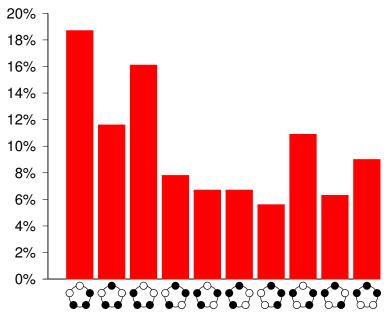




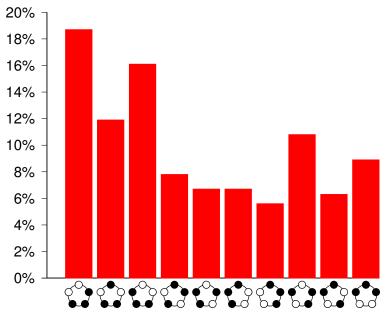


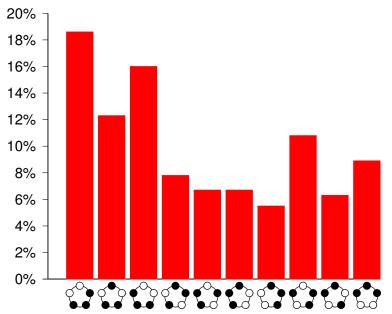


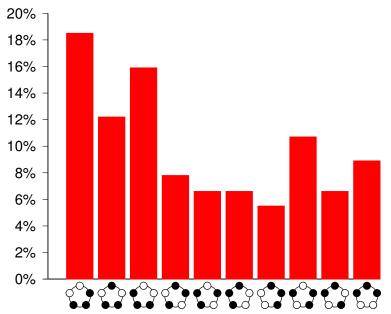


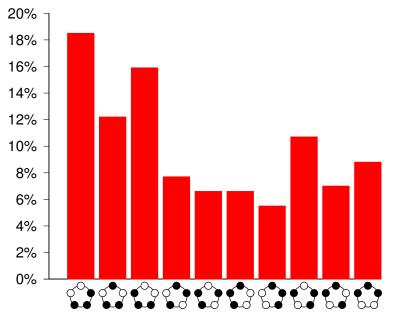


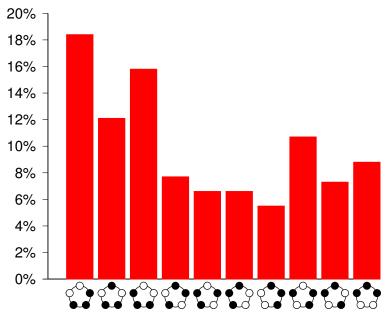
Stationary distribution The infinite model

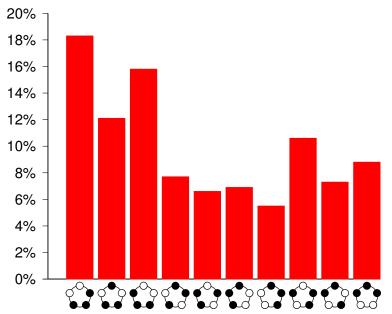


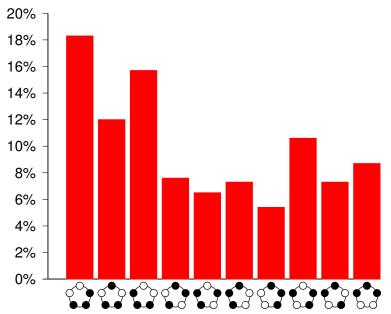


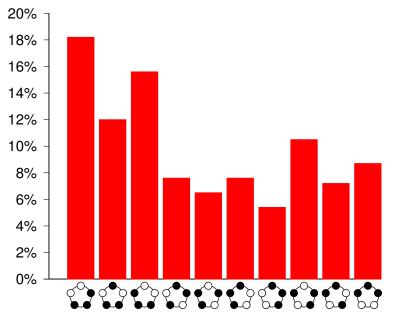


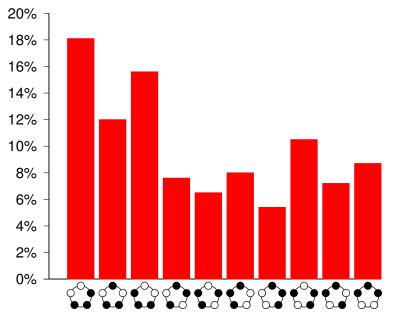


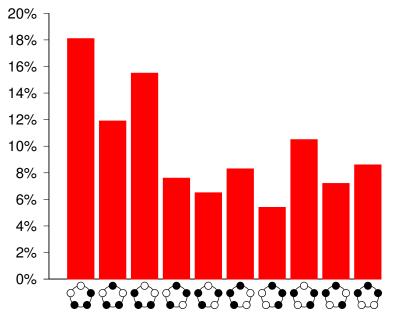


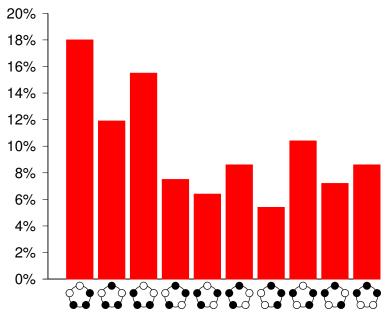


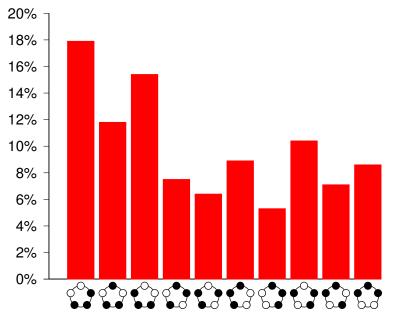


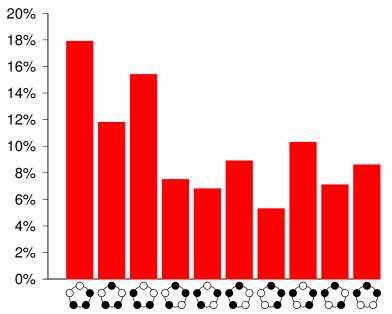


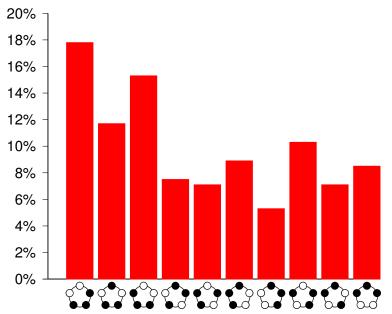


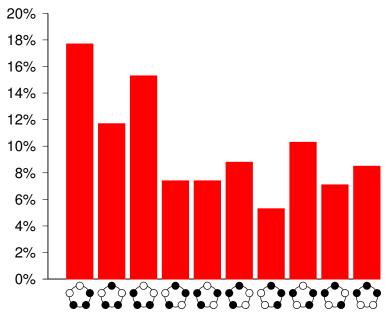


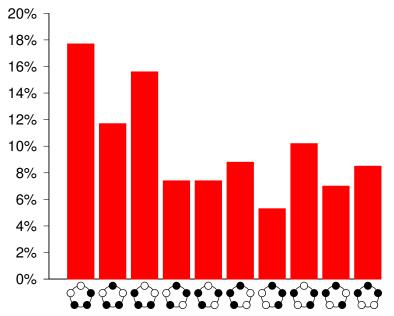


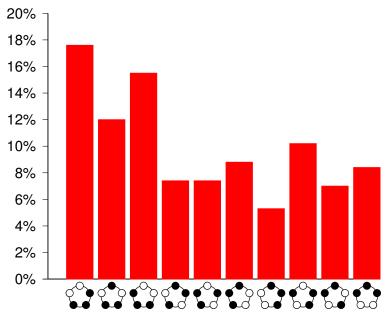


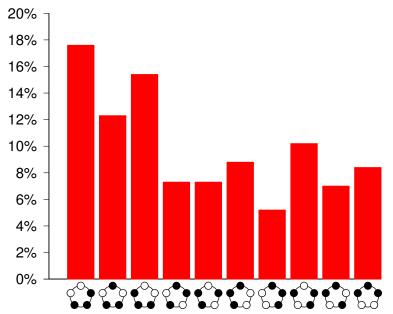


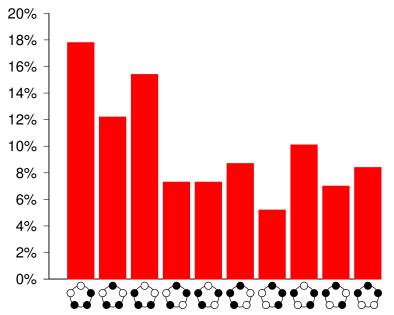


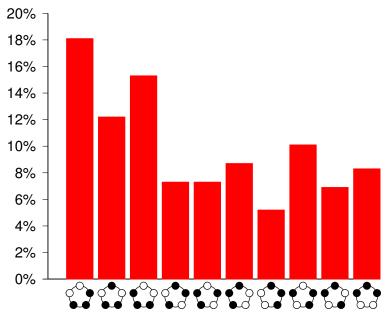


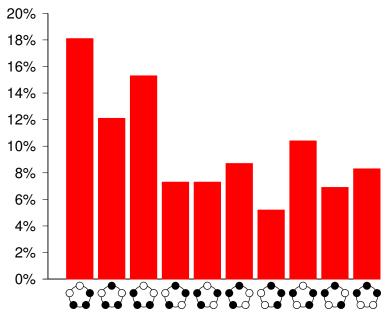


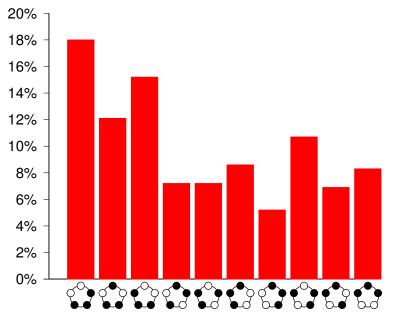


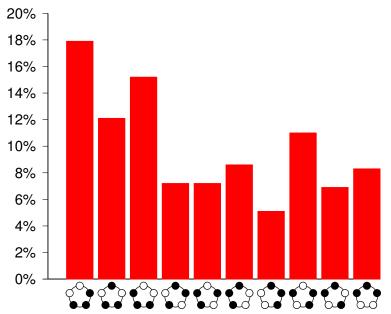


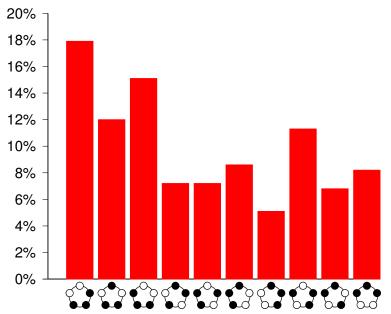


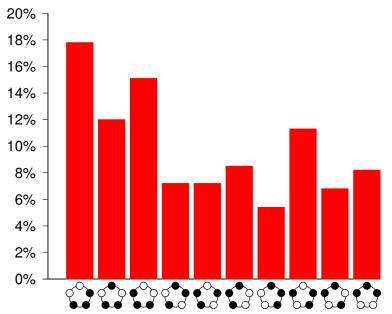


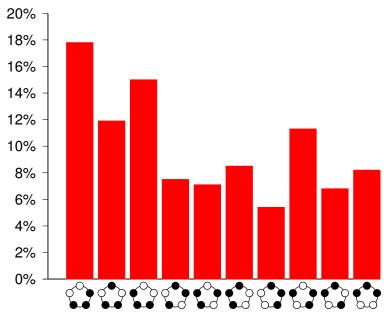


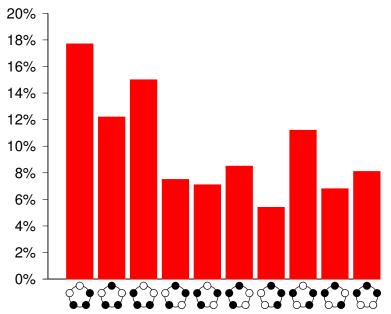


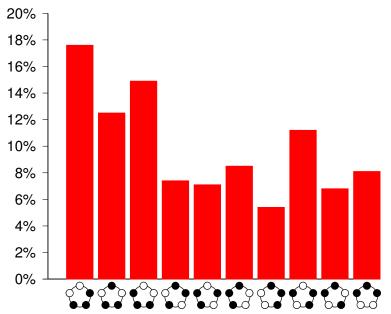


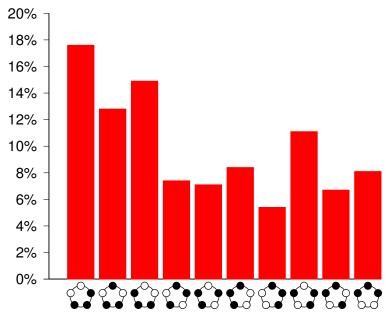


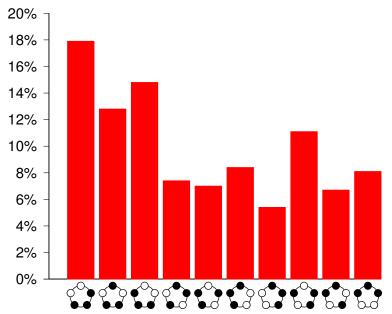


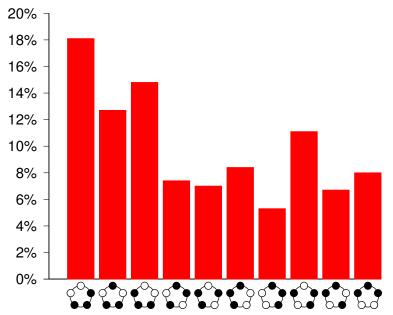


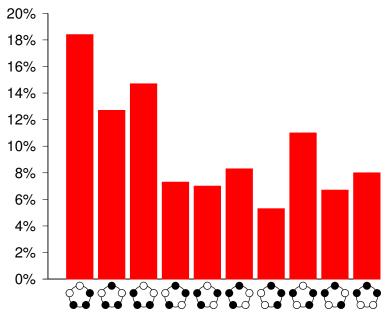


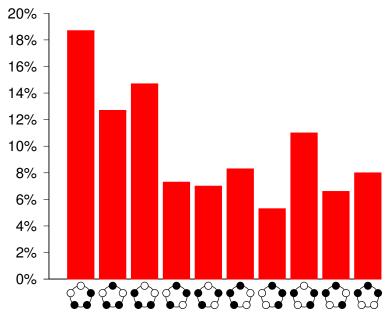


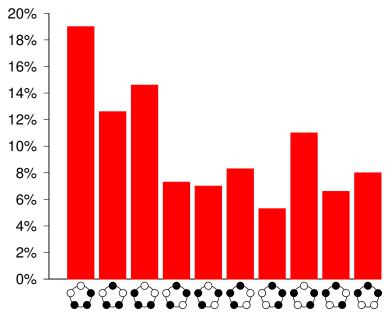


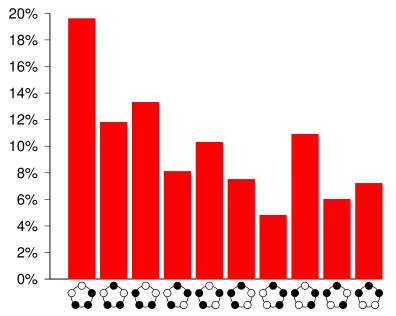


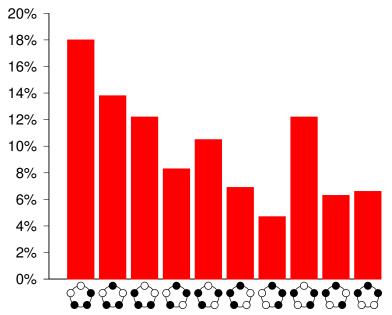


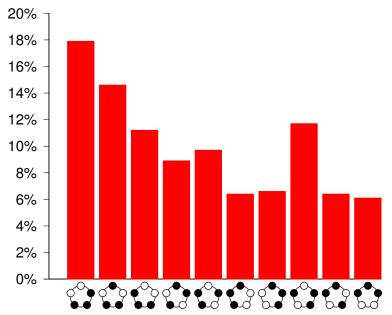


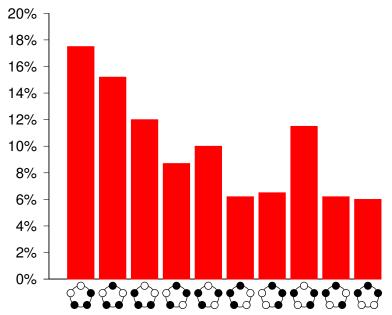


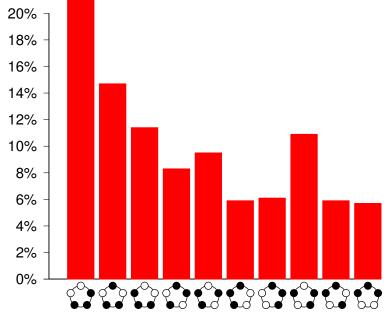


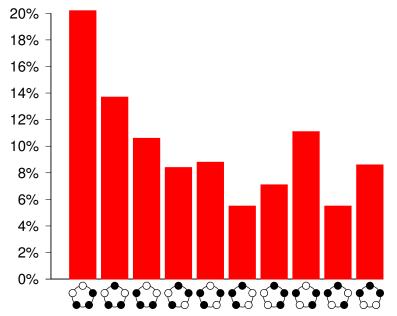


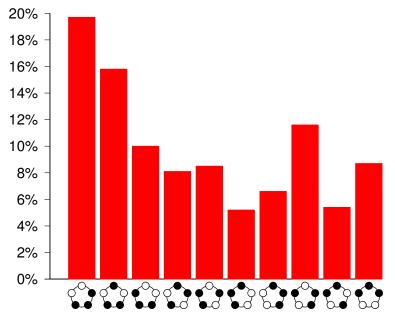


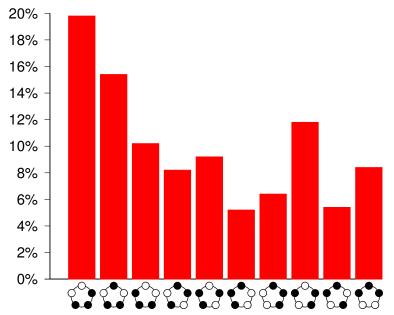


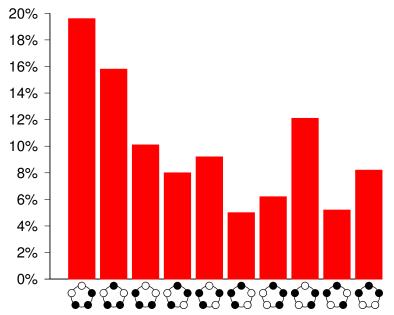


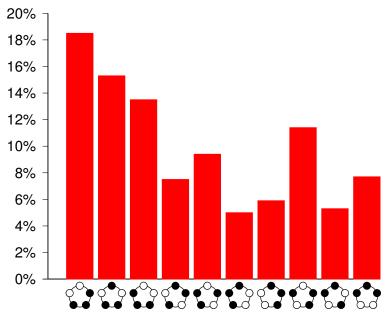


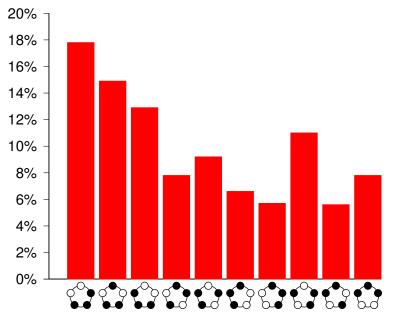


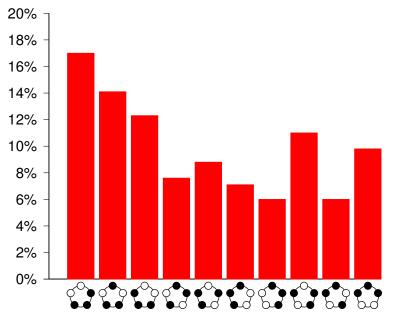


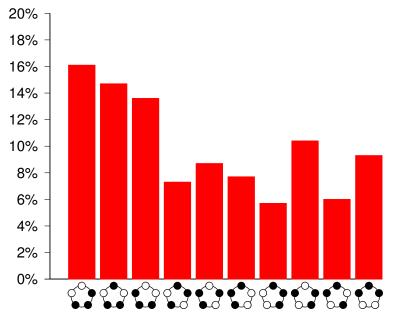


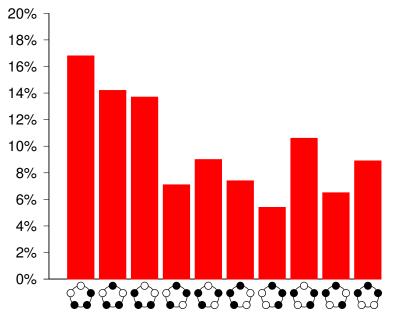


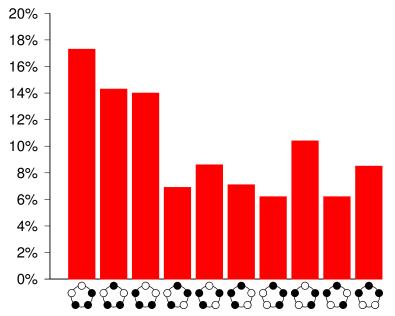


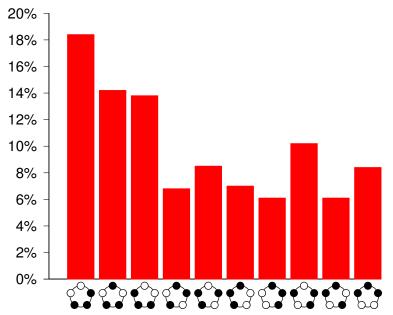


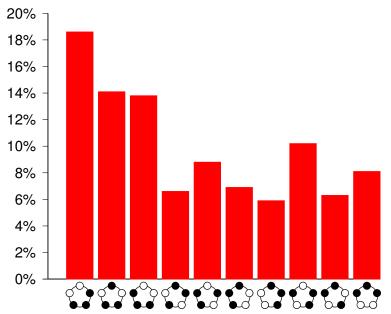


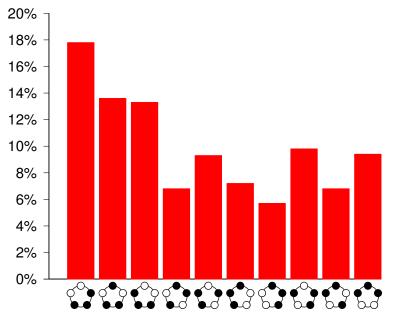


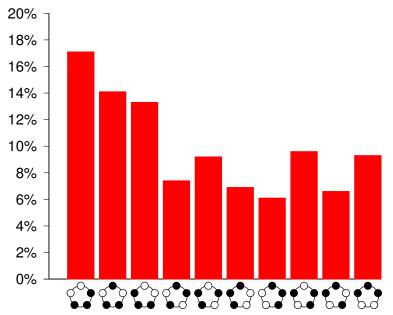


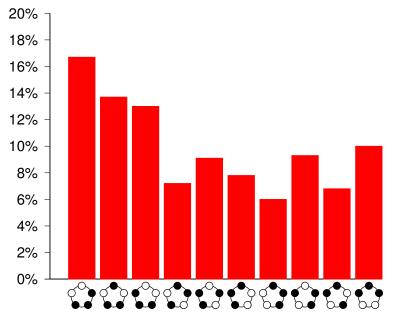


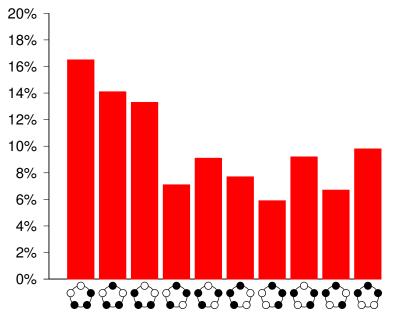


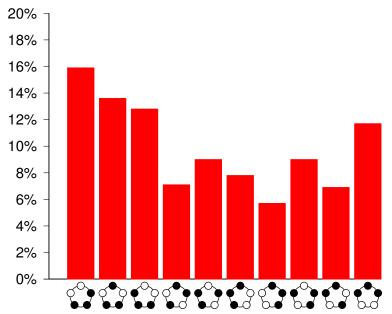


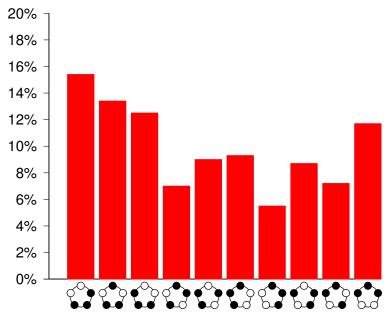


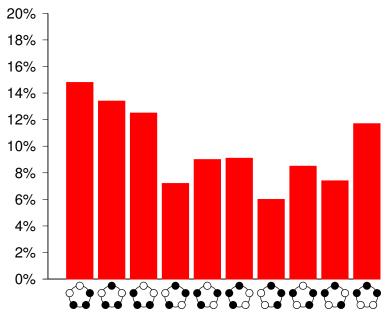


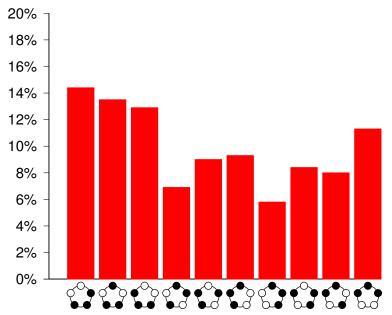


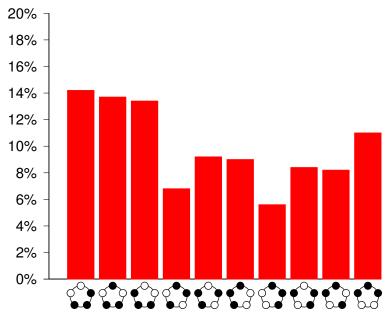


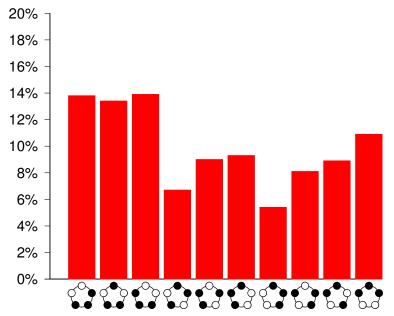


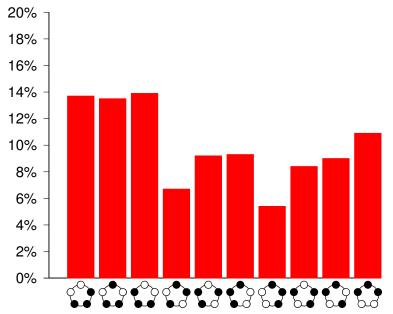


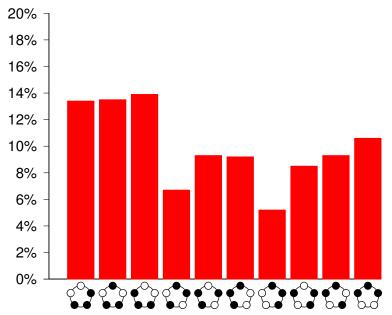


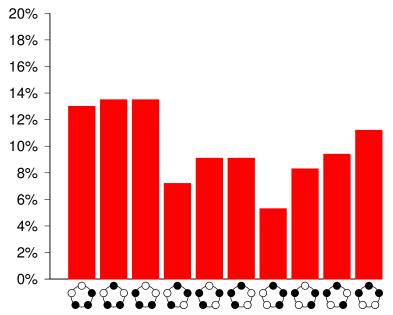


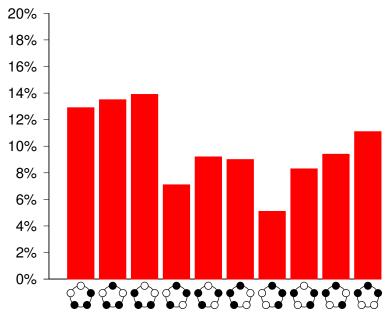


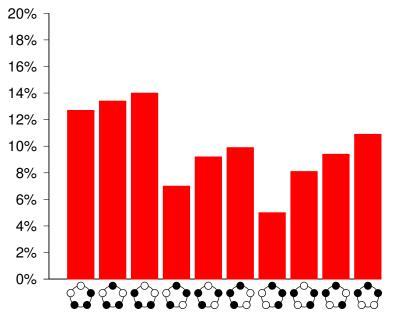




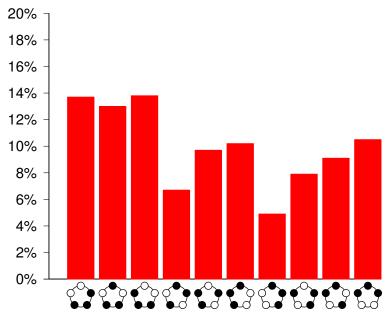


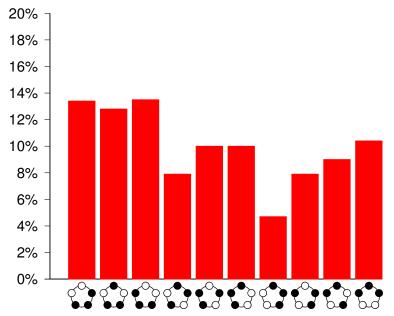


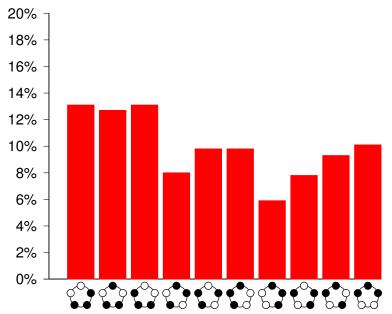


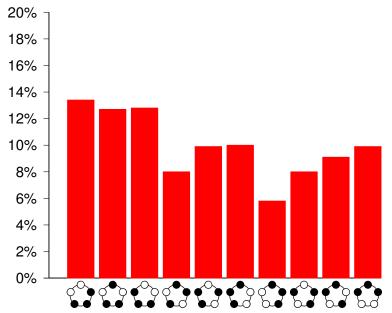




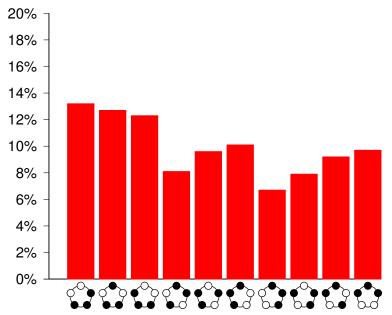


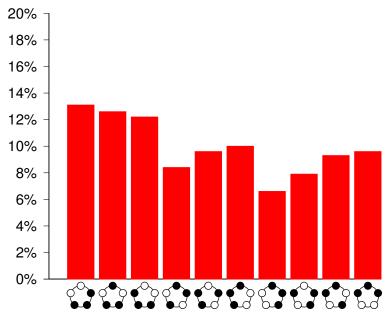


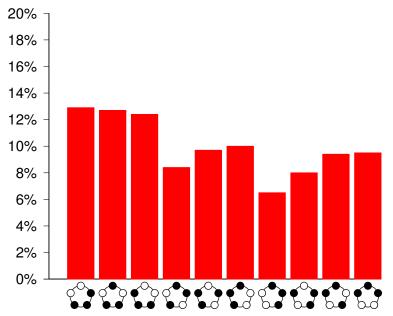


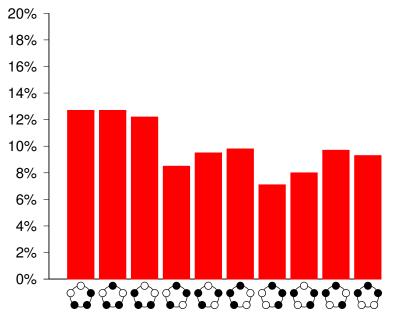


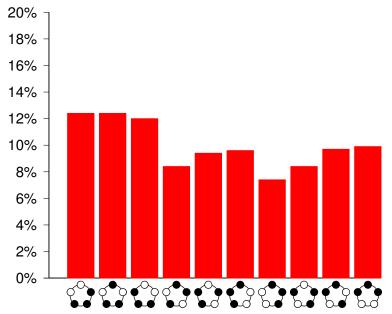


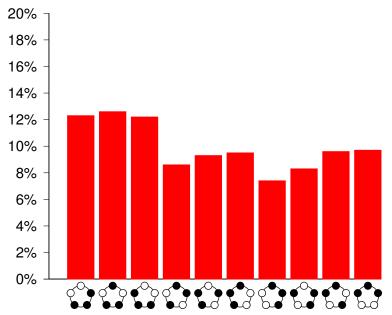


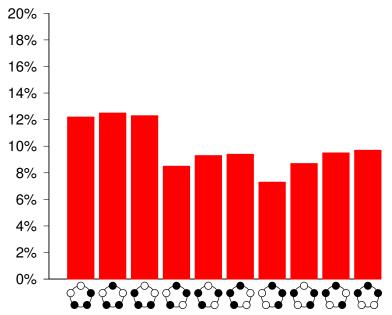


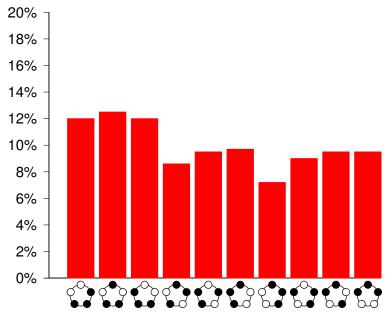


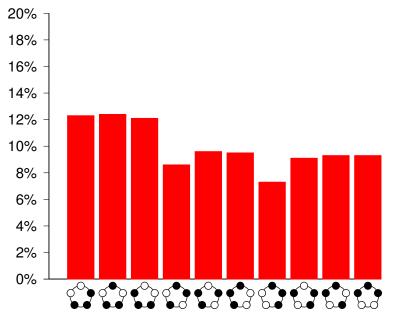


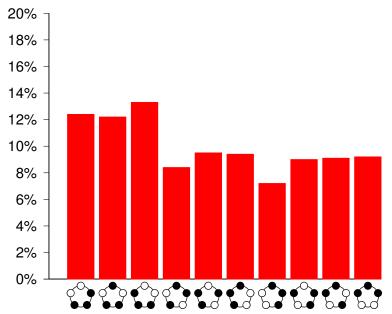


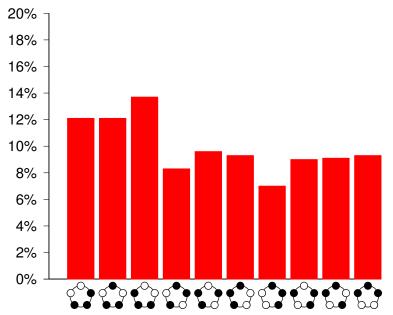


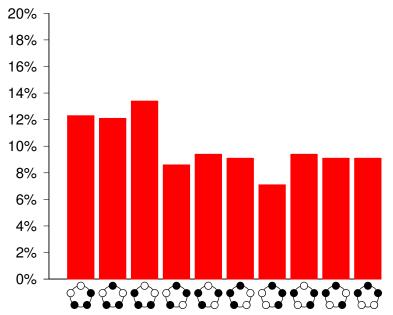


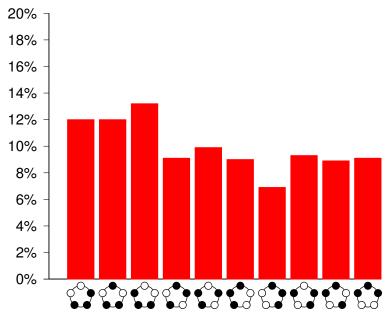


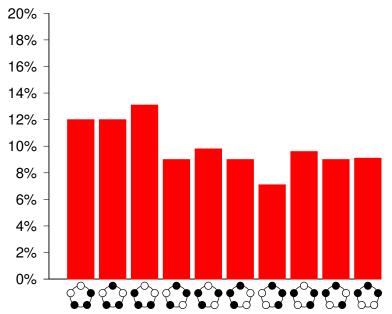


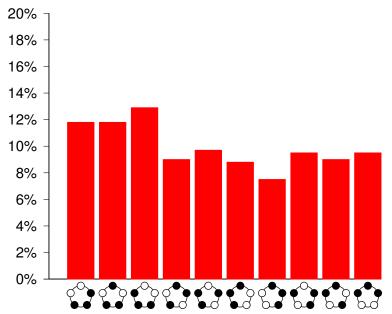


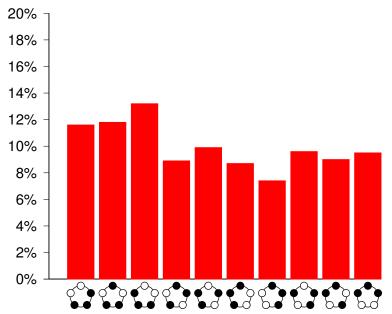


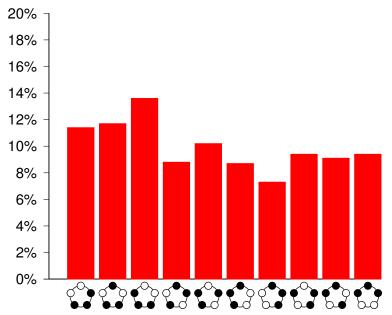


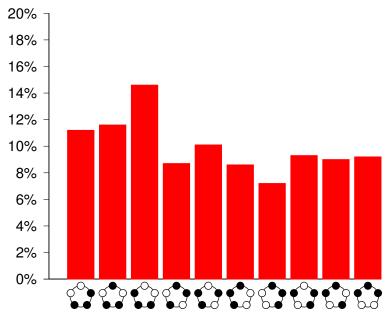


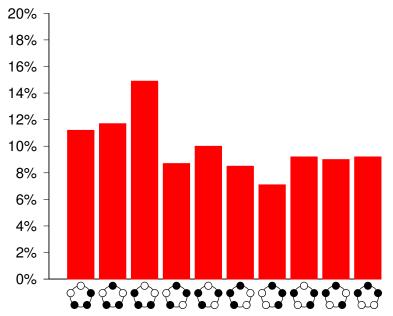


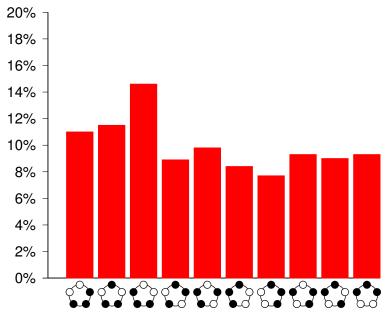


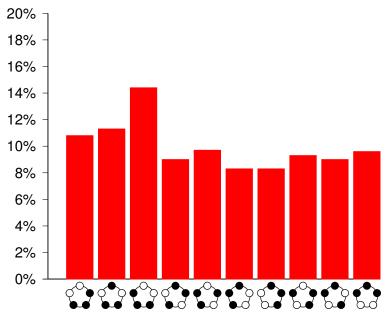


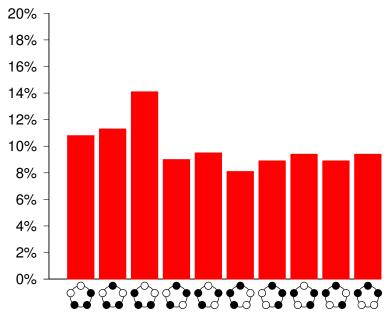


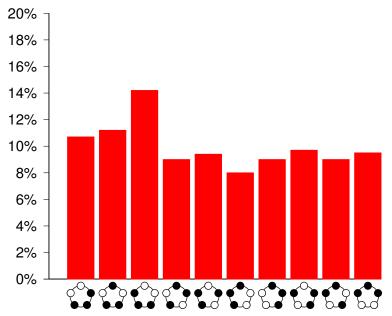


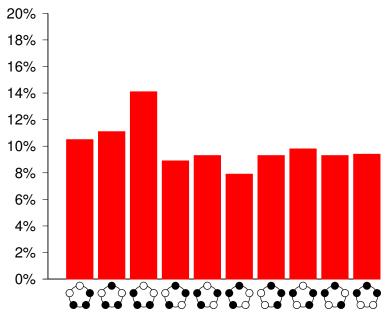


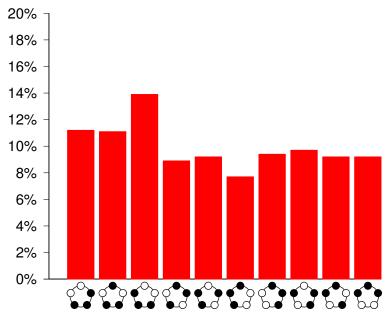


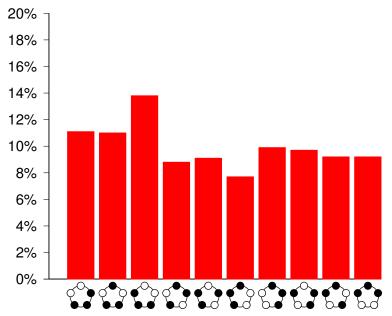


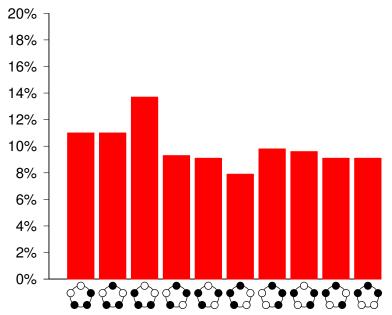


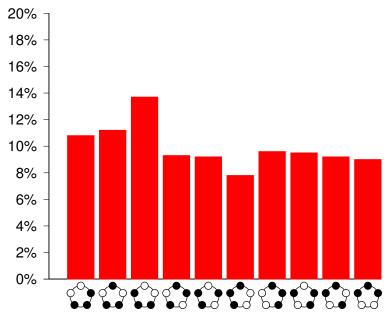


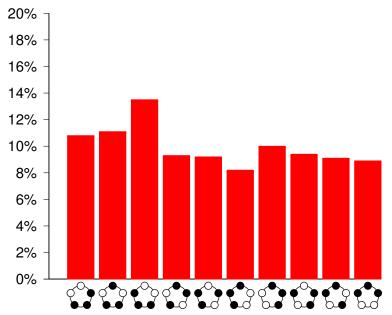


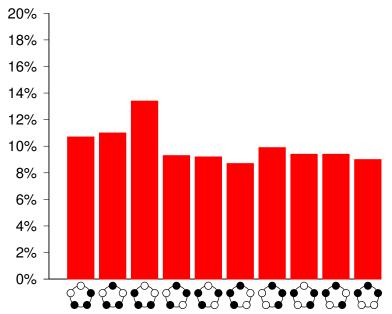


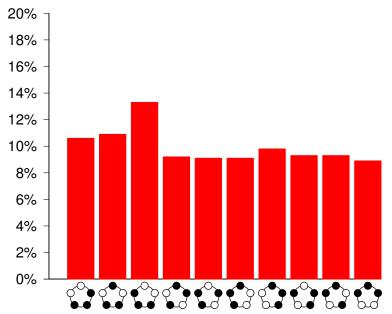


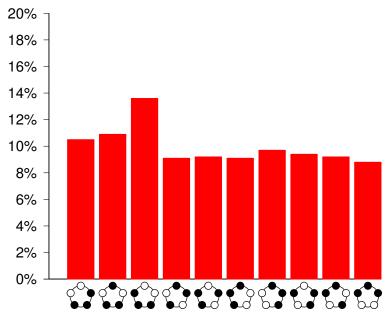


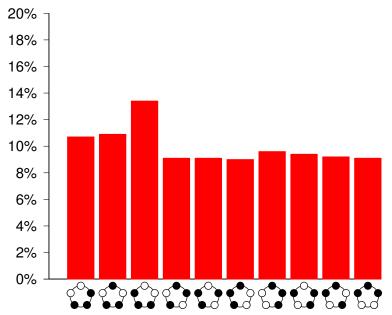


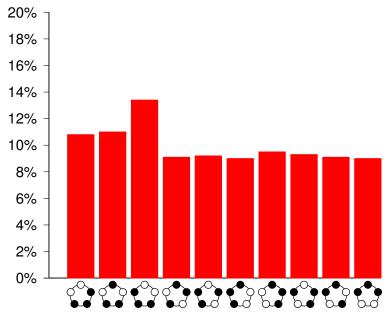


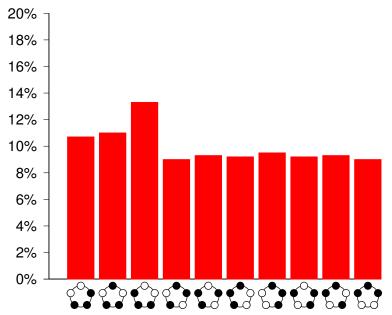


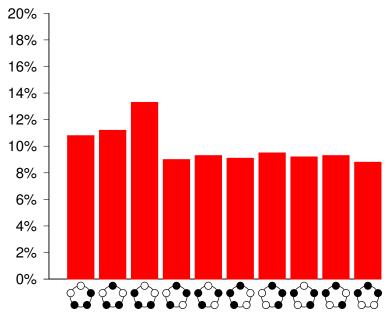


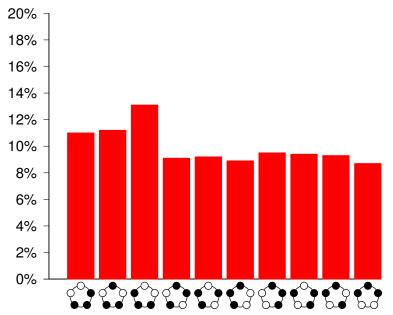


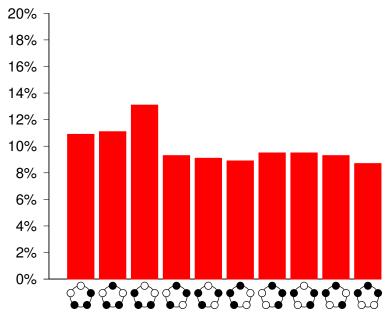


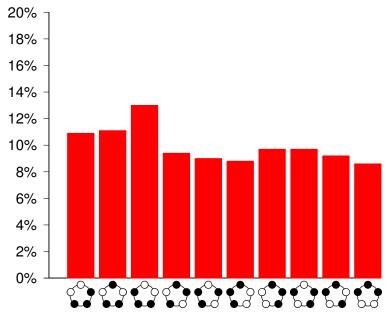


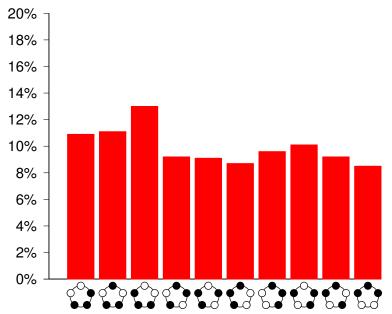


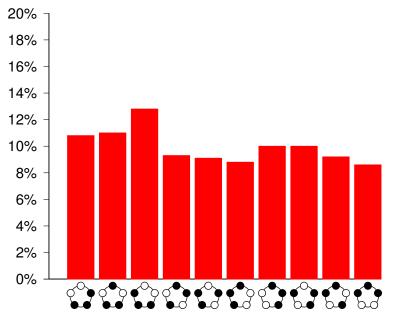


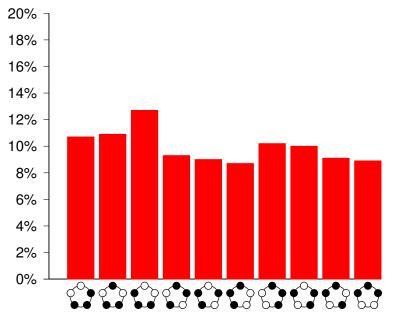


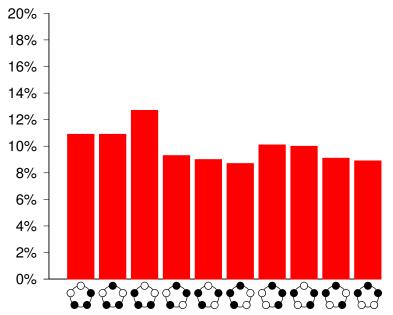


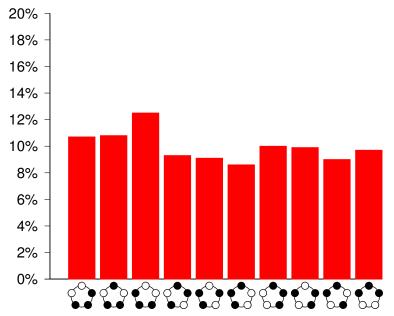


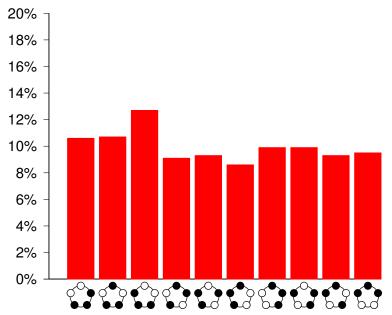


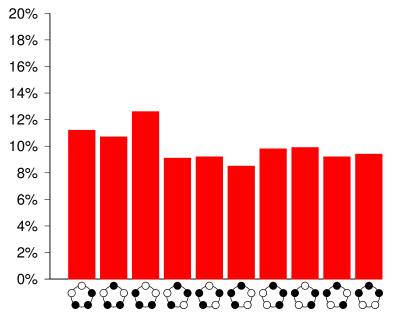


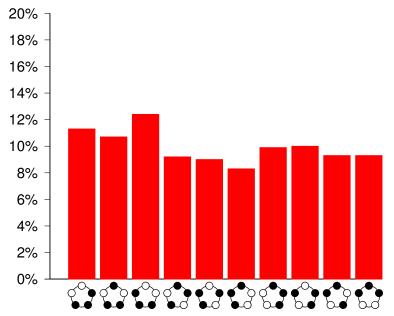


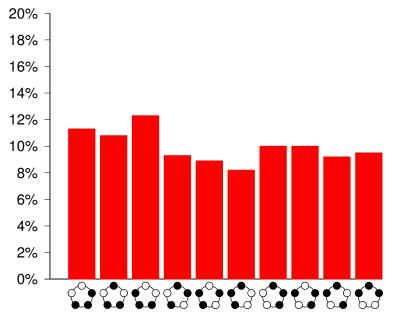


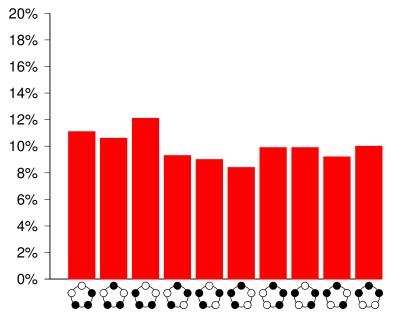


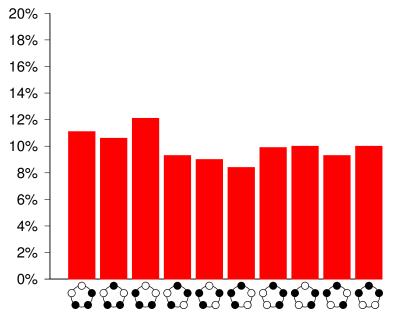


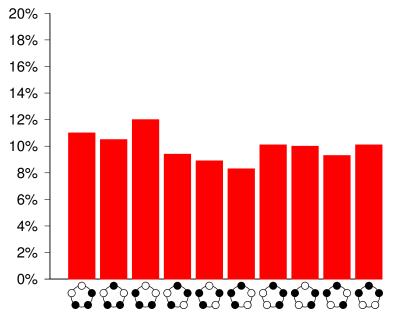


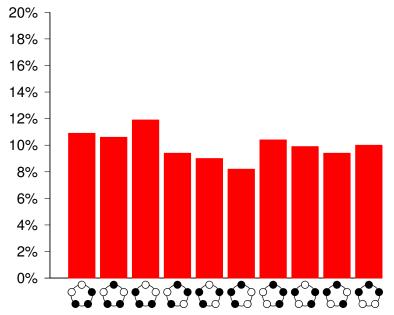


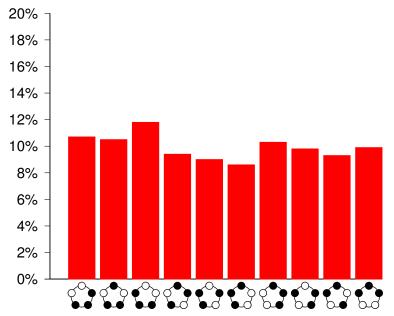


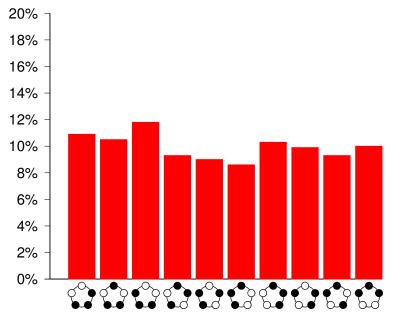


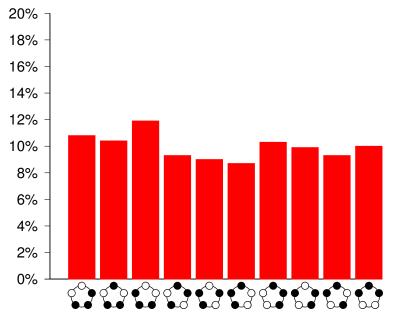


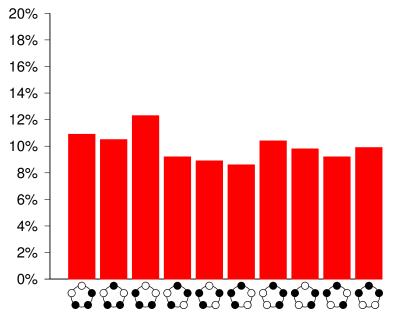


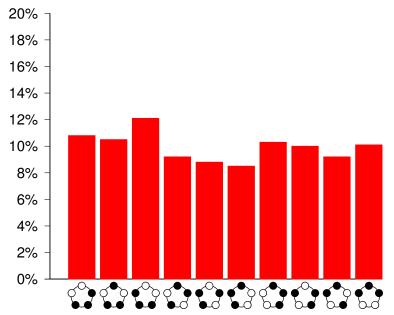


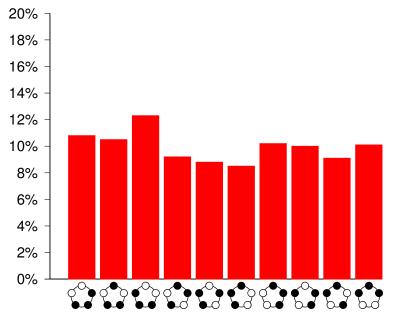


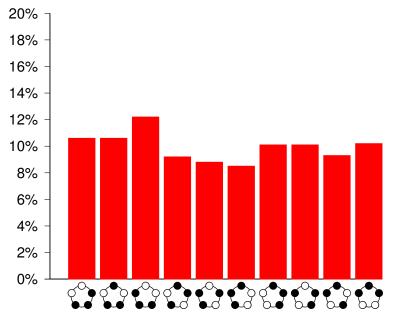


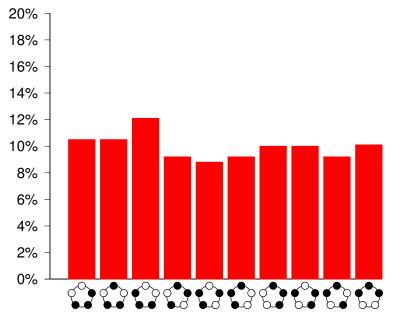


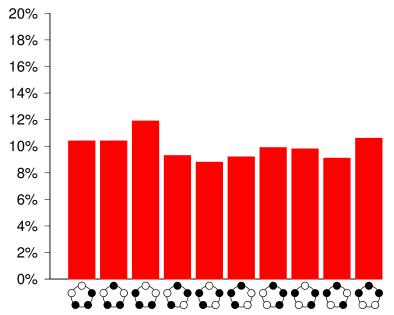


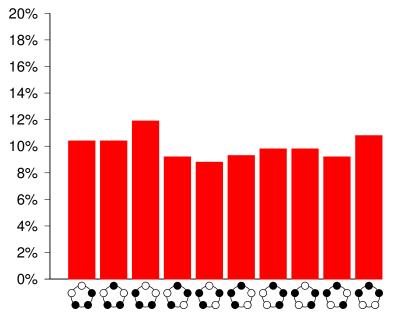


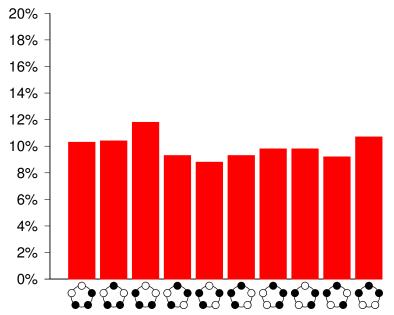


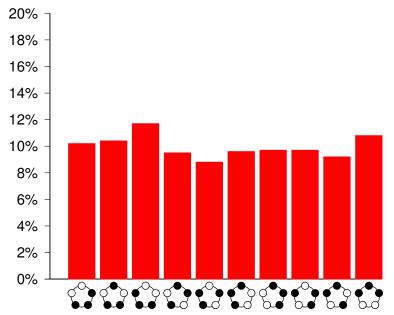


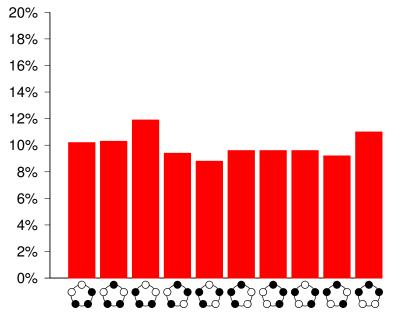


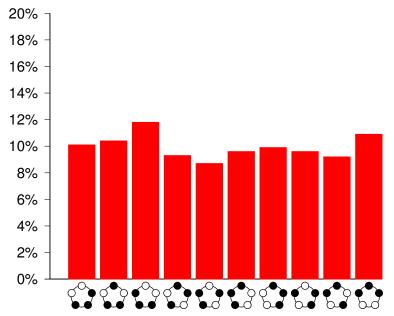




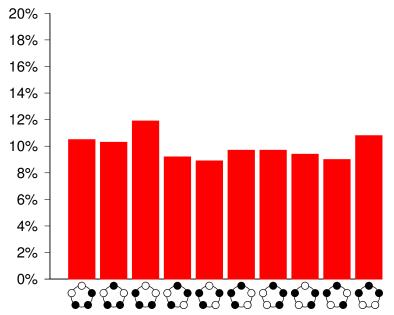


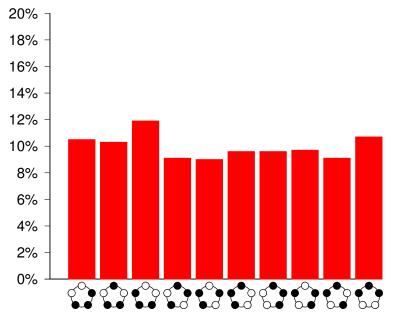


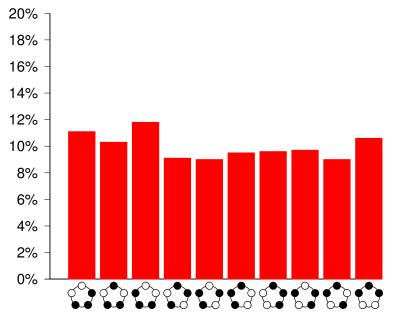


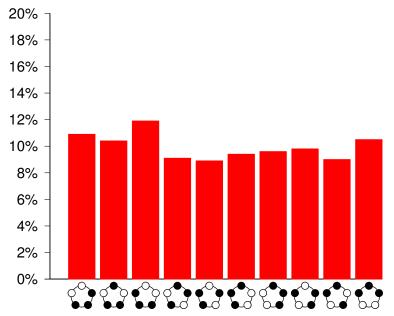


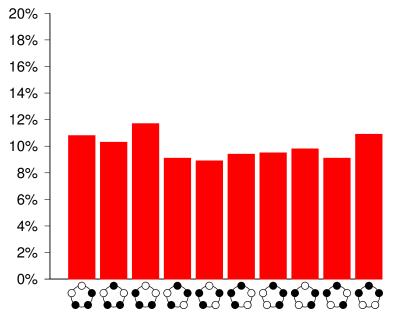


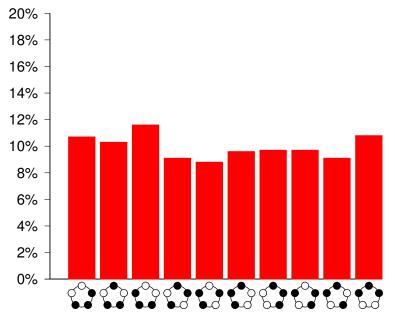


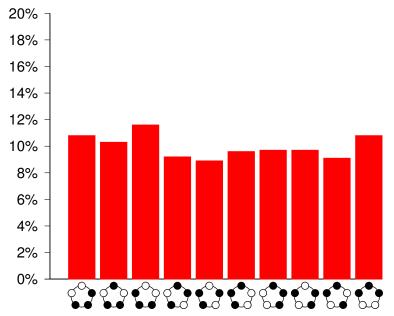


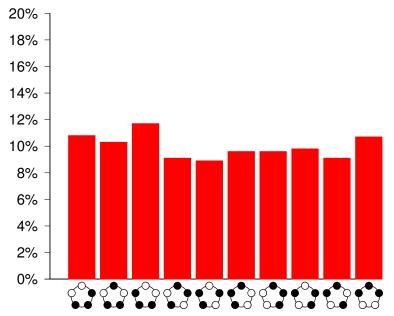


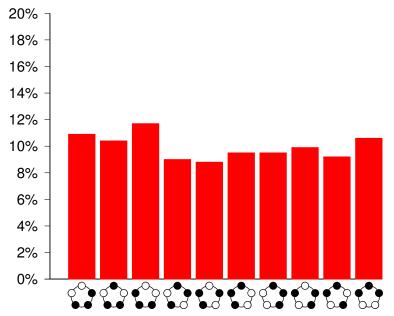


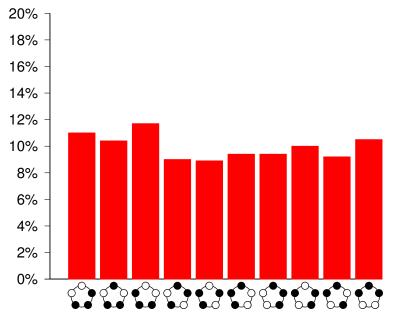


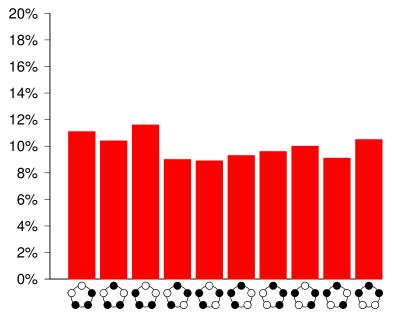


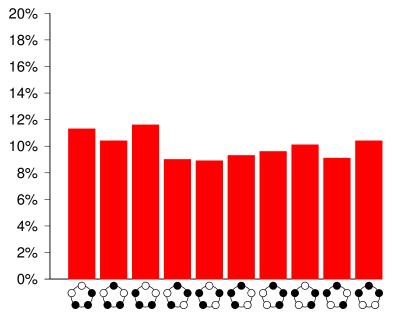


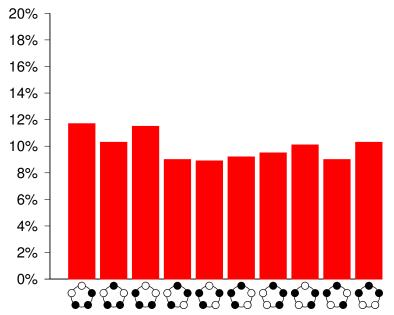


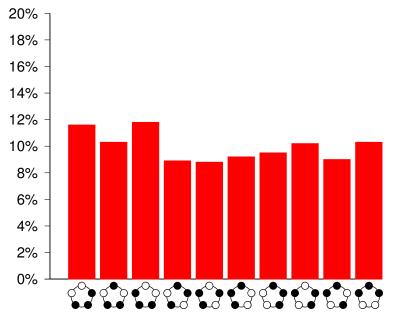


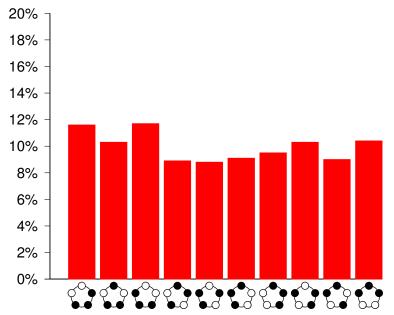


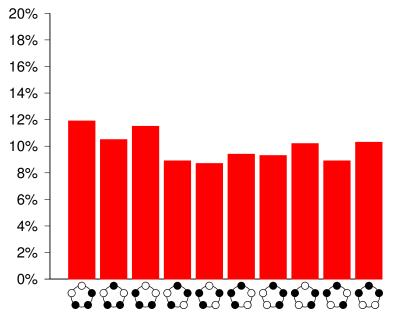


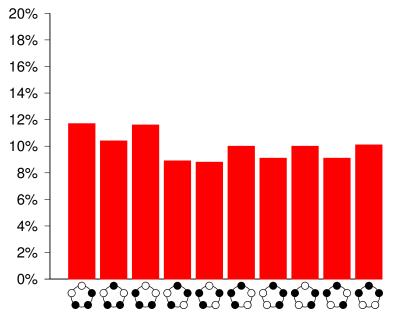


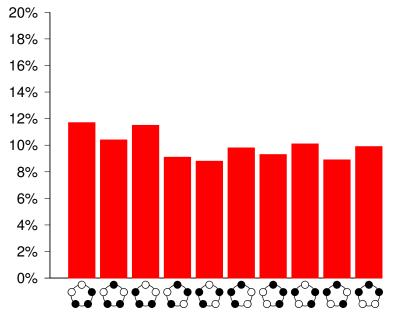


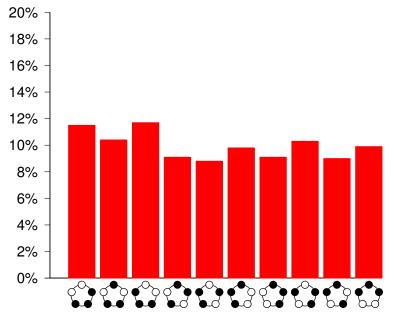


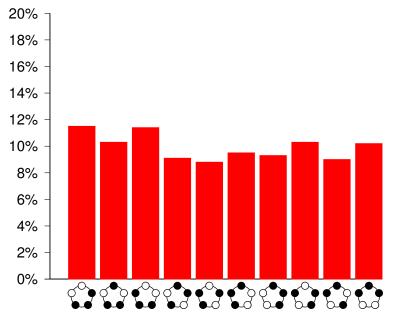


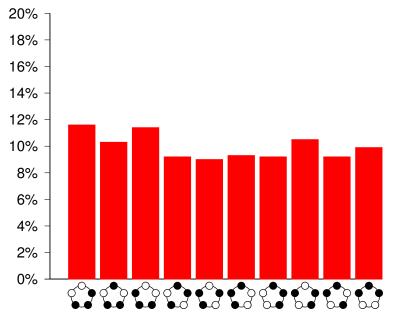


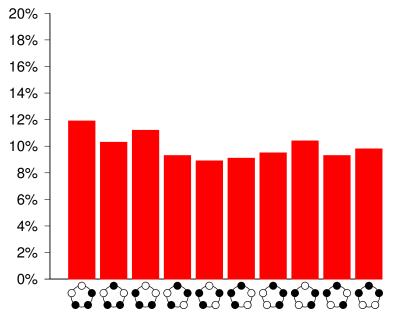


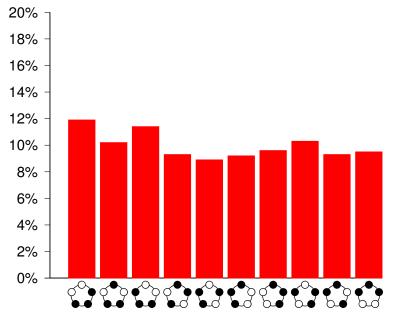


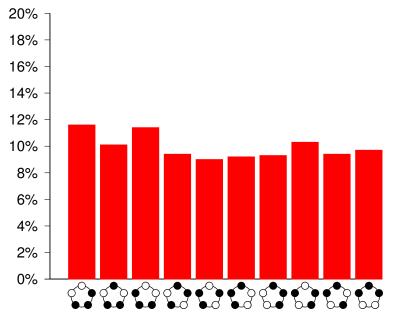


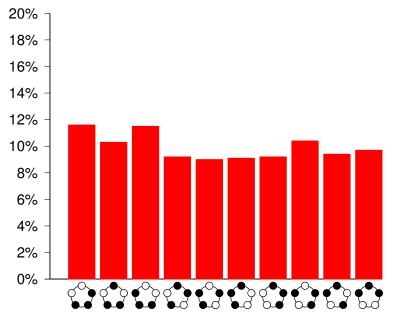


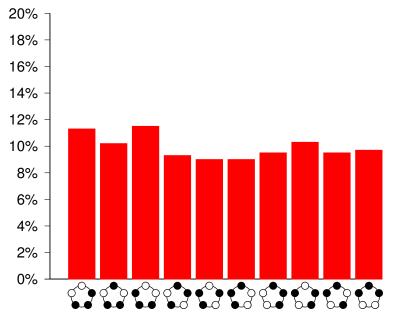


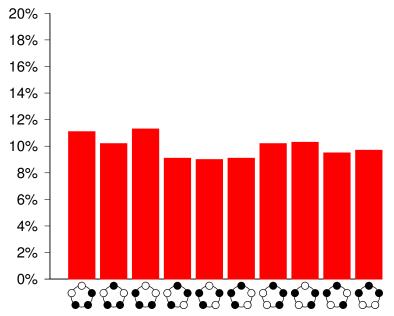


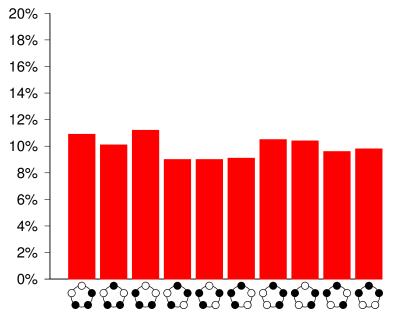




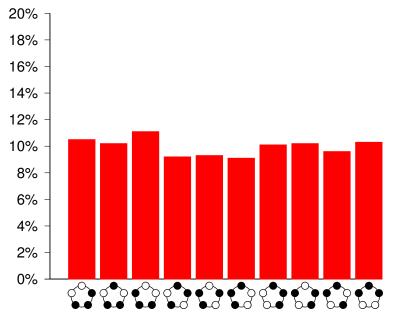


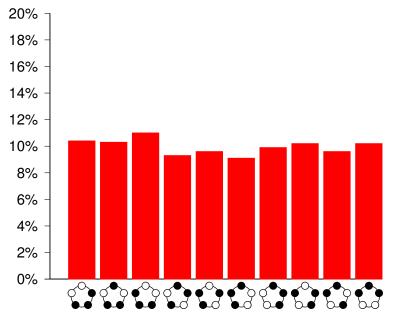


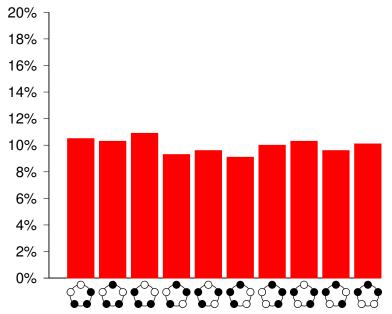


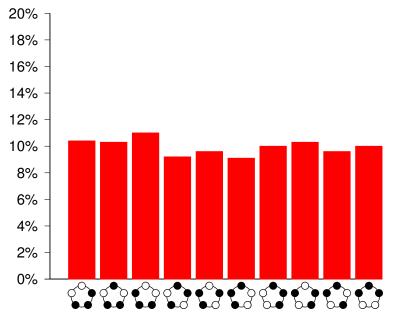


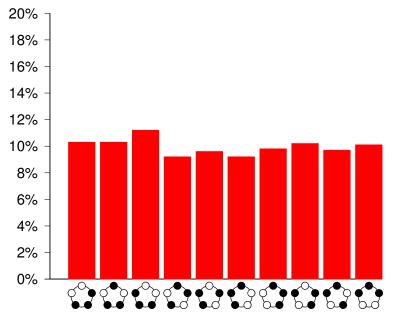


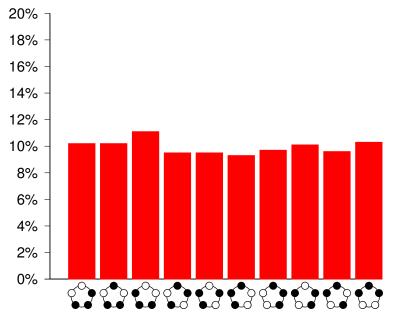


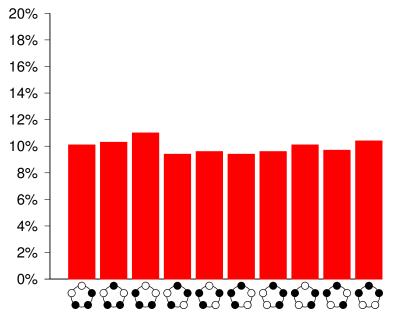


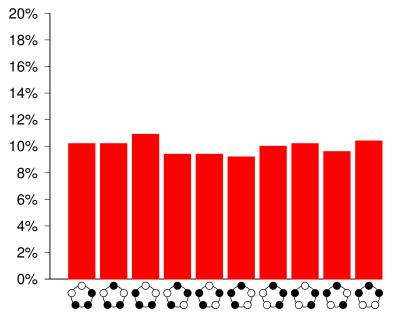


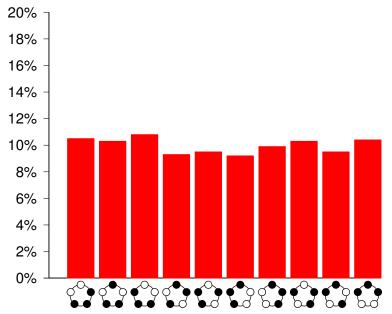


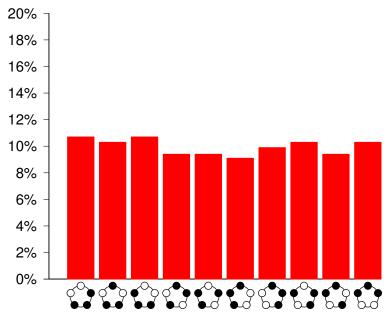


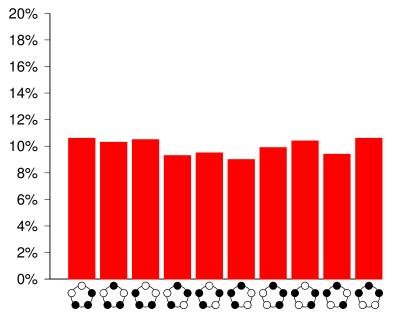


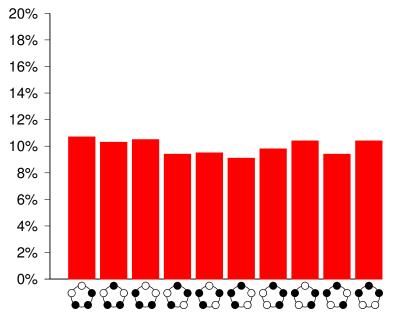


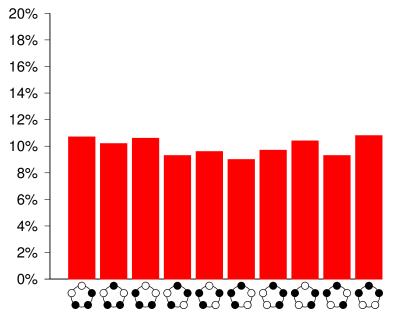


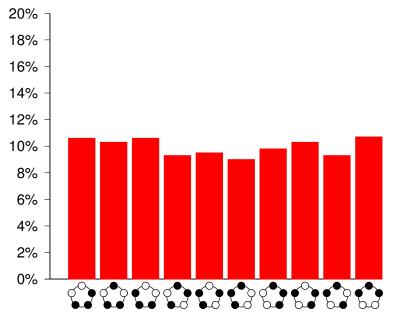


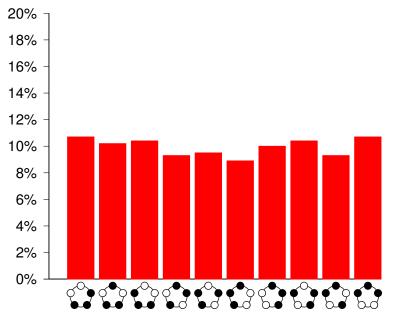


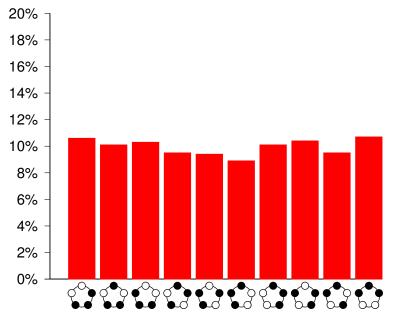


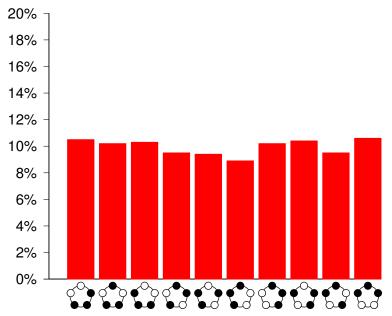




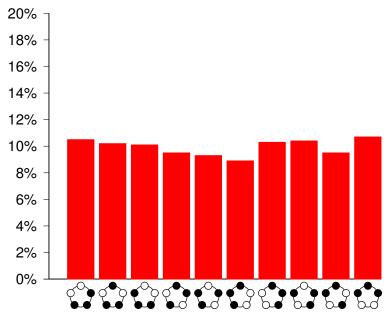


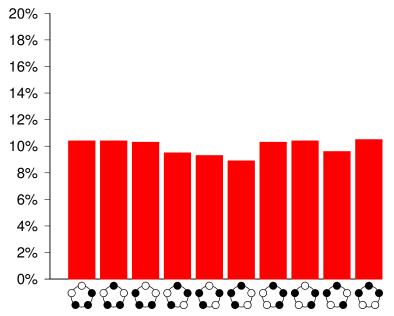


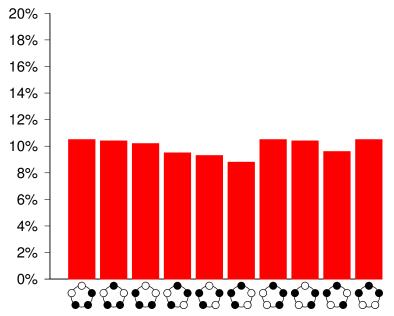


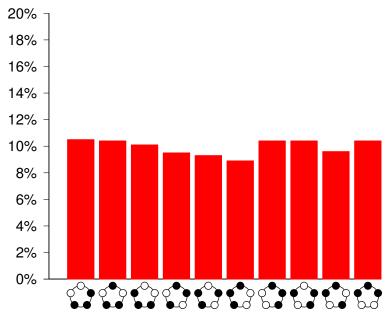


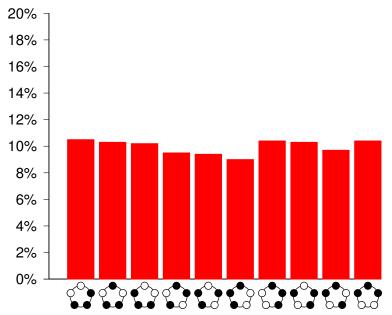


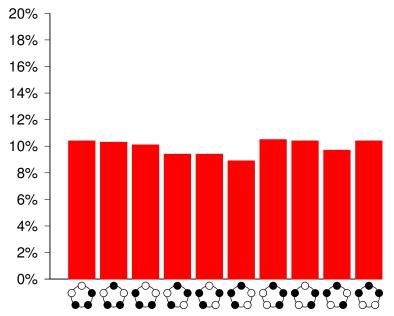


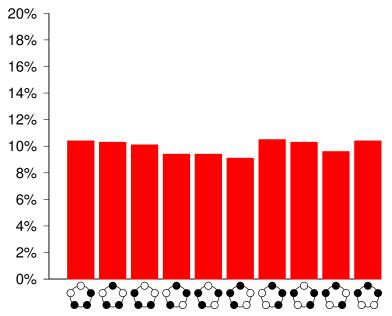


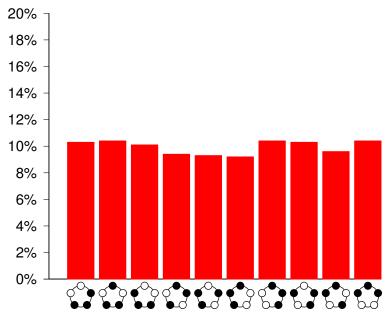


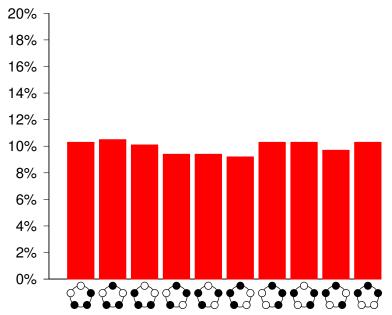


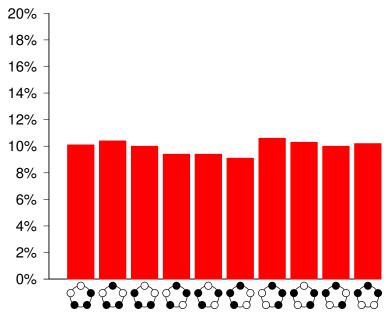


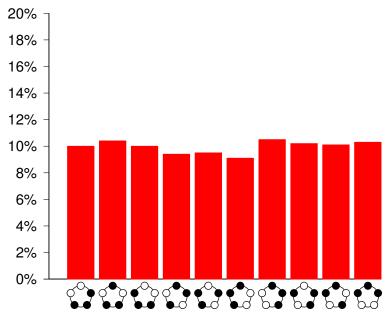


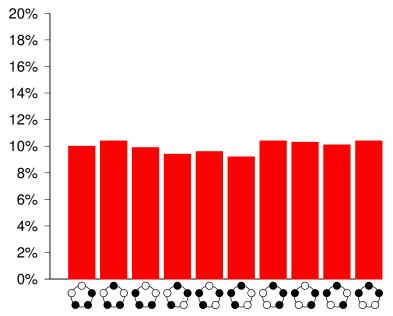


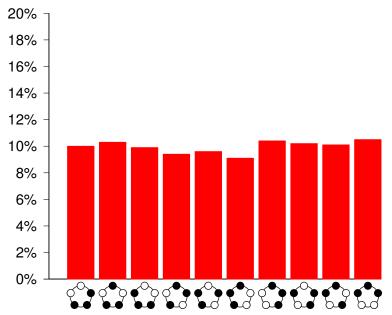


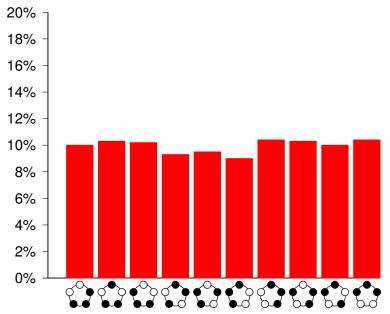


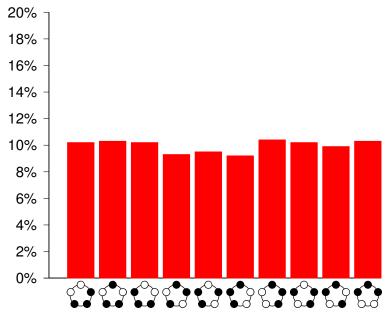


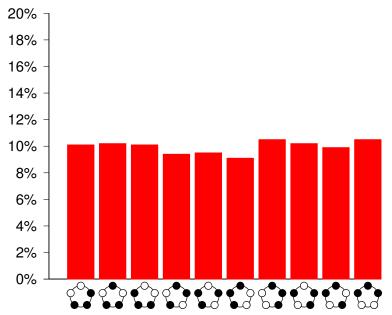


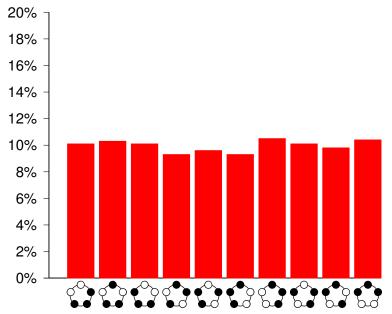


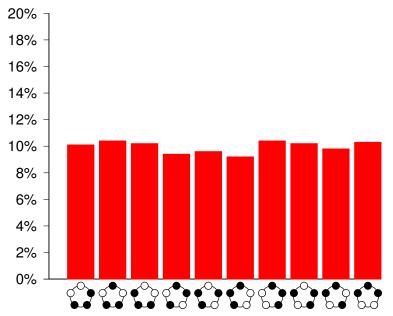


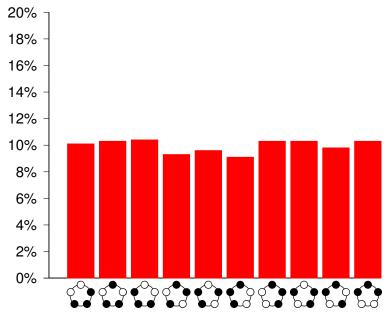


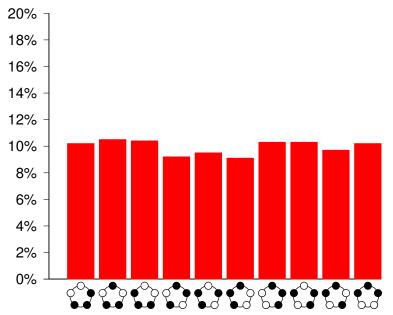


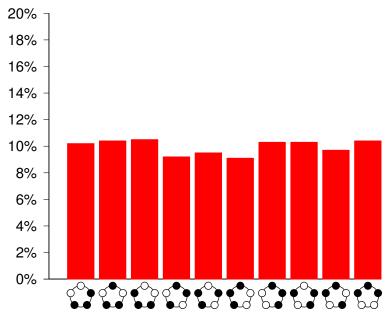


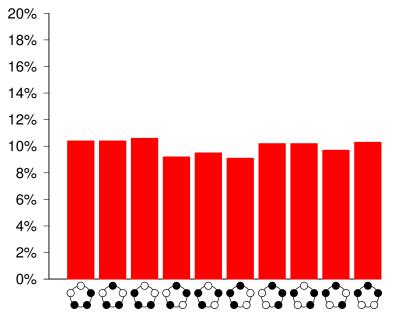


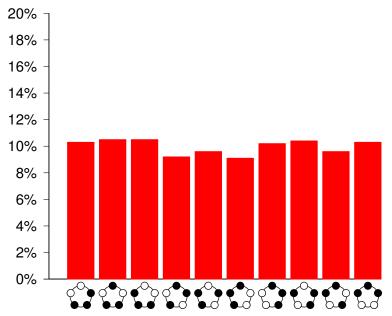


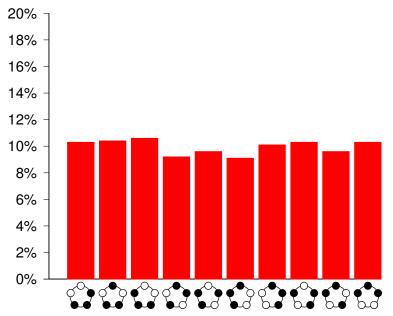


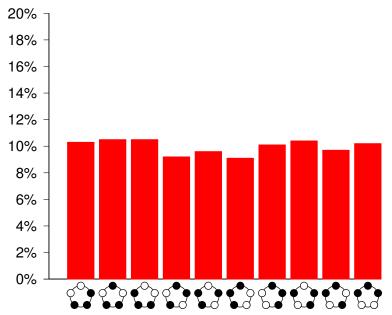


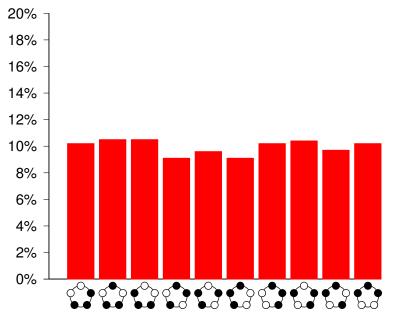


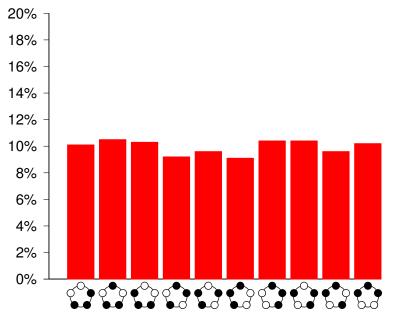


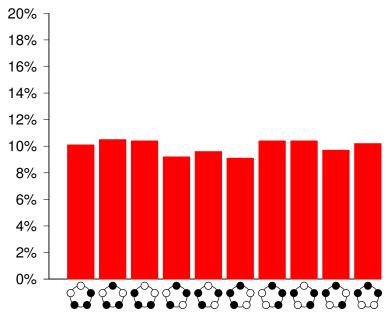


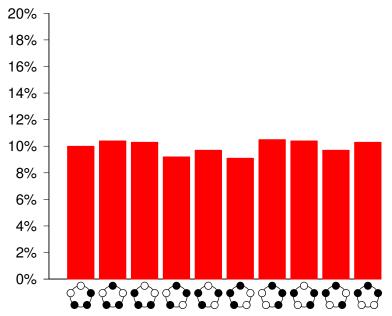


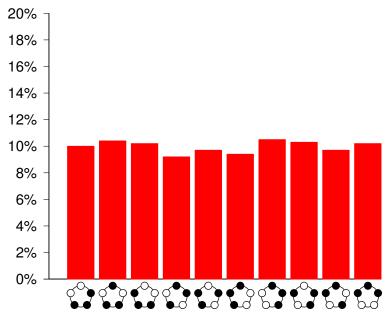


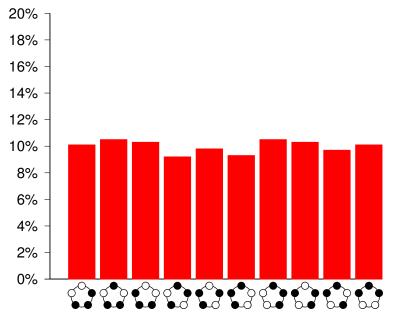


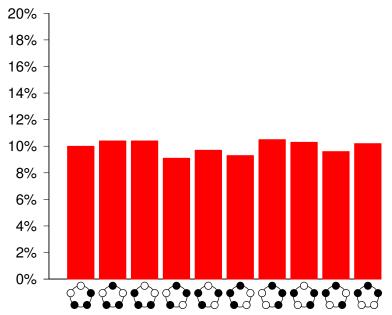


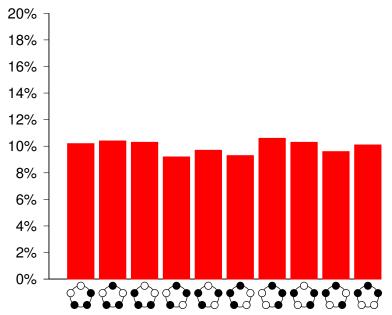


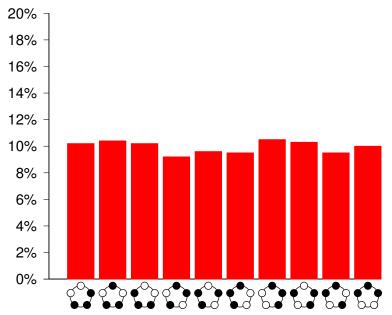


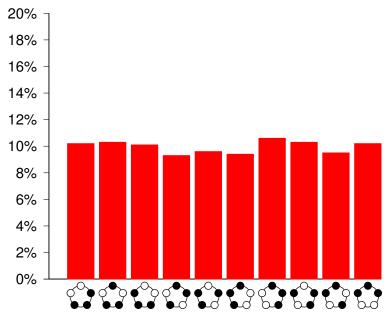












Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

Whether a slot has a ball and its neighbours have balls are less and less dependent of each other.

Take now *N* (the number of slots) and *m* (the number of balls) to infinity such that $m/N \simeq \rho$.

 ϱ is the *density of particles*, or the probability that a given slot has a ball.

Whether a slot has a ball and its neighbours have balls are less and less dependent of each other.

In the limit we obtain a model on \mathbb{Z} . In its stationary distribution we have a ball with probability ϱ , and don't have one with probability $1 - \varrho$ independently for each slot.

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

► The *hydrodynamic flux H* := \mathbb{E} [current of particles] depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

- ► The *hydrodynamic flux* $H := \mathbb{E}[$ current of particles] depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 \varrho)$.
- If the process is *locally* in equilibrium, but changes over some *large scale* (variables X = εi and T = εt), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

- ► The *hydrodynamic flux* $H := \mathbb{E}[\text{current of particles}]$ depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 - \varrho)$.
- If the process is *locally* in equilibrium, but changes over some *large scale* (variables X = εi and T = εt), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

This is a nonlinear partial differential equation. This type is called a conservation law.

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

- ► The *hydrodynamic flux* $H := \mathbb{E}[$ current of particles] depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 \varrho)$.
- If the process is *locally* in equilibrium, but changes over some *large scale* (variables X = εi and T = εt), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

- This is a nonlinear partial differential equation. This type is called a conservation law.
- These are fun.

Let us now look at the infinite model on the large scale, and let it evolve for a long time. If we change the initial density ρ on the large (*X*) scale, then the process will not be stationary anymore. Instead, its density will change on the large time scale (*T*).

- ► The *hydrodynamic flux* $H := \mathbb{E}[$ current of particles] depends on the density of particles. So, $H = H(\varrho)$. For exclusion, $H(\varrho) = \varrho(1 \varrho)$.
- If the process is *locally* in equilibrium, but changes over some *large scale* (variables X = εi and T = εt), then

$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0$$

- This is a nonlinear partial differential equation. This type is called a conservation law.
- These are fun.
- (And difficult.)

$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

$$\partial_{T} \varrho + \partial_{X} H(\varrho) = 0$$

$$\partial_{T} \varrho + H'(\varrho) \cdot \partial_{X} \varrho = 0 \qquad \text{(while smooth)}$$

$$\partial_{T} \varrho + \partial_{X} H(\varrho) = 0$$

$$\partial_{T} \varrho + H'(\varrho) \cdot \partial_{X} \varrho = 0 \qquad \text{(while smooth)}$$

$$\frac{d}{dT} \varrho(T, X(T)) = 0$$

$$\partial_{T} \varrho + \partial_{X} H(\varrho) = 0$$

$$\partial_{T} \varrho + H'(\varrho) \cdot \partial_{X} \varrho = 0 \qquad \text{(while smooth)}$$

$$\partial_{T} \varrho + \dot{X}(T) \cdot \partial_{X} \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$$

$$\partial_{T} \varrho + \partial_{X} H(\varrho) = 0$$

$$\partial_{T} \varrho + H'(\varrho) \cdot \partial_{X} \varrho = 0 \qquad \text{(while smooth)}$$

$$\partial_{T} \varrho + \dot{X}(T) \cdot \partial_{X} \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$$

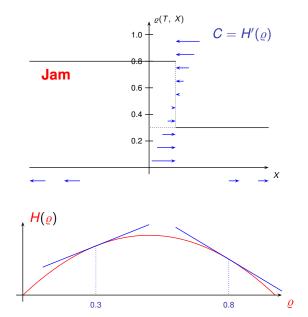
$$\partial_T \varrho + \partial_X H(\varrho) = 0$$

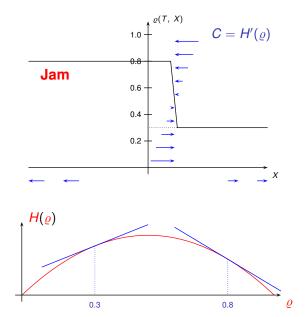
$$\partial_T \varrho + H'(\varrho) \cdot \partial_X \varrho = 0 \quad \text{(while smooth)}$$

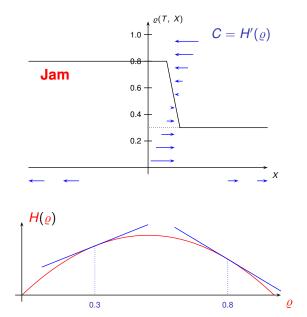
$$\partial_T \varrho + \dot{X}(T) \cdot \partial_X \varrho = \frac{d}{dT} \varrho(T, X(T)) = 0$$

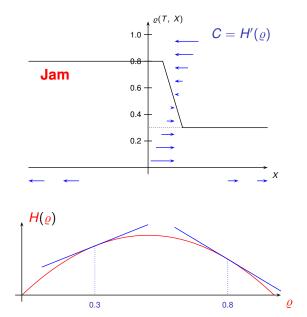
$$\dot{X}(T) = H'(\varrho) = 0 \quad \text{is the characteristic speed}$$

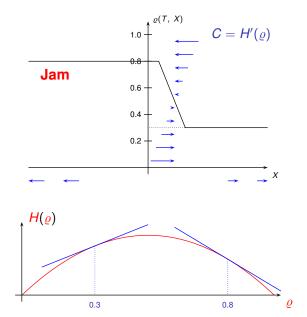
So, $X(T) = H'(\varrho) = : C$ is the characteristic speed.

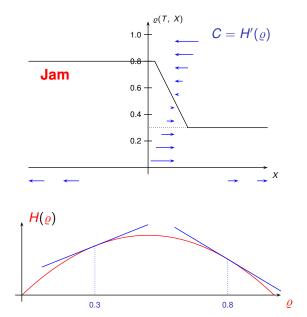


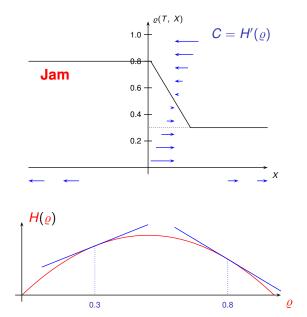


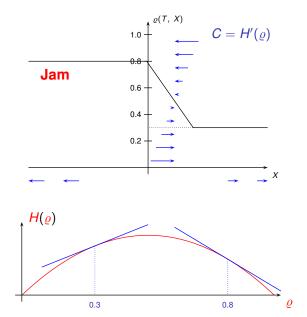


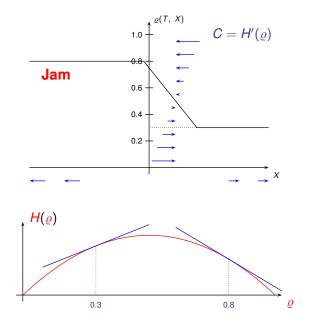


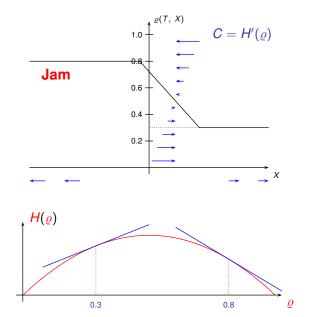


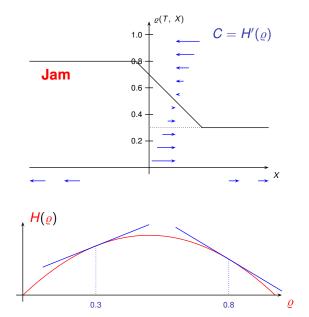


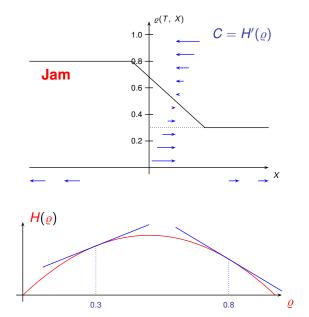


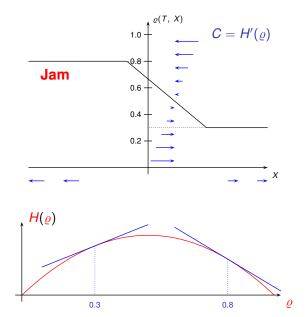


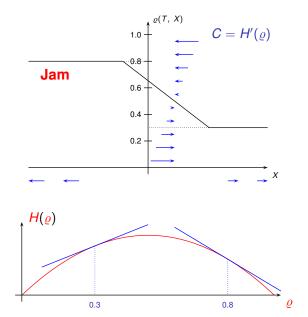


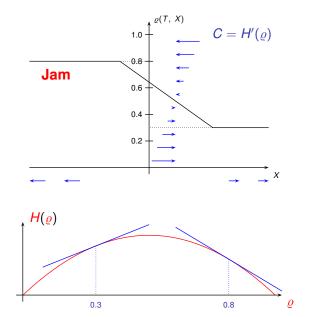


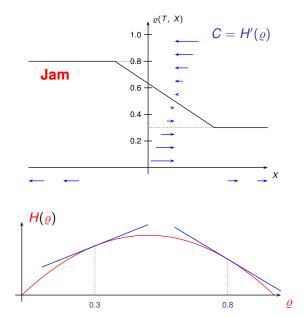


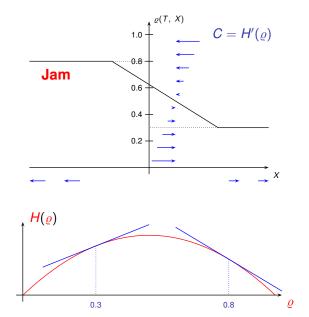


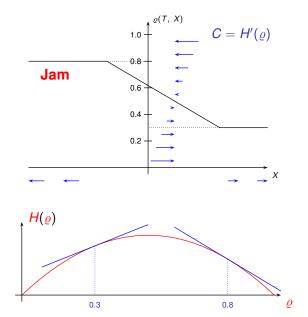


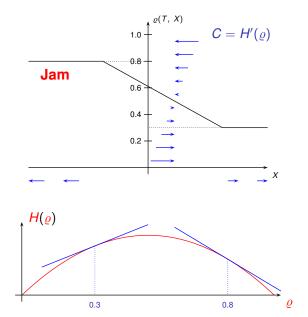


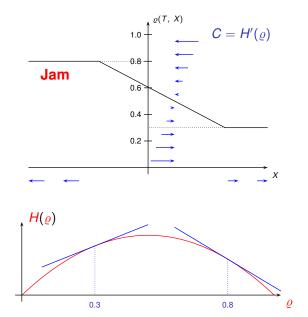


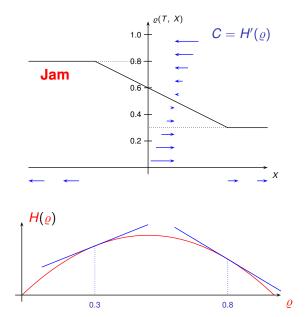


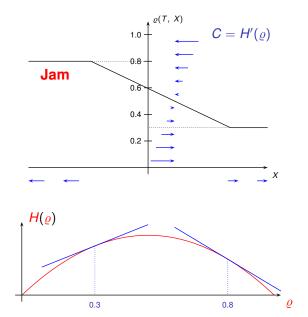


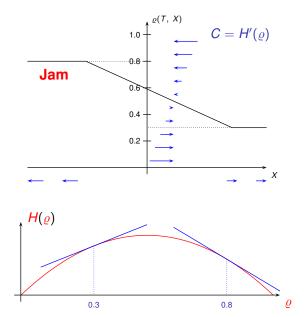


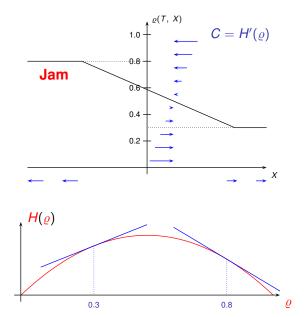


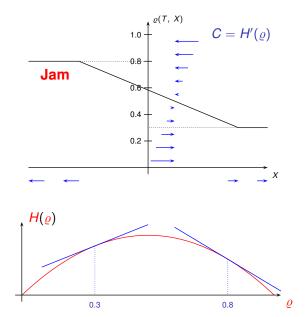


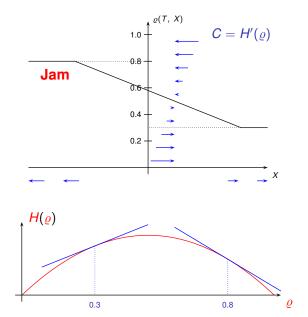


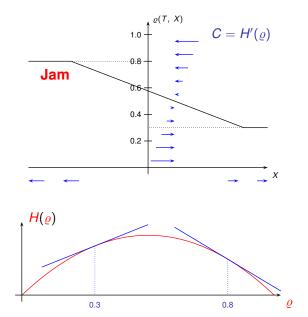


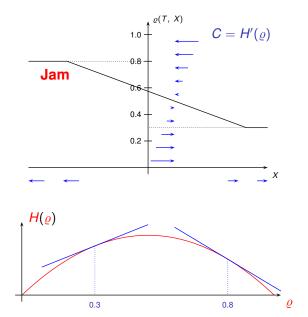


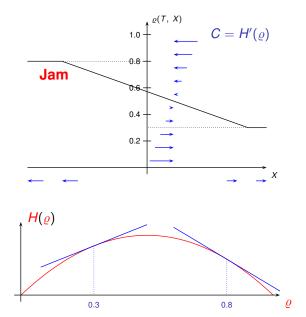


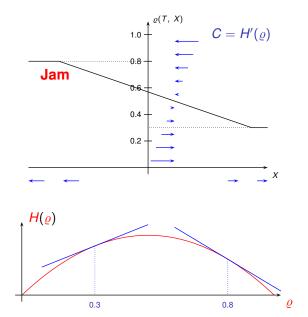


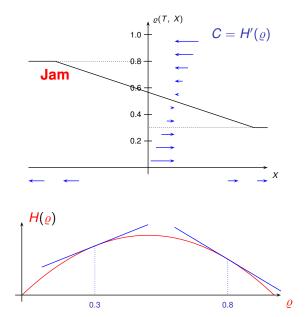


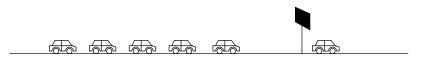


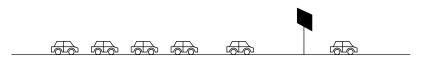


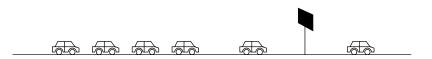


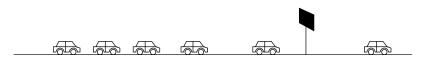




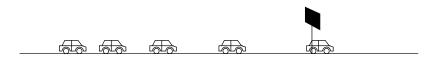


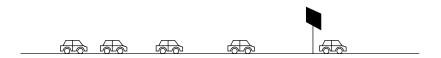


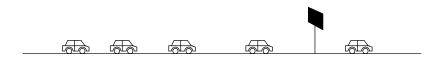


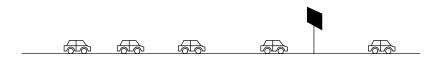


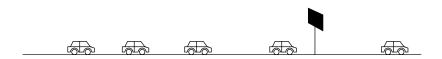


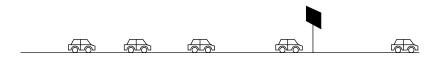


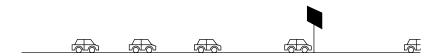


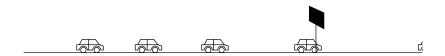


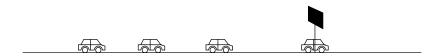


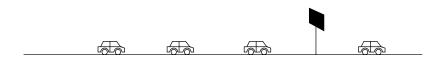


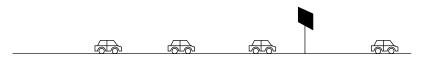


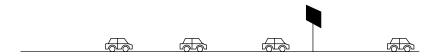


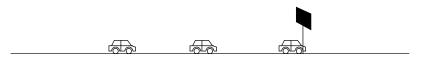


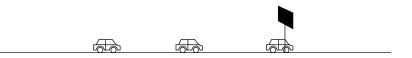


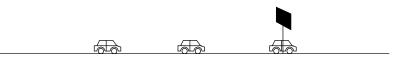


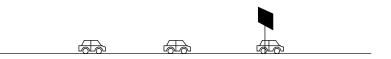


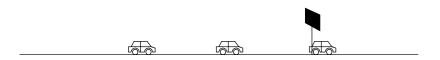


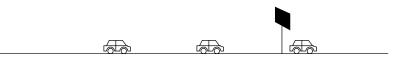


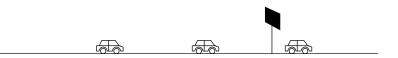


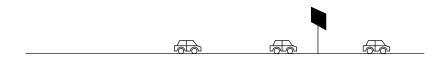


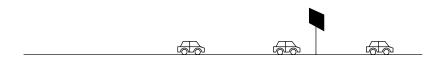


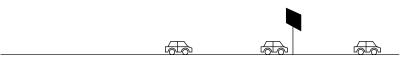


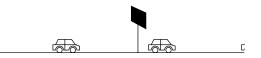


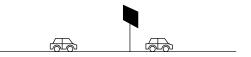


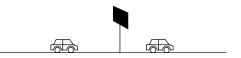


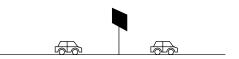


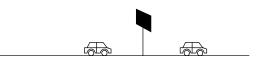


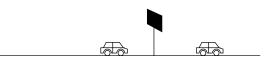


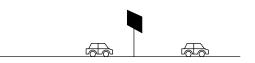


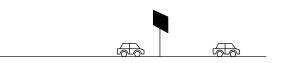


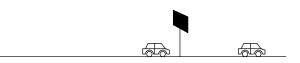


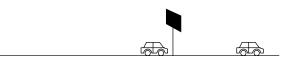


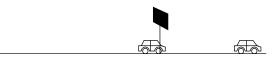


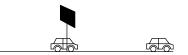


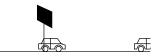


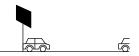


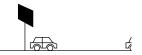








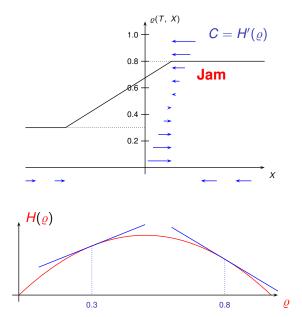


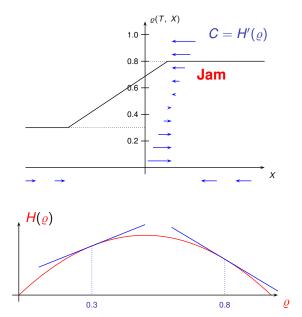


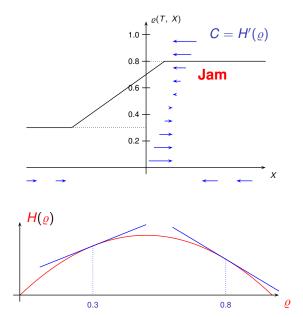
Continuous, long acceleration for those starting from the rear

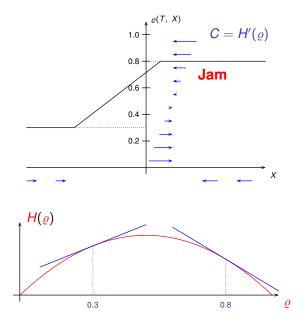
Continuous, long acceleration for those starting from the rear

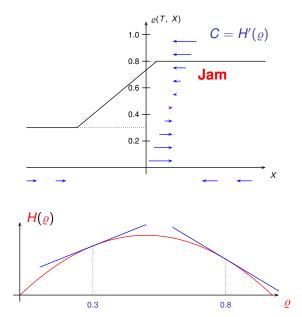
Leaving a traffic jam is always soft, "blurry".

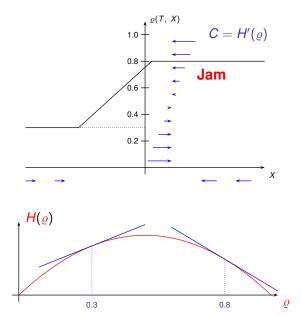


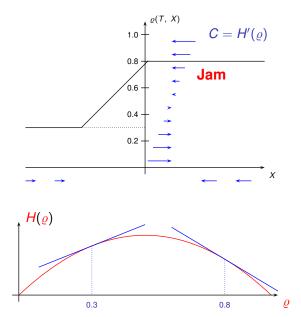


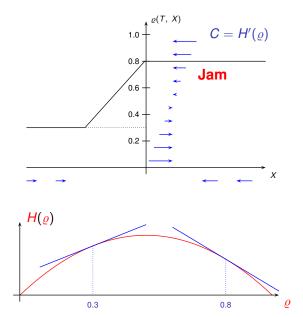


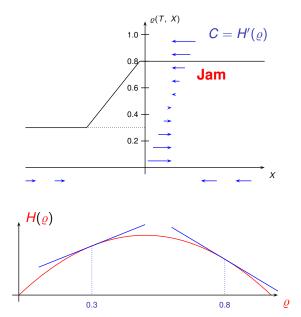


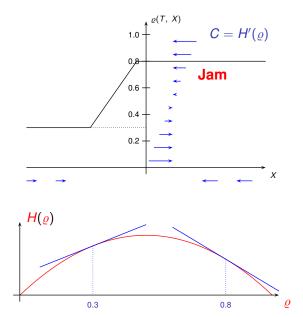


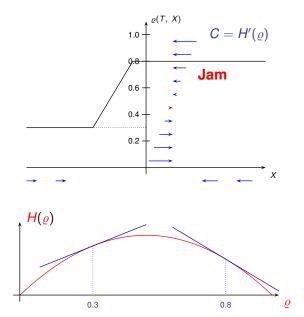


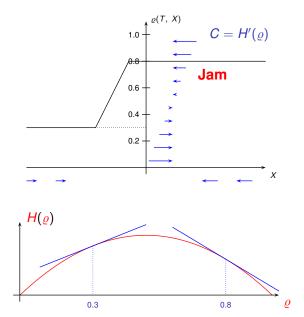


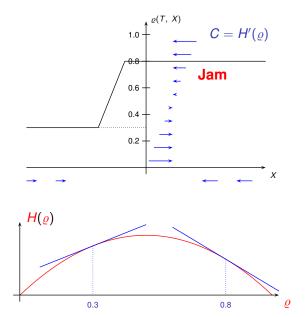


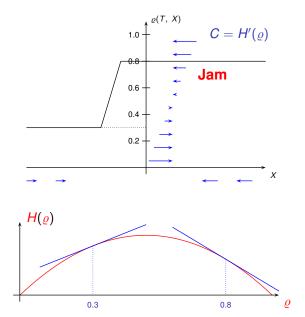


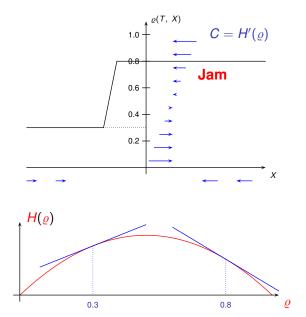


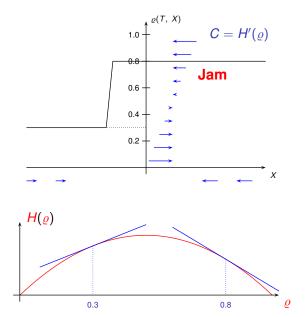


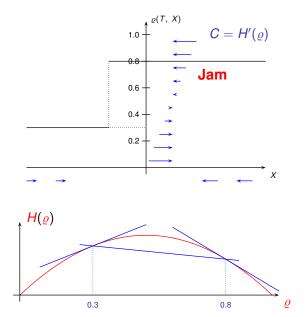


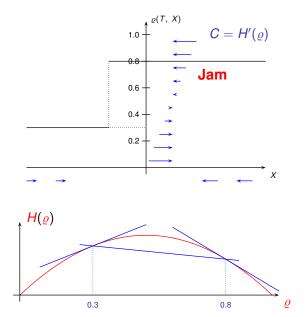


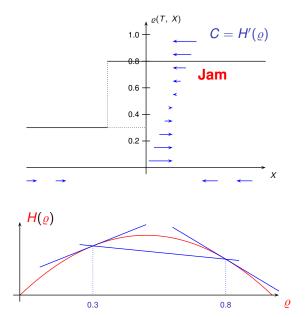


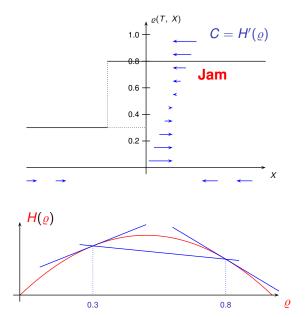


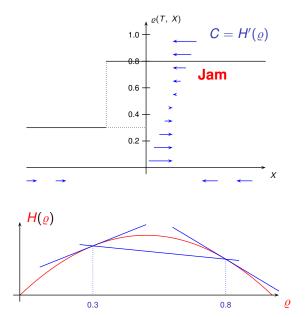


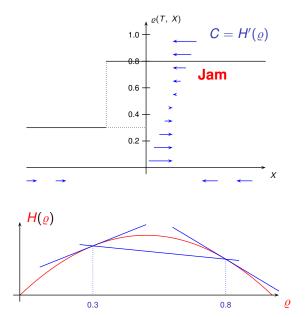


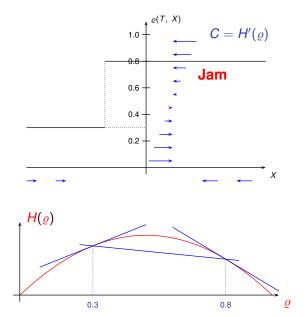


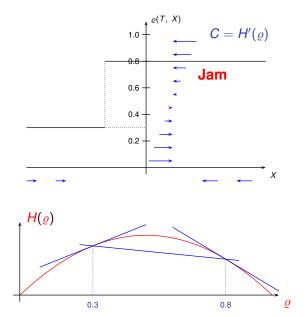


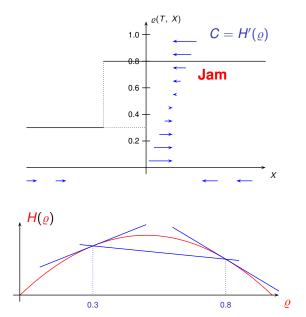


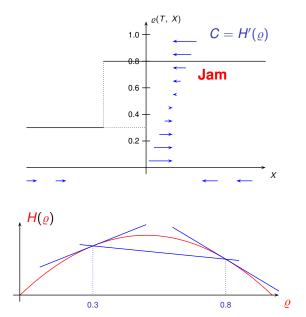


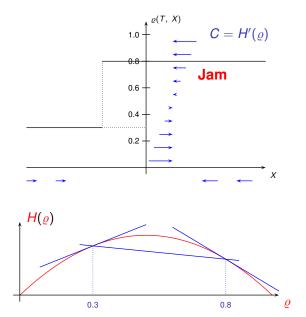


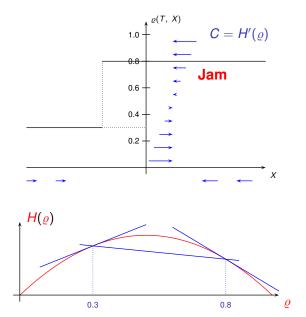


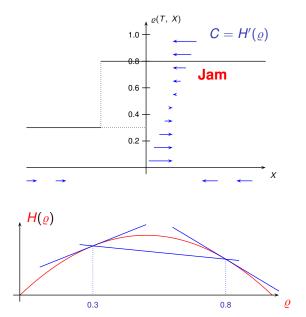


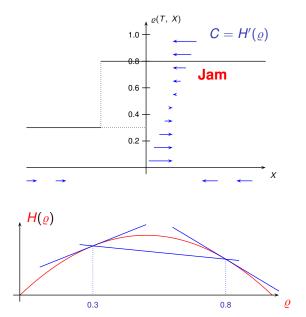


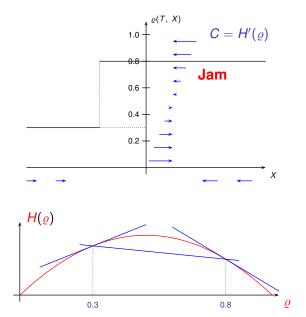


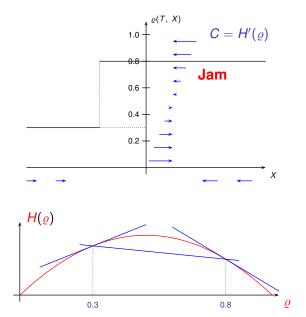


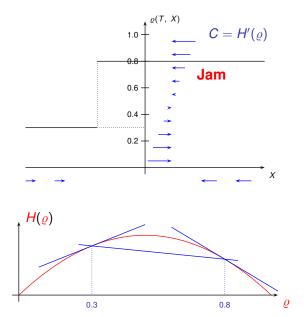


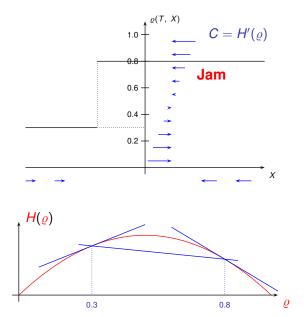


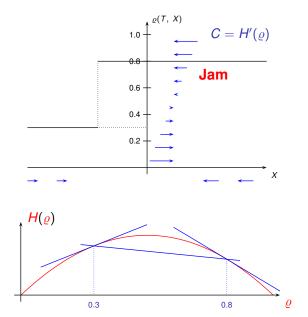


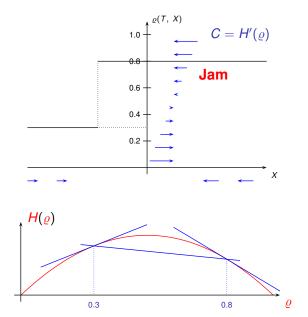


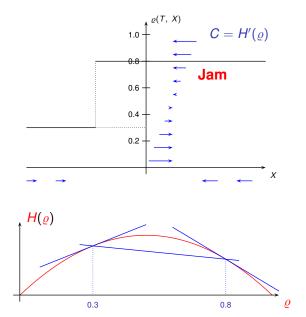


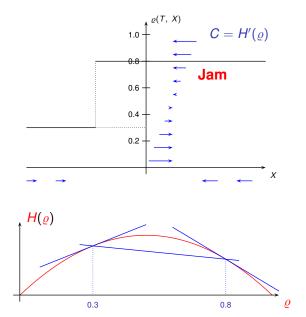


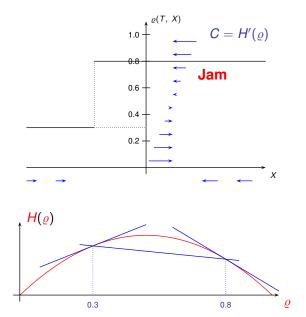


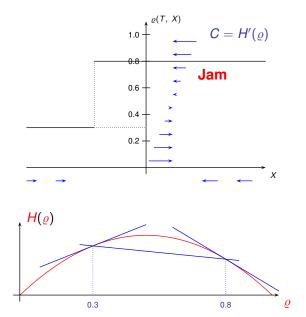


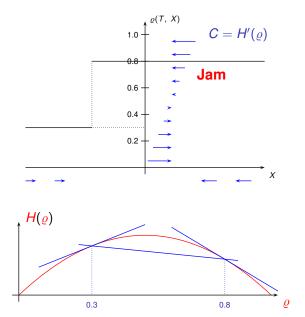


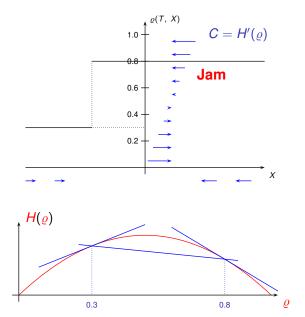


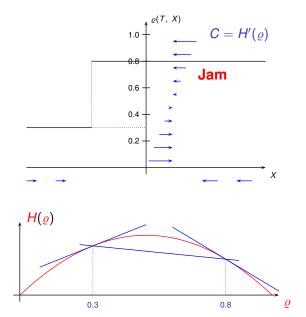


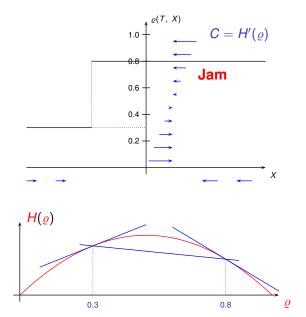


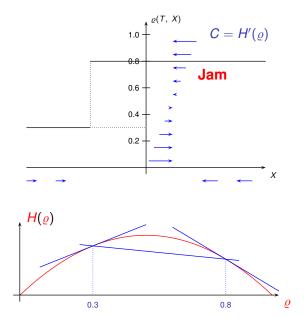


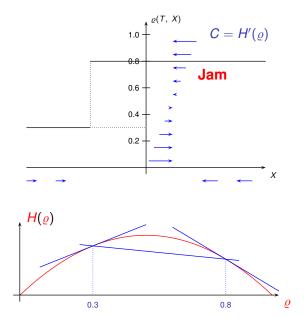


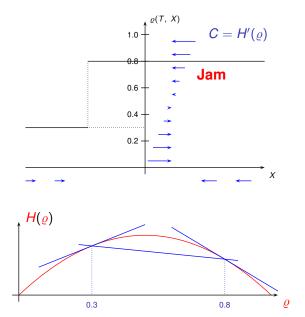


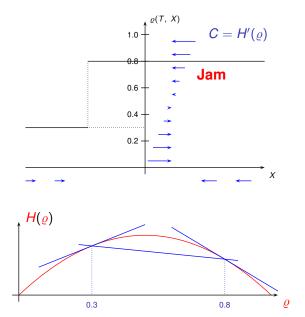


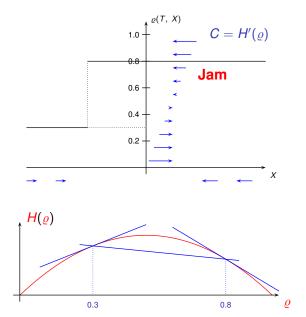


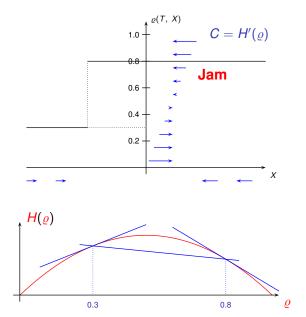


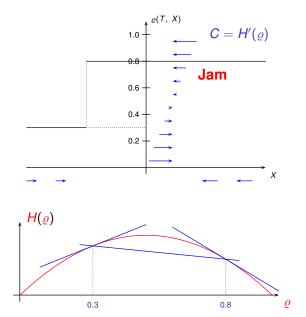


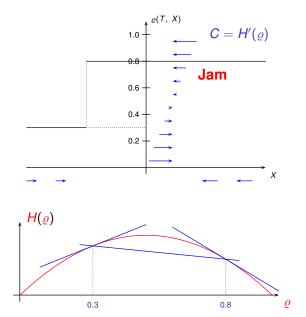


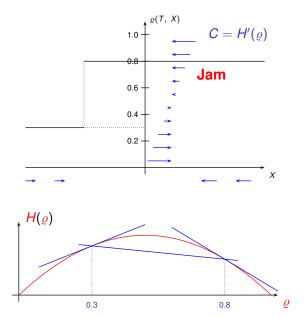


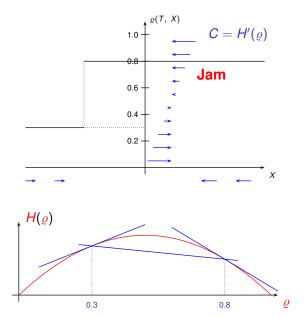


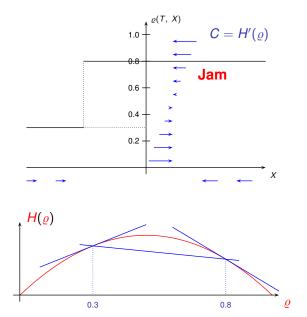


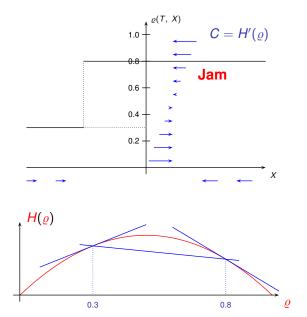


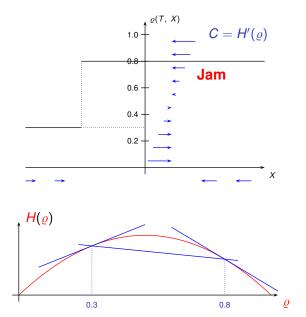


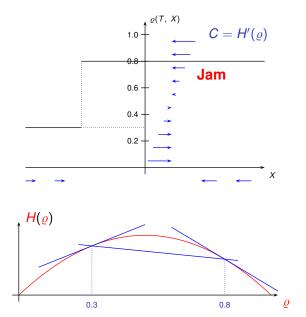


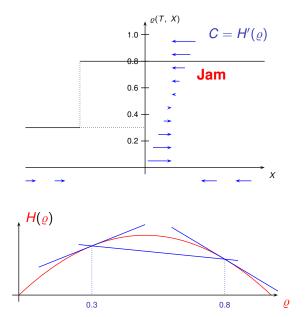


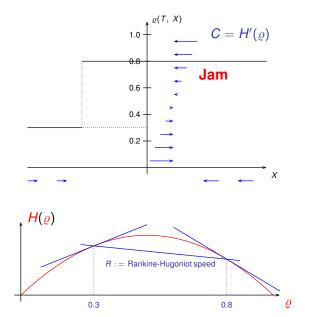


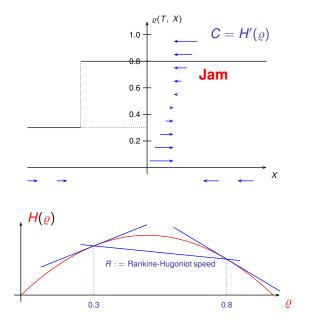












С

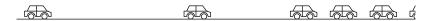
(ala)

ís la

the la

ב

(ALA)



台合 íst. (ALA)

(ala

ísta

íst.

台合

(daba) 台合 (ALA) ísta 伝命

(ALA) (data) (ALA) (ALA) ú

We notice the slow cars ~> strong braking immediately.

Arriving to a traffic jam is always sharp.

We notice the slow cars ~> strong braking immediately.

Arriving to a traffic jam is always sharp.

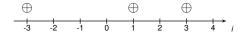
This is one aspect that makes motorways dangerous places.

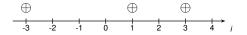
 Of course there are much more sophisticated models for traffic modelling.

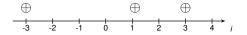
- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M

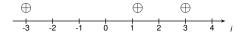
- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M
- TASEP is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.

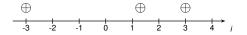
- Of course there are much more sophisticated models for traffic modelling.
- http://youtu.be/Suugn-p5C1M
- TASEP is already very interesting from the mathematics point of view, with many nice theorems and interesting open questions.
- But we'll now go crazy with shocks and rarefaction fans.

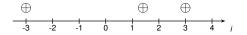


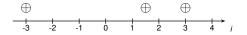


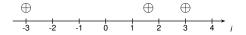


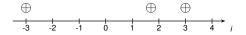


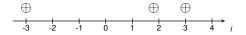


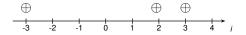


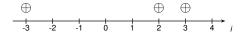




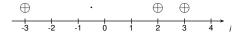




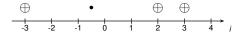




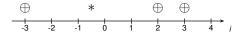
pair creation from vacuum: rate c

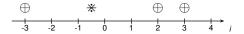


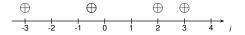
pair creation from vacuum: rate c

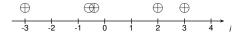


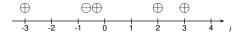
pair creation from vacuum: rate c

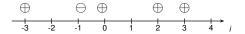


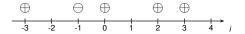


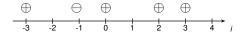


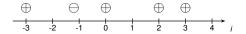


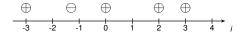


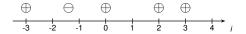


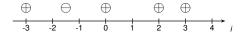




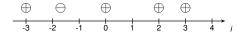


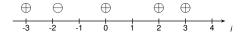


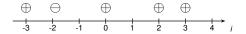


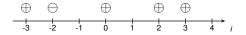


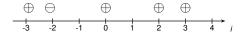


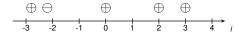




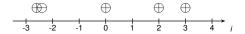


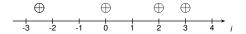


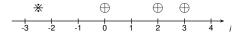


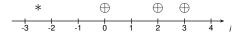


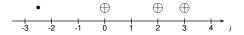


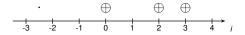




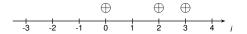












The important stationary distributions are again i.i.d. on the set $\{\ominus, 0, \oplus\}$.

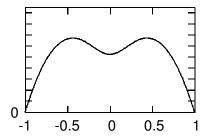
Calling $\ominus = -1$, 0 = 0, $\oplus = 1$, the mean ϱ makes sense as a signed density of particles.

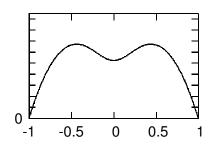
And $H(\varrho)$ makes sense as a signed particle current.

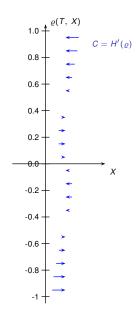
We still have

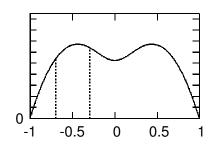
$$\partial_T \varrho(T, X) + \partial_X H(\varrho(T, X)) = 0.$$

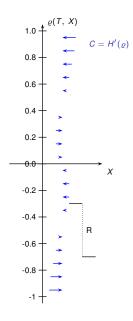
The hydrodynamic flux $H(\varrho)$, for certain *c*:

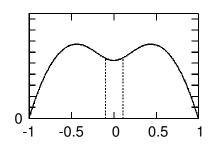


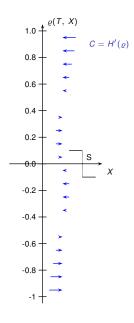


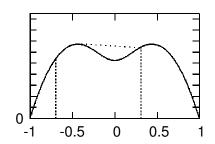


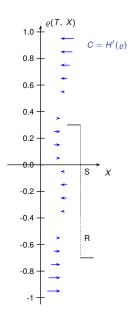


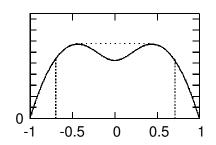


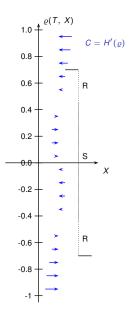


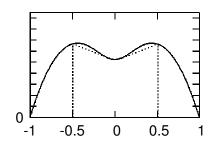


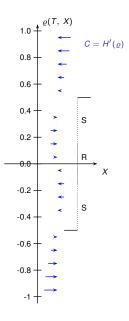




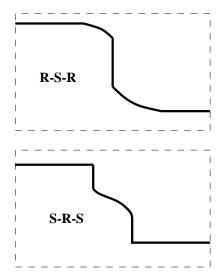




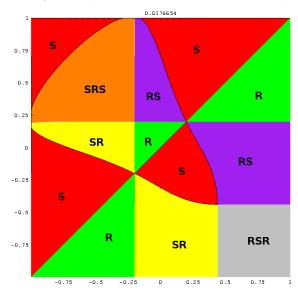




Examples for $\varrho(T, X)$:



Here is the full picture (**R**: rarefaction wave, **S**: Shock):



Thank you.