Blocking measures, hills, and hydrodynamics Joint with Jacob Calvert, Patrícia Gonçalves and Katerina Michaelides

Márton Balázs
University of Bristol

Particle Systems and PDE's - VI
Nice, 27 November, 2017.

Models

Asymmetric simple exclusion
Zero range

Blocking measures
ASEP
ZRP
Further models

Hills
Microscopic model Hydrodynamics

Asymmetric simple exclusion

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

The asymmetric zero range process

The asymmetric zero range process

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

Particles jump

to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

The asymmetric zero range process

We need r non-decreasing.

Examples:

- 'Classical' ZRP: $r\left(\omega_{i}\right)=\mathbf{1}\left\{\omega_{i}>0\right\}$.
- Independent walkers: $r\left(\omega_{i}\right)=\omega_{i}$.

Hills

Can we model sedimentation and erosion processes with these surfaces?

Issues:

Hills

Can we model sedimentation and erosion processes with these surfaces?

Issues:

- Hills are not always straight \leftrightarrow translation invariance.

Hills

Can we model sedimentation and erosion processes with these surfaces?

Issues:

- Hills are not always straight \leftrightarrow translation invariance.
- Most hillslopes are rather stationary \leftrightarrow particle current.

Convex hills

Wikipedia

Concave hills

Product blocking measures

Solution: block particles (no current) and make their rates asymmetric (non-constant density).

Can we have a reversible stationary distribution in product form:

$$
\begin{gathered}
\underline{\mu}(\underline{\omega})=\bigotimes_{i} \mu_{i}\left(\omega_{i}\right) ; \\
\underline{\mu}(\underline{\omega}) \cdot \operatorname{rate}\left(\underline{\omega} \rightarrow \underline{\omega}^{i \curvearrowright i+1}\right)=\underline{\mu}^{\left(\underline{\omega}^{i \curvearrowright i+1}\right) \cdot \operatorname{rate}\left(\underline{\omega}^{i \curvearrowright i+1} \rightarrow \underline{\omega}\right) \quad ?}
\end{gathered}
$$

Here

$$
\underline{\omega}^{i \curvearrowright i+1}=\underline{\omega}^{i}-\underline{\delta}_{i}+\underline{\delta}_{i+1} .
$$

Asymmetric simple exclusion

$$
\underline{\mu}(\underline{\eta}) \cdot \operatorname{rate}\left(\underline{\eta} \rightarrow \underline{\eta}^{i \curvearrowright i+1}\right)=\underline{\mu}\left(\underline{\eta}^{i \curvearrowright i+1}\right) \cdot \operatorname{rate}\left(\underline{\eta}^{i \curvearrowright i+1} \rightarrow \underline{\eta}\right)
$$

ASEP: $\mu_{i} \sim \operatorname{Bernoulli}\left(\rho_{i}\right) ; \quad \stackrel{\square}{\square}$

$$
\varrho_{i}\left(1-\varrho_{i+1}\right) \cdot p=\left(1-\varrho_{i}\right) \varrho_{i+1} \cdot q
$$

Solution: $\varrho_{i}=\frac{\left(\frac{p}{q}\right)^{i-c}}{1+\left(\frac{p}{q}\right)^{i-c}}=\frac{1}{\left(\frac{q}{p}\right)^{i-c}+1}$

Asymmetric simple exclusion

$$
\underline{\mu}(\underline{\eta}) \cdot \operatorname{rate}\left(\underline{\eta} \rightarrow \underline{\eta}^{i \curvearrowright i+1}\right)=\underline{\mu}\left(\underline{\eta}^{i \curvearrowright i+1}\right) \cdot \operatorname{rate}\left(\underline{\eta}^{i \curvearrowright i+1} \rightarrow \underline{\eta}\right)
$$

ASEP: $\mu_{i} \sim \operatorname{Bernoulli}\left(\varrho_{i}\right) ; \quad \underline{\eta}^{i \wedge i+1}$

$$
\varrho_{i}\left(1-\varrho_{i+1}\right) \cdot p=\left(1-\varrho_{i}\right) \varrho_{i+1} \cdot q
$$

Solution: $\varrho_{i}=\frac{\left(\frac{p}{q}\right)^{i-c}}{1+\left(\frac{p}{q}\right)^{i-c}}=\frac{1}{\left(\frac{q}{p}\right)^{i-c}+1}$

Asymmetric zero range process

$$
\underline{\mu}(\underline{\omega}) \cdot \operatorname{rate}\left(\underline{\omega} \rightarrow \underline{\omega}^{i \curvearrowright i+1}\right)=\underline{\mu}\left(\underline{\omega}^{i \curvearrowright i+1}\right) \cdot \operatorname{rate}\left(\underline{\omega}^{i \curvearrowright i+1} \rightarrow \underline{\omega}\right) \quad ?
$$

AZRP, classical:

$$
\mu_{i}\left(\omega_{i}\right) \mu_{i+1}\left(\omega_{i+1}\right) \cdot p 1\left\{\omega_{i}>0\right\}=\mu_{i}\left(\omega_{i}-1\right) \mu_{i+1}\left(\omega_{i+1}+1\right) \cdot q
$$

Solution: $\quad \mu_{i} \sim \operatorname{Geometric}\left(1-\left(\frac{p}{q}\right)^{i-\text { const }}\right)$.

Asymmetric zero range process

$$
\underline{\mu}(\underline{\omega}) \cdot \operatorname{rate}\left(\underline{\omega} \rightarrow \underline{\omega}^{i \curvearrowright i+1}\right)=\underline{\mu}\left(\underline{\omega}^{i \curvearrowright i+1}\right) \cdot \operatorname{rate}\left(\underline{\omega}^{i \curvearrowright i+1} \rightarrow \underline{\omega}\right) \quad ?
$$

AZRP, independent walkers:

$$
\mu_{i}\left(\omega_{i}\right) \mu_{i+1}\left(\omega_{i+1}\right) \cdot p \omega_{i}=\mu_{i}\left(\omega_{i}-1\right) \mu_{i+1}\left(\omega_{i+1}+1\right) \cdot q\left(\omega_{i+1}+1\right)
$$

Solution: $\quad \mu_{i} \sim$ Poisson $\left(\left(\frac{p}{q}\right)^{i-\text { const }}\right)$.

Further models

In fact product blocking measures are very general.

Further models

In fact product blocking measures are very general.

- ASEP

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Other models can be stood up:

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Other models can be stood up:

- ASEP

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Other models can be stood up:

- ASEP
- q-exclusion

Further models

In fact product blocking measures are very general.

- ASEP
- K-exclusion (!)
- All zero range processes ("classical", independent walkers, q-zero range)
- Misanthrope / bricklayers processes

Other models can be stood up:

- ASEP
- q-exclusion
- Katz-Lebowitz-Spohn model

Product blocking measures

They are also very handy, due to reversibility.
Take a stationary, reversible Markov chain. Cut any of its edges. It stays reversible stationary w.r.t. the same distribution.

In our case: freeze the boundaries to obtain a stationary hill slope.

Microscopic model

Our choice: AZRP with frozen boundaries. $p>q$: convex

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

Microscopic model

Our choice: AZRP with frozen boundaries. $p<q$: concave

Particles jump
to the right with rate $p \cdot r\left(\omega_{i}\right)$ to the left with rate $q \cdot r\left(\omega_{i}\right)$.

Microscopic model

Notice:

- The height of the hill H is conserved, the product measure is not ergodic.
- One-site marginals, given H, are in general not explicit.
- Except for independent walkers, where ω_{i} are Binomial.

Microscopic model

Notice:

- The height of the hill H is conserved, the product measure is not ergodic.
- One-site marginals, given H, are in general not explicit.
- Except for independent walkers, where ω_{i} are Binomial.

We won't be bothered by this.

Hydrodynamics

Work in progress...

A blocking measure is a microscopic object. Here is its scaling

Hydrodynamics

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on

$$
\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x} .
$$

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on $\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x}$.
- Scale $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$.

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on $\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x}$.
- Scale $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$.
- Then check $\frac{\mathrm{d}}{\mathrm{d} \tau} \mathrm{E} \omega_{i}(\tau)$.

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on

$$
\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x} .
$$

- Scale $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$.
- Then check $\frac{\mathrm{d}}{\mathrm{d} \tau} \mathrm{E} \omega_{i}(\tau)$.

Notice: this is not KPZ scaling ($p=\frac{1}{2}+\frac{\gamma}{\sqrt{L}}, q=\frac{1}{2}-\frac{\gamma}{\sqrt{L}}$).

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on

$$
\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x} .
$$

- Scale $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$.
- Then check $\frac{\mathrm{d}}{\mathrm{d} \tau} \mathrm{E} \omega_{i}(\tau)$.

Notice: this is not KPZ scaling ($p=\frac{1}{2}+\frac{\gamma}{\sqrt{L}}, q=\frac{1}{2}-\frac{\gamma}{\sqrt{L}}$).
For AZRP (rates $p \cdot r\left(\omega_{i}\right)$ right and $q \cdot r\left(\omega_{i}\right)$ left):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{i} & =\frac{1}{2}\left(\mathbf{E} r\left(\omega_{i-1}\right)-2 \mathbf{E} r\left(\omega_{i}\right)+\mathbf{E r}\left(\omega_{i+1}\right)\right) \\
& -\frac{\gamma}{L}\left(\mathbf{E r}\left(\omega_{i+1}\right)-\mathbf{E r}\left(\omega_{i-1}\right)\right)
\end{aligned}
$$

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on

$$
\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x} .
$$

- Scale $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$.
- Then check $\frac{\mathrm{d}}{\mathrm{d} \tau} \mathrm{E} \omega_{i}(\tau)$.

Notice: this is not KPZ scaling ($p=\frac{1}{2}+\frac{\gamma}{\sqrt{L}}, q=\frac{1}{2}-\frac{\gamma}{\sqrt{L}}$).
For AZRP (rates $p \cdot r\left(\omega_{i}\right)$ right and $q \cdot r\left(\omega_{i}\right)$ left):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{i} & =\frac{1}{2}\left(\mathbf{E r}\left(\omega_{i-1}\right)-2 \mathbf{E r}\left(\omega_{i}\right)+\mathbf{E} r\left(\omega_{i+1}\right)\right) \\
& -\frac{\gamma}{L}\left(\mathbf{E r}\left(\omega_{i+1}\right)-\mathbf{E r}\left(\omega_{i-1}\right)\right) .
\end{aligned}
$$

Hydrodynamics

- Scaling parameter: L
- Blocking measure marginals depend on

$$
\left(\frac{p}{q}\right)^{i}=\left(\frac{p}{q}\right)^{L x} .
$$

- Scale $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$.
- Then check $\frac{\mathrm{d}}{\mathrm{d} \tau} \mathrm{E} \omega_{i}(\tau)$.

Notice: this is not KPZ scaling ($p=\frac{1}{2}+\frac{\gamma}{\sqrt{L}}, q=\frac{1}{2}-\frac{\gamma}{\sqrt{L}}$).
For AZRP (rates $p \cdot r\left(\omega_{i}\right)$ right and $q \cdot r\left(\omega_{i}\right)$ left):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{i} & =\frac{1}{2}\left(\mathbf{E r}\left(\omega_{i-1}\right)-2 \mathbf{E r}\left(\omega_{i}\right)+\mathbf{E} r\left(\omega_{i+1}\right)\right) \\
& -\frac{\gamma}{L}\left(\mathbf{E} r\left(\omega_{i+1}\right)-\mathbf{E r}\left(\omega_{i-1}\right)\right) .
\end{aligned}
$$

Hydrodynamics

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{i} & =\frac{1}{2}\left(\mathbf{E r}\left(\omega_{i-1}\right)-2 \mathbf{E} r\left(\omega_{i}\right)+\mathbf{E} r\left(\omega_{i+1}\right)\right) \\
& -\frac{\gamma}{L}\left(\mathbf{E} r\left(\omega_{i+1}\right)-\mathbf{E r}\left(\omega_{i-1}\right)\right)
\end{aligned}
$$

which dictates diffusive scaling:

- $p=\frac{1}{2}+\frac{\gamma}{L}, q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=E \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d}\left(\tau / L^{2}\right)} \mathbf{E} \omega_{i} & =\frac{L^{2}}{2}\left(\mathbf{E} r\left(\omega_{i-1}\right)-2 \mathbf{E} r\left(\omega_{i}\right)+\mathbf{E r}\left(\omega_{i+1}\right)\right) \\
& -\gamma L\left(\mathbf{E r}\left(\omega_{i+1}\right)-\mathbf{E r}\left(\omega_{i-1}\right)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho(t, x) & =\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} G(\varrho(t, x))-2 \gamma \frac{\partial}{\partial x} G(\varrho(t, x)), \tag{0<x<1}
\end{align*}
$$

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=E \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=\mathbf{E} \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{1}=\frac{1}{2}\left(\mathbf{E r}\left(\omega_{2}\right)-\mathbf{E r}\left(\omega_{1}\right)\right)-\frac{\gamma}{L}\left(\mathbf{E r}\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right),
$$

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=\mathbf{E} \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

$$
\frac{\mathbf{d}}{\mathbf{d} \tau} \mathbf{E} \omega_{1}=\frac{1}{2}\left(\mathbf{E r}\left(\omega_{2}\right)-\mathbf{E r}\left(\omega_{1}\right)\right)-\frac{\gamma}{L}\left(\mathbf{E} r\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right)
$$

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=\mathbf{E} \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

$$
\frac{\mathbf{d}}{\mathbf{d} \tau} \mathbf{E} \omega_{1}=\frac{1}{2}\left(\mathbf{E} r\left(\omega_{2}\right)-\mathbf{E r}\left(\omega_{1}\right)\right)-\frac{\gamma}{L}\left(\mathbf{E} r\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right)
$$

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=E \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{1} & =\frac{1}{2}\left(\mathbf{E} r\left(\omega_{2}\right)-\mathbf{E} r\left(\omega_{1}\right)\right)-\frac{\gamma}{L}\left(\mathbf{E r}\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right), \\
\frac{1}{L} \frac{\mathrm{~d}}{\mathrm{~d}\left(\tau / L^{2}\right)} \mathbf{E} \omega_{1} & =\frac{L}{2}\left(\mathbf{E r}\left(\omega_{2}\right)-\mathbf{E r}\left(\omega_{1}\right)\right)-\gamma\left(\mathbf{E r}\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right),
\end{aligned}
$$

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=E \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{1} & =\frac{1}{2}\left(\mathbf{E} r\left(\omega_{2}\right)-\mathbf{E r}\left(\omega_{1}\right)\right)-\frac{\gamma}{L}\left(\mathbf{E} r\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right), \\
\frac{1}{\mathrm{~L}} \frac{\mathrm{~d}}{\mathrm{~d}\left(\tau / L^{2}\right)} \mathbf{E} \omega_{1} & =\frac{L}{2}\left(\mathbf{E} r\left(\omega_{2}\right)-\mathbf{E r}\left(\omega_{1}\right)\right)-\gamma\left(\mathbf{E r}\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right), \\
0 & =\frac{1}{2} \frac{\partial}{\partial x} G(\varrho(t, 0))-2 \gamma \boldsymbol{G}(\varrho(t, 0)) .
\end{aligned}
$$

Hydrodynamics

- $p=\frac{1}{2}+\frac{\gamma}{L}, \quad q=\frac{1}{2}-\frac{\gamma}{L}$;
- $\varrho(t, x)=E \omega_{L x}\left(L^{2} t\right)$;
- also define $G(\varrho)=\mathbf{E}^{\varrho} r(\omega)$:

How about the boundaries?

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathbf{E} \omega_{1} & =\frac{1}{2}\left(\mathbf{E} r\left(\omega_{2}\right)-\mathbf{E} r\left(\omega_{1}\right)\right)-\frac{\gamma}{L}\left(\mathbf{E} r\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right), \\
\frac{1}{L} \frac{\mathrm{~d}}{\mathrm{~d}\left(\tau / L^{2}\right)} \mathbf{E} \omega_{1} & =\frac{L}{2}\left(\mathbf{E} r\left(\omega_{2}\right)-\mathbf{E} r\left(\omega_{1}\right)\right)-\gamma\left(\mathbf{E r}\left(\omega_{2}\right)+\mathbf{E r}\left(\omega_{1}\right)\right), \\
0 & =\frac{1}{2} \frac{\partial}{\partial x} G(\varrho(t, 0))-2 \gamma \boldsymbol{G}(\varrho(t, 0)) . \\
\text { Also: } 0 & =\frac{1}{2} \frac{\partial}{\partial x} G(\varrho(t, 1))-2 \gamma \boldsymbol{G}(\varrho(t, 1)) .
\end{aligned}
$$

Hydrodynamics

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho(t, x) & =\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} G(\varrho(t, x))-2 \gamma \frac{\partial}{\partial x} G(\varrho(t, x)), \tag{0<x<1}\\
0 & =\frac{1}{2} \frac{\partial}{\partial x} G(\varrho(t, 0))-2 \gamma G(\varrho(t, 0)) \\
0 & =\frac{1}{2} \frac{\partial}{\partial x} G(\varrho(t, 1))-2 \gamma G(\varrho(t, 1))
\end{align*}
$$

Convection-diffusion type equation with Robin boundary.

Doing the proper derivation is work in progress.

The time-stationary solution $G(\varrho(x))=C \mathrm{e}^{4 \gamma x}$ is consistent with the stationary blocking measure.

The stationary slope

$$
G(\varrho(x))=C \mathrm{e}^{4 \gamma x}
$$

The stationary slope

Dynamics

Space scale: $x \in[0,1] \Leftrightarrow$ we \in hill.
Problem 1: The stationary hillslope will not tell us the time scale.
\rightsquigarrow Observe relaxation to stationarity in Nature and in the PDE.

Dynamics

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.
This is not part of the core argument, instead, is done by heuristics:

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.
This is not part of the core argument, instead, is done by heuristics:

- Erosion flow speed \sim average deposition rate $p E r$.

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.
This is not part of the core argument, instead, is done by heuristics:

- Erosion flow speed \sim average deposition rate p Er.
- Time of hill particle spent in the flow to be picked as a constant or function of the slope ϱ.

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.
This is not part of the core argument, instead, is done by heuristics:

- Erosion flow speed \sim average deposition rate $p E r$.
- Time of hill particle spent in the flow to be picked as a constant or function of the slope ϱ.
- Average hill particle flux is the same across the hill (reversibility), but this is not provided by the model.

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.
This is not part of the core argument, instead, is done by heuristics:

- Erosion flow speed \sim average deposition rate $p E r$.
- Time of hill particle spent in the flow to be picked as a constant or function of the slope ϱ.
- Average hill particle flux is the same across the hill (reversibility), but this is not provided by the model.
One can then give an expected distance travelled by a hill particle.

Dynamics

Problem 2: Geologists want a prediction for the hill particle flux, and the distance travelled by hill particles.

Notice: Hill particles \neq our particles.
This is not part of the core argument, instead, is done by heuristics:

- Erosion flow speed \sim average deposition rate $p E r$.
- Time of hill particle spent in the flow to be picked as a constant or function of the slope ϱ.
- Average hill particle flux is the same across the hill (reversibility), but this is not provided by the model.
One can then give an expected distance travelled by a hill particle. Thank you.

