Jacobi triple product via the exclusion process

Joint with Ross Bowen

Márton Balázs

University of Bristol

Large Scale Stochastic Dynamics Oberwolfach, 18 September, 2019.

Jacobi triple product

Theorem

Let |x| < 1 and $y \neq 0$ be complex numbers. Then

$$\prod_{i=1}^{\infty} (1-x^{2i}) \Big(1+\frac{x^{2i-1}}{y^2}\Big) \Big(1+x^{2i-1}y^2\Big) = \sum_{m=-\infty}^{\infty} x^{m^2} y^{2m}.$$

Mostly appears in number theory and combinatorics of partitions.

It also follows from ASEP and ZRP (for real x, y only).

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles try to jump

to the right with rate p, to the left with rate q = 1 - p < p.

Particles jump

Particles jump

We need *r* non-decreasing and assume, as before, q = 1 - p < p.

Lay/stand

Examples:

- 'Classical' ZRP: $r(\omega_i) = \mathbf{1}\{\omega_i > 0\}$.
- ▶ Independent walkers: $r(\omega_i) = \omega_i$.

Product blocking measures

Can we have a reversible stationary distribution in product form:

$$\underline{\mu}(\underline{\omega}) = \bigotimes_{i} \mu_{i}(\omega_{i});$$

$$\underline{\mu(\underline{\omega})} \cdot \mathsf{rate}\big(\underline{\omega} \to \underline{\omega}^{i \smallfrown i+1}\big) = \underline{\mu}\big(\underline{\omega}^{i \smallfrown i+1}\big) \cdot \mathsf{rate}\big(\underline{\omega}^{i \smallfrown i+1} \to \underline{\omega}\big) \quad ?$$

Here

$$\underline{\omega}^{i \wedge i+1} = \underline{\omega} - \underline{\delta}_i + \underline{\delta}_{i+1}.$$

Asymmetric simple exclusion

$$\underline{\mu}(\underline{\eta}) \cdot \mathsf{rate}(\underline{\eta} \to \underline{\eta}^{i \frown i+1}) = \underline{\mu}(\underline{\eta}^{i \frown i+1}) \cdot \mathsf{rate}(\underline{\eta}^{i \frown i+1} \to \underline{\eta})$$

$$\underline{\mathsf{ASEP:}} \ \mu_i \sim \mathsf{Bernoulli}(\varrho_i); \qquad \stackrel{\bullet}{\longleftarrow} \qquad \underline{\eta}$$

$$\varrho_i (1 - \varrho_{i+1}) \cdot p = (1 - \varrho_i)\varrho_{i+1} \cdot q$$

$$\mathsf{Solution:} \ \varrho_i = \frac{(\frac{\varrho}{q})^{i-c}}{1 + (\frac{\varrho}{q})^{i-c}} = \frac{1}{(\frac{q}{\varrho})^{i-c} + 1}$$

Asymmetric simple exclusion

$$\underline{\mu}(\underline{\omega}) \cdot \mathsf{rate}(\underline{\omega} \to \underline{\omega}^{i \smallfrown i+1}) = \underline{\mu}(\underline{\omega}^{i \smallfrown i+1}) \cdot \mathsf{rate}(\underline{\omega}^{i \smallfrown i+1} \to \underline{\omega}) \quad ?$$

AZRP:

$$\mu_{i}(\omega_{i})\mu_{i+1}(\omega_{i+1}) \cdot p\mathbf{1}\{\omega_{i} > 0\} = \mu_{i}(\omega_{i} - 1)\mu_{i+1}(\omega_{i+1} + 1) \cdot q$$

Solution:
$$\mu_i \sim \text{Geometric} \left(1 - \left(\frac{p}{a}\right)^{i-\text{const}}\right)$$
.

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \operatorname{Geometric} \Big(1 - \Big(rac{p}{q} \Big)^{i-\operatorname{const}} \Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

$$\mu_i \sim \operatorname{Geometric}\Bigl(1-\Bigl(rac{p}{q}\Bigr)^{i-\operatorname{const}}\Bigr).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

Recall: Stationary distribution with marginals

$$\mu_i \sim \text{Geometric}\Big(1 - \Big(rac{p}{q}\Big)^{i-\text{const}}\Big).$$

→ we have a problem: cannot do this for all i! We'll pick const = 1 and have a *right boundary* instead.

→ The product measure stays stationary on the half-line.

ASEP

AZRP

ASEP

$ASEP \stackrel{T^n}{=} AZRP$

$$\underline{\nu}^n \stackrel{\underline{T}^n}{=} \prod_{i < 0} \text{Geometric} \left(1 - \left(\frac{p}{q} \right)^{i-1} \right)$$

since stationary distributions of countable irreducible Markov chains are unique.

The Jacobi Triple Product follows.

Jacobi triple product

Theorem

Let |x| < 1 and $y \neq 0$ be complex numbers. Then

$$\prod_{i=1}^{\infty} \left(1 - x^{2i}\right) \left(1 + \frac{x^{2i-1}}{y^2}\right) \left(1 + x^{2i-1}y^2\right) = \sum_{m=-\infty}^{\infty} x^{m^2} y^{2m}.$$

Thank you.