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Jacobi triple product

Theorem
Let|x| <1 andy # 0 be complex numbers. Then

X2i—1

ﬁ(1—x2’)(1+ /2 )(1 x?=1y2) Z X y2m

i=1 m=—o0

Mostly appears in number theory and combinatorics of
partitions.
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We need r non-decreasing and assume, as before,
g=1—-p<p.

Examples:
» ‘Classical’ ZRP: r(w;) = 1{w; > 0}.
» Independent walkers: r(w;) = w;.



Product blocking measures

Can we have a reversible stationary distribution in product form:

ww) = ®Mi(wi);

H(Q) . rate(g N gimi-i—1) — H(QimH—“) . rate(gimi-H N Q) ?
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Asymmetric zero range process

E(g) . I’ate(g N gif\vl'-i-1) — H(gimi+1) . rate(gimi+1 N g) ?

AZRP:

pilwi izt (wizt) - pH{w; > 0} = pi(wi — izt (wizt +1) - g

Solution:  p; ~ Geometric<1 — (g)i_com).
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~ The product measure stays stationary on the half-line.
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ASEP = AZRP

V"= HGeometric<1 - <§>H>
i<0

since stationary distributions of countable irreducible Markov
chains are unique.

~+ The Jacobi Triple Product follows.



Jacobi triple product

Theorem
Let|x| <1 andy # 0 be complex numbers. Then

2i—1

ﬁ(1_X2i)(1+Xy2 )(1 x2i—1 2 Z Xm 2m

i=1 m=—oo

Thank you.
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