Electric network for irreversible walks - but is it useful?

Work in progress, joint with Áron Folly

Márton Balázs

University of Bristol

30 October, 2013.

Reversible chains and resistors
Reducing a network
Thomson, Dirichlet principles
Monotonicity, transience, recurrence
Irreversible chains and electric networks
The part
From network to chain
From chain to network
Effective resistance
What works
The electric network
Reducing the network
Nonmonotonicity
What doesn't work

Reversible chains and resistors

Irreducible Markov chain: on $\Omega, a \neq b, x \in \Omega$,

$$
h_{x}:=\mathbf{P}_{x}\left\{\tau_{a}<\tau_{b}\right\} \quad(\tau \text { is the hitting time })
$$

is harmonic:

$$
h_{x}=\sum_{y} P_{x y} h_{y}, \quad h_{a}=1, \quad h_{b}=0 .
$$

Reversible chains and resistors

Irreducible Markov chain: on $\Omega, a \neq b, x \in \Omega$,

$$
h_{x}:=\mathbf{P}_{x}\left\{\tau_{a}<\tau_{b}\right\} \quad(\tau \text { is the hitting time })
$$

is harmonic:

$$
h_{x}=\sum_{y} P_{x y} h_{y}, \quad h_{a}=1, \quad h_{b}=0
$$

Electric resistor network: the voltage u is harmonic $(C=1 / R)$:

$$
u_{x}=\sum_{y} \frac{C_{x y}}{\sum_{z} C_{x z}} \cdot u_{y} ; \quad u_{a}=1, \quad u_{b}=0
$$

Reversible chains and resistors

Irreducible Markov chain: on $\Omega, a \neq b, x \in \Omega$,

$$
h_{x}:=\mathbf{P}_{x}\left\{\tau_{a}<\tau_{b}\right\} \quad(\tau \text { is the hitting time })
$$

is harmonic:

$$
h_{x}=\sum_{y} P_{x y} h_{y}, \quad h_{a}=1, \quad h_{b}=0
$$

Electric resistor network: the voltage u is harmonic $(C=1 / R)$:

$$
u_{x}=\sum_{y} \frac{C_{x y}}{\sum_{z} C_{x z}} \cdot u_{y} ; \quad u_{a}=1, \quad u_{b}=0
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

Stationary distribtuion:

$$
\begin{gathered}
\mu_{x}=\sum_{y} \mu_{y} P_{y x}=\sum_{y} \mu_{y} \frac{C_{x y}}{C_{y}} \\
C_{x}=\sum_{y} C_{y} \frac{C_{x y}}{C_{y}}
\end{gathered}
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

Stationary distribtuion:

$$
\begin{gathered}
\mu_{x}=\sum_{y} \mu_{y} P_{y x}=\sum_{y} \mu_{y} \frac{C_{x y}}{C_{y}} \\
C_{x}=\sum_{y} C_{y} \frac{C_{x y}}{C_{y}} \\
\rightsquigarrow C_{x}=\mu_{x} .
\end{gathered}
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

Stationary distribtuion:

$$
\begin{gathered}
\mu_{x}=\sum_{y} \mu_{y} P_{y x}=\sum_{y} \mu_{y} \frac{C_{x y}}{C_{y}} \\
C_{x}=\sum_{y} C_{y} \frac{C_{x y}}{C_{y}} \\
\rightsquigarrow C_{x}=\mu_{x} .
\end{gathered}
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

$$
C_{x}=\mu_{x}
$$

Reversible chains and resistors

Thus,

$$
P_{x y}=\frac{C_{x y}}{\sum_{z} C_{x z}}=: \frac{C_{x y}}{C_{x}} .
$$

Stationary distribtuion:

$$
\begin{gathered}
\mu_{x}=\sum_{y} \mu_{y} P_{y x}=\sum_{y} \mu_{y} \frac{C_{x y}}{C_{y}} \\
C_{x}=\sum_{y} C_{y} \frac{C_{x y}}{C_{y}} \\
\rightsquigarrow C_{x}=\mu_{x} .
\end{gathered}
$$

Notice $\mu_{x} P_{x y}=C_{x y}=C_{y x}=\mu_{y} P_{y x}$, so the chain is reversible in this case.

$$
P_{x y}=C_{x y} / C_{x} \quad C_{x}=\mu_{x}
$$

Reversible chains and resistors

Let $n_{x}=\mathbf{E}_{\mathbf{a}}$ (number of visits to x before absorbed in b). Then

$$
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{C_{x y}}{C_{y}} n_{y}
$$

Reversible chains and resistors

Let $n_{x}=\mathbf{E}_{a}$ (number of visits to x before absorbed in b). Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{C_{x y}}{C_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} \cdot u_{y}
\end{gathered}
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

$$
C_{x}=\mu_{x}
$$

Reversible chains and resistors

Let $n_{x}=\mathbf{E}_{a}$ (number of visits to x before absorbed in b). Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{C_{x y}}{C_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} \cdot u_{y} \\
u_{x} C_{x}=\sum_{y} \frac{C_{x y}}{C_{y}} \cdot u_{y} C_{y}
\end{gathered}
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

$$
C_{x}=\mu_{x}
$$

Reversible chains and resistors

Let $n_{x}=\mathbf{E}_{a}$ (number of visits to x before absorbed in b). Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{C_{x y}}{C_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} \cdot u_{y} \\
u_{x} C_{x}=\sum_{y} \frac{C_{x y}}{C_{y}} \cdot u_{y} C_{y} \\
\rightsquigarrow u_{x} C_{x}=n_{x} .
\end{gathered}
$$

Reversible chains and resistors

Let $n_{x}=\mathbf{E}_{a}$ (number of visits to x before absorbed in b). Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{C_{x y}}{C_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{C_{x y}}{C_{x}} \cdot u_{y} \\
u_{x} C_{x}=\sum_{y} \frac{C_{x y}}{C_{y}} \cdot u_{y} C_{y} \\
\rightsquigarrow u_{x} C_{x}=n_{x} .
\end{gathered}
$$

$\mathrm{E}_{a}($ signed current $x \rightarrow y$ before absorbed in $b)$

$$
=n_{x} P_{x y}-n_{y} P_{y x}=\left(u_{x}-u_{y}\right) C_{x y}=i_{x y} . \quad \text { normalisation... }
$$

$$
P_{x y}=C_{x y} / C_{x}
$$

$$
C_{x}=\mu_{x}
$$

Reducing a network

Series:

$$
\begin{aligned}
& R \quad \bullet \\
& R_{\mathrm{eff}}=R+Q
\end{aligned}
$$

Parallel:

Reducing a network

Star-Delta:

Thomson, Dirichlet principles

Thomson principle:

The physical unit current is the unit flow that minimizes the sum of the ohmic power losses $i^{2} R$.

Thomson, Dirichlet principles

Thomson principle:

The physical unit current is the unit flow that minimizes the sum of the ohmic power losses $i^{2} R$.

Dirichlet principle:

The physical voltage is the function that minimizes the ohmic power losses $(\nabla u)^{2} / R$.

Monotonicity, transience, recurrence

The monotonicity property:
Between any disjoint sets of vertices, the effective resistance is a non-decreasing function of the individual resistances.

Monotonicity, transience, recurrence

The monotonicity property:
Between any disjoint sets of vertices, the effective resistance is a non-decreasing function of the individual resistances.
\rightsquigarrow can be used to prove transience-recurrence by reducing the graph to something manageable in terms of resistor networks.

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

Equivalent:

$u_{x} \cdot \lambda^{\text {se }}-R^{\text {se }} \cdot i=u_{y}$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

Equivalent:

$$
\begin{gathered}
\stackrel{\star}{R^{\mathrm{pr}}} \overbrace{\left(u_{x}-i \cdot R^{\mathrm{pr}}\right) \cdot \lambda^{\mathrm{pr}}=u_{y}}^{\bullet \lambda^{\mathrm{pr}}} \\
\lambda^{\mathrm{pr}}=\lambda
\end{gathered}
$$

$$
\begin{gathered}
\overbrace{u_{x} \cdot \lambda^{\mathrm{se}}-R^{\mathrm{se}} \cdot \boldsymbol{R e}}^{\overbrace{}^{\mathrm{se}}}=u_{y} \\
\lambda^{\mathrm{se}}=\lambda
\end{gathered}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

Equivalent:

$$
\begin{aligned}
& \stackrel{R^{\text {pr }}}{\overbrace{0}} \stackrel{* \lambda^{\mathrm{pr}}}{\square} \\
& \left(u_{x}-i \cdot R^{\mathrm{pr}}\right) \cdot \lambda^{\mathrm{pr}}=u_{y} \\
& \lambda^{\mathrm{pr}}=\lambda \\
& R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
\end{aligned}
$$

$$
\begin{gathered}
\overbrace{0}^{* \lambda^{\mathrm{se}}} \boldsymbol{R}^{\mathrm{se}}-R^{\mathrm{se}} \cdot i=u_{y} \\
\lambda^{\mathrm{se}}=\lambda \\
R^{\mathrm{se}}=\frac{\lambda+1}{2} \cdot R
\end{gathered}
$$

The part

Voltage amplifier: keeps the current, multiplies the potential.

$$
\left(u_{x}-i \cdot \frac{R}{2}\right) \cdot \lambda-i \cdot \frac{R}{2}=u_{y}
$$

Equivalent:

$$
\begin{gathered}
R^{\mathrm{pr}} \\
\left(u_{x}-i \cdot R^{\mathrm{pr})} \cdot \lambda^{\mathrm{pr}}=u_{y}\right. \\
\lambda^{\mathrm{pr}}=\lambda \\
R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
\end{gathered}
$$

$$
\begin{gathered}
\overbrace{x} \cdot \lambda^{\mathrm{se}}-R^{\mathrm{se}} \cdot i=u_{y}^{\mathrm{se}} \\
\lambda^{\mathrm{se}}=\lambda \\
R^{\mathrm{se}}=\frac{\lambda+1}{2} \cdot R
\end{gathered}
$$

$$
R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
$$

$$
R^{\mathrm{se}}=\frac{\lambda+1}{2} \cdot R
$$

Harmonicity

Harmonicity

$$
R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
$$

$$
R^{\mathrm{se}}=\frac{\lambda+1}{2} \cdot R
$$

$$
\begin{aligned}
& u_{x}=\sum_{y} \frac{C_{x y}^{\mathrm{se}}}{\sum_{z} C_{x z}^{\mathrm{se}}} \cdot \lambda_{x y} u_{y}
\end{aligned}
$$

Harmonicity

$$
R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
$$

$$
R^{\text {se }}=\frac{\lambda+1}{2} \cdot R
$$

$$
\begin{aligned}
& u_{x}=\sum_{y} \frac{C_{x y}^{\mathrm{se}}}{\sum_{z} C_{x z}^{\text {se }}} \cdot \lambda_{x y} u_{y}
\end{aligned}
$$

Harmonicity

$$
R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
$$

$$
R^{\mathrm{se}}=\frac{\lambda+1}{2} \cdot R
$$

$$
\begin{aligned}
& u_{x}=\sum_{y} \frac{C_{x y}^{\mathrm{se}}}{\sum_{z} C_{x z}^{\mathrm{se}}} \cdot \lambda_{x y} u_{y}
\end{aligned}
$$

Harmonicity

with $\gamma_{x y}=\sqrt{\lambda_{x y}}=1 / \gamma_{y x}, D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right)=D_{y x}$.

$$
R^{\mathrm{pr}}=\frac{\lambda+1}{2 \lambda} \cdot R
$$

$$
R^{\mathrm{se}}=\frac{\lambda+1}{2} \cdot R
$$

$$
\begin{aligned}
& u_{x}=\sum_{y} \frac{C_{x y}^{\mathrm{se}}}{\sum_{z} C_{x z}^{\mathrm{se}}} \cdot \lambda_{x y} u_{y}=\sum_{y} \frac{C_{x y} \frac{2}{\lambda_{x y}+1}}{\sum_{z} C_{x z} \frac{2}{\lambda_{x z}+1}} \cdot \lambda_{x y} u_{y} \\
& =\sum_{y} \frac{D_{x y} \gamma_{x y}}{\sum_{z} D_{x z} \gamma_{z x}} \cdot u_{y}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y}
\end{aligned}
$$

Harmonicity

$$
\begin{aligned}
u_{x} & =\sum_{y} \frac{C_{x y}^{\text {se }}}{\sum_{z} C_{x z}^{\text {se }}} \cdot \lambda_{x y} u_{y}=\sum_{y} \frac{C_{x y} \frac{2}{\lambda_{x y}+1}}{\sum_{z} C_{x z} \frac{2}{\lambda+1}} \cdot \lambda_{x y} u_{y} \\
& =\sum_{y} \frac{D_{x y} \gamma_{x y}}{\sum_{z} D_{x z} \gamma_{z x}} \cdot u_{y}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y}
\end{aligned}
$$

with $\gamma_{x y}=\sqrt{\lambda_{x y}}=1 / \gamma_{y x}, D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right)=D_{y x}$.

$$
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right)
$$

From network to chain

Irreducible Markov chain: on $\Omega, a \neq b, x \in \Omega$,

$$
h_{x}:=\mathbf{P}_{x}\left\{\tau_{a}<\tau_{b}\right\} \quad(\tau \text { is the hitting time })
$$

is harmonic:

$$
\begin{gathered}
h_{x}=\sum_{y} P_{x y} h_{y}, \quad h_{a}=1, \quad h_{b}=0 . \\
u_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y}, \quad u_{a}=1, \quad u_{b}=0 .
\end{gathered}
$$

$$
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right)
$$

From network to chain

Irreducible Markov chain: on $\Omega, a \neq b, x \in \Omega$,

$$
h_{x}:=\mathbf{P}_{x}\left\{\tau_{a}<\tau_{b}\right\} \quad(\tau \text { is the hitting time })
$$

is harmonic:

$$
\begin{gathered}
h_{x}=\sum_{y} P_{x y} h_{y}, \quad h_{a}=1, \quad h_{b}=0 . \\
u_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y}, \quad u_{a}=1, \quad u_{b}=0 . \\
P_{x y}=\frac{D_{x y} \gamma_{x y}}{D_{x}} .
\end{gathered}
$$

$$
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right)
$$

From network to chain

Irreducible Markov chain: on $\Omega, a \neq b, x \in \Omega$,

$$
h_{x}:=\mathbf{P}_{x}\left\{\tau_{a}<\tau_{b}\right\} \quad(\tau \text { is the hitting time })
$$

is harmonic:

$$
\begin{gathered}
h_{x}=\sum_{y} P_{x y} h_{y}, \quad h_{a}=1, \quad h_{b}=0 . \\
u_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y}, \quad u_{a}=1, \quad u_{b}=0 . \\
P_{x y}=\frac{D_{x y} \gamma_{x y}}{D_{x}} .
\end{gathered}
$$

$$
\begin{aligned}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x} & =\sum_{z} D_{x z} \gamma_{z x} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y} & =D_{x y} \gamma_{x y} / D_{x}
\end{aligned}
$$

Markov property

$$
u_{x}=\sum_{z} P_{x z} u_{z} ; \quad \sum_{z} P_{x z}=1
$$

$u_{x} \equiv$ const. is a solution of the network with no external sources. This is now nontrivial.

$$
\begin{aligned}
\gamma_{x y}=\sqrt{\lambda_{x y}} & D_{x}
\end{aligned}=\sum_{z} D_{x z} \gamma_{z x} .
$$

$$
D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right)
$$

Markov property

$$
u_{x}=\sum_{z} P_{x z} u_{z} ; \quad \sum_{z} P_{x z}=1
$$

$u_{x} \equiv$ const. is a solution of the network with no external sources. This is now nontrivial.

$$
\begin{gathered}
\sum_{z} P_{x z}=\sum_{z} \frac{D_{x z} \gamma_{x z}}{D_{x}}=1 \\
D_{x}:=\sum_{z} D_{x z} \gamma_{z x}=\sum_{y} D_{x y} \gamma_{x z} .
\end{gathered}
$$

$$
\begin{array}{rlr}
\gamma_{x y}=\sqrt{\lambda_{x y}} & D_{x} & =\sum_{z} D_{x z} \gamma_{z x} \\
P_{x y} & =D_{x y} \gamma_{x y} / D_{x} & D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
\end{array}
$$

Markov property

$$
u_{x}=\sum_{z} P_{x z} u_{z} ; \quad \sum_{z} P_{x z}=1
$$

$u_{x} \equiv$ const. is a solution of the network with no external sources. This is now nontrivial.

$$
\begin{gathered}
\sum_{z} P_{x z}=\sum_{z} \frac{D_{x z} \gamma_{x z}}{D_{x}}=1 \\
D_{x}:=\sum_{z} D_{x z} \gamma_{z x}=\sum_{y} D_{x y} \gamma_{x z} .
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From network to chain

Stationary distribtuion:

$$
\begin{gathered}
\mu_{x}=\sum_{z} \mu_{z} P_{z x}=\sum_{z} \mu_{z} \frac{D_{z x} \gamma_{z x}}{D_{z}} \\
D_{x}=\sum_{z} D_{z} \frac{D_{z x} \gamma_{z x}}{D_{z}}
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From network to chain

Stationary distribtuion:

$$
\begin{gathered}
\mu_{x}=\sum_{z} \mu_{z} P_{z x}=\sum_{z} \mu_{z} \frac{D_{z x} \gamma_{z x}}{D_{z}} \\
D_{x}=\sum_{z} D_{z} \frac{D_{z x} \gamma_{z x}}{D_{z}} \\
\rightsquigarrow D_{x}=\mu_{x} .
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From chain to network

$$
\begin{aligned}
P_{x y}=\frac{D_{x y} \gamma_{x y}}{D_{x}} & =\frac{D_{x y} \gamma_{x y}}{\mu_{x}} \\
\mu_{x} P_{x y} \cdot \mu_{y} P_{y x} & =D_{x y}^{2} \\
\frac{\mu_{x} P_{x y}}{\mu_{y} P_{y x}} & =\gamma_{x y}^{2}=\lambda_{x y} .
\end{aligned}
$$

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From chain to network

$$
\begin{aligned}
P_{x y}=\frac{D_{x y} \gamma_{x y}}{D_{x}} & =\frac{D_{x y} \gamma_{x y}}{\mu_{x}} \\
\mu_{x} P_{x y} \cdot \mu_{y} P_{y x} & =D_{x y}^{2} ; \\
\frac{\mu_{x} P_{x y}}{\mu_{y} P_{y x}} & =\gamma_{x y}^{2}=\lambda_{x y} .
\end{aligned}
$$

Reversed chain: Replace $P_{x y}$ by $\hat{P}_{x y}=P_{y x} \cdot \frac{\mu_{y}}{\mu_{x}}$.
$\rightsquigarrow D_{x y}$ stays, $\lambda_{x y}$ reverses to $\lambda_{y x}$.

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From chain to network

Let $n_{x}=\mathbf{E}_{a}($ number of visits to x before absorbed in $b)$. Then

$$
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{D_{y x} \gamma_{y x}}{D_{y}} n_{y}
$$

$$
\begin{aligned}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x} & =\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y} & =D_{x y} \gamma_{x y} / D_{x}
\end{aligned}
$$

From chain to network

Let $n_{x}=\mathbf{E}_{a}($ number of visits to x before absorbed in $b)$. Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{D_{y x} \gamma_{y x}}{D_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y}
\end{gathered}
$$

$$
\begin{aligned}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x} & =\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y} & =D_{x y} \gamma_{x y} / D_{x}
\end{aligned}
$$

From chain to network

Let $n_{x}=\mathbf{E}_{a}($ number of visits to x before absorbed in $b)$. Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{D_{y x} \gamma_{y x}}{D_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y} \\
u_{x} D_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{y}} \cdot u_{y} D_{y}
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From chain to network

Let $n_{x}=\mathbf{E}_{a}($ number of visits to x before absorbed in $b)$. Then

$$
\begin{gathered}
n_{x}=\sum_{y} n_{y} P_{y x}=\sum_{y} \frac{D_{y x} \gamma_{y x}}{D_{y}} n_{y} \\
u_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{x}} \cdot u_{y} \\
u_{x} D_{x}=\sum_{y} \frac{D_{x y} \gamma_{x y}}{D_{y}} \cdot u_{y} D_{y} \\
\rightsquigarrow \hat{u}_{x} D_{x}=n_{x}
\end{gathered}
$$

in the reversed chain.

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

From chain to network

Let $n_{x}=\mathbf{E}_{a}($ number of visits to x before absorbed in $b)$. Then

$$
\rightsquigarrow \hat{u}_{x} D_{x}=n_{x}
$$

in the reversed chain.
$\mathrm{E}_{a}($ signed current $x \rightarrow y$ before absorbed in b)
$=n_{x} P_{x y}-n_{y} P_{y x}=\left(\hat{u}_{x} \gamma_{x y}-\hat{u}_{y} \gamma_{y x}\right) D_{x y}=\hat{i}_{x y}$. normalisation...

$$
\begin{gathered}
\gamma_{x y}=\sqrt{\lambda_{x y}} \quad D_{x}=\sum_{z} D_{x z} \gamma_{z x}=\sum_{z} D_{x z} \gamma_{x z} \quad D_{x y}=2 \gamma_{x y} C_{x y} /\left(\lambda_{x y}+1\right) \\
P_{x y}=D_{x y} \gamma_{x y} / D_{x}
\end{gathered}
$$

Effective resistance

Suppose u_{a}, u_{b} given, the solution is $\left\{u_{x}\right\}_{x \in \Omega}$ and $\left\{i_{x y}\right\}_{x \sim y \in \Omega}$. Current

$$
i_{a}=\sum_{x \sim a} i_{a x}
$$

flows in the network at a.

Effective resistance

Suppose u_{a}, u_{b} given, the solution is $\left\{u_{x}\right\}_{x \in \Omega}$ and $\left\{i_{x y}\right\}_{x \sim y \in \Omega}$. Current

$$
i_{a}=\sum_{x \sim a} i_{a x}
$$

flows in the network at a.
\rightsquigarrow The Markov property has another solution: constant u_{b} potentials with zero external currents.

Effective resistance

Suppose u_{a}, u_{b} given, the solution is $\left\{u_{x}\right\}_{x \in \Omega}$ and $\left\{i_{x y}\right\}_{x \sim y \in \Omega}$. Current

$$
i_{a}=\sum_{x \sim a} i_{a x}
$$

flows in the network at a.
\rightsquigarrow The Markov property has another solution: constant u_{b} potentials with zero external currents.
\rightsquigarrow The difference of these two: $\left\{u_{x}-u_{b}\right\}_{x \in \Omega}$ is a solution too, with i_{a} flowing in the network.

Effective resistance

Suppose u_{a}, u_{b} given, the solution is $\left\{u_{x}\right\}_{x \in \Omega}$ and $\left\{\dot{i}_{x y}\right\}_{x \sim y \in \Omega}$. Current

$$
i_{a}=\sum_{x \sim a} i_{a x}
$$

flows in the network at a.
\rightsquigarrow The Markov property has another solution: constant u_{b} potentials with zero external currents.
\rightsquigarrow The difference of these two: $\left\{u_{x}-u_{b}\right\}_{x \in \Omega}$ is a solution too, with i_{a} flowing in the network.
\rightsquigarrow Going backwards from $u_{b}-u_{b}=0$ at b, all currents and potentials are proportional to $u_{a}-u_{b}$ at a.

Effective resistance

Suppose u_{a}, u_{b} given, the solution is $\left\{u_{x}\right\}_{x \in \Omega}$ and $\left\{i_{x y}\right\}_{x \sim y \in \Omega}$. Current

$$
i_{a}=\sum_{x \sim a} i_{a x}
$$

flows in the network at a.
\rightsquigarrow The Markov property has another solution: constant u_{b} potentials with zero external currents.
\rightsquigarrow The difference of these two: $\left\{u_{x}-u_{b}\right\}_{x \in \Omega}$ is a solution too, with i_{a} flowing in the network.
\rightsquigarrow Going backwards from $u_{b}-u_{b}=0$ at b, all currents and potentials are proportional to $u_{a}-u_{b}$ at a.
$\rightsquigarrow \operatorname{In}$ particular, i_{a} is proportional to $u_{a}-u_{b}$. We have effective resistance.

What works

... the analogy with $\mathbf{P}\left\{\tau_{a}<\tau_{b}\right\}$.

What works

... the analogy with $\mathbf{P}\left\{\tau_{a}<\tau_{b}\right\}$.

Modulo normalisation. . .

$\mathbf{E}_{a}($ signed current $x \rightarrow y$ before absorbed in $b)=\hat{i}_{x y}$. in the reversed network!

What works

... the analogy with $\mathbf{P}\left\{\tau_{a}<\tau_{b}\right\}$.

Modulo normalisation. . .

$\mathbf{E}_{a}($ signed current $x \rightarrow y$ before absorbed in $b)=\hat{i}_{x y}$. in the reversed network!

Theorem
Commute time $=R_{\text {eff }} \cdot$ all conductances.

The electric network

Series:

The electric network

Parallel:

Compare this with

$$
\begin{aligned}
\bullet & \stackrel{R}{R+} \overbrace{S^{\text {se }}}^{R+Q} \\
\nu & =\frac{Q \lambda(\mu+1)+R \mu(\lambda+1)}{Q(\mu+1)+R(\lambda+1)} .
\end{aligned}
$$

The electric network

Star-Delta:

Star to Delta works,
Delta to star only works if Delta does not produce a circular current by itself $(\lambda \mu \nu=1)$.

Nonmonotonicity

$$
R_{\mathrm{eff}}=\frac{27}{14}
$$

What doesn't work

Thomson, Dirichlet principle directly. In fact we couldn't find an appropriate energy functional.

What doesn't work

Thomson, Dirichlet principle directly. In fact we couldn't find an appropriate energy functional.

Monotonity, which would be essential for recurrence-transience. Nothing we looked at is monotone.

What doesn't work

Thomson, Dirichlet principle directly. In fact we couldn't find an appropriate energy functional.

Monotonity, which would be essential for recurrence-transience. Nothing we looked at is monotone.

But: Alexandre Gaudillière, Claudio Landim / Martin Slowik found the Dirichlet / Thomson principles for non-reversible chains. Translation to electric networks in progress...

What doesn't work

Thomson, Dirichlet principle directly. In fact we couldn't find an appropriate energy functional.

Monotonity, which would be essential for recurrence-transience. Nothing we looked at is monotone.

But: Alexandre Gaudillière, Claudio Landim / Martin Slowik found the Dirichlet / Thomson principles for non-reversible chains. Translation to electric networks in progress...

Thank you.

