Nonexistence of bi-infinite geodesics in exponential last passage percolation - a probabilistic way
 Joint with
 Ofer Busani and Timo Seppäläinen

Márton Balázs

University of Bristol
Large Scale Stochastic Dynamics
Oberwolfach, 17 September, 2019.

Last passage percolation Geodesics

The result

Tools
New boundary
Crossing
Stationarity

Proof
When it's too flat
No sharp turns please
The diagonal case

Last passage percolation

- Place ω_{z} i.i.d. $\operatorname{Exp}(1)$ for $z \in \mathbb{Z}^{2}$.
- The geodesic $\pi_{x, y}$ from x to y is the a.s. unique heaviest up-right from x to y.
- $G_{x, y}=\sum_{z \in \pi_{x, y}} \omega_{z}$ is its weight.

Surface growth, TASEP, queuing. . .

Bi-infinite geodesics

A bi-infinite up-right path is a bi-infinite geodesic, if any of its segments is itself a geodesic between the two endpoints.

Bi-infinite geodesics

A bi-infinite up-right path is a bi-infinite geodesic, if any of its segments is itself a geodesic between the two endpoints.

Bi-infinite geodesics

Trivial bi-infinite geodesics:

Bi-infinite geodesics

Trivial bi-infinite geodesics:

The result

Theorem A.s., there are no non-trivial bi-infinite geodesics.

The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

- Question raised in first passage percolation (FPP) to Kesten by Furstenberg in '86.

The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

- Question raised in first passage percolation (FPP) to Kesten by Furstenberg in '86.
- Licea, Newman '96: almost no direction with bi-infinite geodesics in FPP.

The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

- Question raised in first passage percolation (FPP) to Kesten by Furstenberg in '86.
- Licea, Newman '96: almost no direction with bi-infinite geodesics in FPP.
- Almost \rightarrow in any fixed direction: Ahlberg, Hoffman '16; Damron, Hanson '17 (FPP); Georgiou, Rassoul-Agha, Seppäläinen '17 (LPP). The problem is, uniqueness of geodesics is still needed.

The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

- Question raised in first passage percolation (FPP) to Kesten by Furstenberg in '86.
- Licea, Newman '96: almost no direction with bi-infinite geodesics in FPP.
- Almost \rightarrow in any fixed direction: Ahlberg, Hoffman '16; Damron, Hanson '17 (FPP); Georgiou, Rassoul-Agha, Seppäläinen '17 (LPP). The problem is, uniqueness of geodesics is still needed.
- Full result by Basu, Hoffman, Sly '18, using estimates from integrable probability.

The result

Theorem
A.s., there are no non-trivial bi-infinite geodesics.

- Question raised in first passage percolation (FPP) to Kesten by Furstenberg in '86.
- Licea, Newman '96: almost no direction with bi-infinite geodesics in FPP.
- Almost \rightarrow in any fixed direction: Ahlberg, Hoffman '16; Damron, Hanson '17 (FPP); Georgiou, Rassoul-Agha, Seppäläinen '17 (LPP). The problem is, uniqueness of geodesics is still needed.
- Full result by Basu, Hoffman, Sly '18, using estimates from integrable probability.
- We only need a bit of random walks, queuing, couplings.

1. Increments as new boundary

$$
I_{x}=G_{a, x}-G_{a, x-e_{1}} \quad J_{x}=G_{a, x}-G_{a, x-e_{2}}
$$

\rightsquigarrow Act as boundary weights for a smaller, embedded model.

2. Crossing lemma

Let a be North-West of b.

2. Crossing lemma

Let a be North-West of b.

$$
G_{a, x} \geq G_{a, u}+G_{u, x}
$$

$$
G_{b, x-e_{2}} \geq G_{b, u}+G_{u, x-e_{2}}
$$

2. Crossing lemma

Let a be North-West of b.

$$
\begin{aligned}
G_{a, x} & \geq G_{a, u}+G_{u, x} \\
G_{a, x-e_{2}} & =G_{a, u}+G_{u, x-e_{2}}
\end{aligned}
$$

$$
G_{b, x-e_{2}} \geq G_{b, u}+G_{u, x-e_{2}}
$$

$$
G_{b, x}=G_{b, u}+G_{u, x} .
$$

2. Crossing lemma

Let a be North-West of b.

$$
\begin{array}{cc}
G_{a, x} \geq G_{a, u}+G_{u, x}, & G_{b, x-e_{2}} \geq G_{b, u}+G_{u, x-e_{2}} \\
G_{a, x-e_{2}}=G_{a, u}+G_{u, x-e_{2}}, & G_{b, x}=G_{b, u}+G_{u, x} \\
J_{x}^{(a)}=G_{a, x}-G_{a, x-e_{2}} \geq G_{u, x}-G_{u, x-e_{2}} \geq G_{b, x}-G_{b, x-e_{2}}=J_{x}^{(b)} .
\end{array}
$$

2. Crossing lemma

Let a be North-West of b.

$$
\begin{aligned}
G_{a, x} & \geq G_{a, u}+G_{u, x}, & G_{b, x-e_{2}} & \geq G_{b, u}+G_{u, x-e_{2}}, \\
G_{a, x-e_{2}} & =G_{a, u}+G_{u, x-e_{2}}, & G_{b, x} & =G_{b, u}+G_{u, x} .
\end{aligned}
$$

$J_{x}^{(a)}=G_{a, x}-G_{a, x-e_{2}} \geq G_{u, x}-G_{u, x-e_{2}} \geq G_{b, x}-G_{b, x-e_{2}}=J_{x}^{(b)}$.
Similarly, $I_{x}^{(a)} \leq I_{x}^{(b)}$.

3. Stationary LPP

3. Stationary LPP

Replace the boundary to $I \sim \operatorname{Exp}(\varrho),-\sim \operatorname{Exp}(1-\varrho)$ independent.

$$
I_{x}=G_{a, x}-G_{a, x-e_{1}} \quad J_{x}=G_{a, x}-G_{a, x-e_{2}}
$$

Then $J_{x} \sim \operatorname{Exp}(\varrho), I_{x} \sim \operatorname{Exp}(1-\varrho)$, independent.

3. Stationary LPP

Replace the boundary to $\mathrm{I} \sim \operatorname{Exp}(\varrho), \quad \sim \operatorname{Exp}(1-\varrho)$ independent.

$$
I_{x}=G_{a, x}-G_{a, x-e_{1}} \quad J_{x}=G_{a, x}-G_{a, x-e_{2}}
$$

Then $J_{x} \sim \operatorname{Exp}(\varrho), I_{x} \sim \operatorname{Exp}(1-\varrho)$, independent.
The embedded model has the same structure.

3. Stationary LPP

Replace the boundary to $\mathrm{I} \sim \operatorname{Exp}(\varrho), \quad \sim \operatorname{Exp}(1-\varrho)$ independent.

B., Cator, Seppäläinen '06: $\mathbb{P}\left\{\left|Z_{a, y}^{\varrho}\right| \geq \ell\right\} \leq$ box $^{2} / \ell^{3}$, good directional control.

Proof

Take larger and larger boxes and show that geodesics avoid more and more the origin when crossing from one side to the other (Newman '95).

Proof

Take larger and larger boxes and show that geodesics avoid more and more the origin when crossing from one side to the other (Newman '95).

1. Close to vertical and horizontal all semi-infinite geodesics become trivial.

Proof

Take larger and larger boxes and show that geodesics avoid more and more the origin when crossing from one side to the other (Newman '95).

1. Close to vertical and horizontal all semi-infinite geodesics become trivial.
2. Otherwise, geodesics don't like to turn too much.

Proof

Take larger and larger boxes and show that geodesics avoid more and more the origin when crossing from one side to the other (Newman '95).

1. Close to vertical and horizontal all semi-infinite geodesics become trivial.
2. Otherwise, geodesics don't like to turn too much.
3. We are left with roughly diagonal ones, show that they fluctuate too much.

1. When it's too flat

Take ϱ small, but not too small compared to x, so that with large probability the green stationary path exits on the left of x (use the shape function here).

$$
G_{0, x}-G_{e_{2}, x}=\hat{J}_{e_{2}} \geq \hat{J}_{e_{1}}^{\varrho} \sim \operatorname{Exp}(\varrho)
$$

and can take $\varrho \rightarrow 0$ as the box flattens with $x \rightarrow \infty$. So, it's never worth leaving from e_{2} compared from 0 .

2. No sharp turns please

3. The diagonal case: the attack of the geodesics

3. The diagonal case: the attack of the geodesics

 With high probability, $\forall u, x, v$:

3. The diagonal case: the attack of the geodesics

 With high probability, $\forall u, x, v$:

- The red geodesic crosses where $\sum_{j=0}^{x}\left(J_{j}^{(u)}-\hat{J}_{j}^{(v)}\right)$ is maximal.

3. The diagonal case: the attack of the geodesics

 With high probability, $\forall u, x, v$:

- The red geodesic crosses where $\sum_{j=0}^{x}\left(J_{j}^{(u)}-\hat{\jmath}_{j}^{(v)}\right)$ is maximal.
- The bounds $J_{j}^{\varrho}-\hat{\jmath}_{j}^{\hat{\lambda}} \leq J_{j}^{(u)}-\hat{\jmath}_{j}^{(v)} \leq J_{j}^{\lambda}-\hat{\jmath}_{j}^{\hat{\varrho}}$ are independent and nicely distributed.

3. The diagonal case: the attack of the geodesics

With high probability, $\forall u, x, v$:

- The red geodesic crosses where $\sum_{j=0}^{x}\left(J_{j}^{(u)}-\hat{J}_{j}^{(v)}\right)$ is maximal.
- The bounds $J_{j}^{\varrho}-\hat{\jmath}_{\dot{j}}^{\hat{\imath}} \leq J_{j}^{(u)}-\hat{\jmath}_{j}^{(v)} \leq J_{j}^{\lambda}-\hat{\jmath}_{j}^{\hat{\varrho}}$ are independent and nicely distributed.
The problem boils down to whether a simple random walk minus drift reaches its maximum at 0 . The answer is an asymptotic no, the drift is beaten by the fluctuations.

$\mathbb{P}\{\cdot\} \sim$ box $^{-2 / 5}$.

So, the counting

- Intervals on the left are of size $\sim b_{0}{ }^{2 / 3}$.
- Have box/box ${ }^{2 / 3} \sim$ box $^{1 / 3}$ many of these.
\rightsquigarrow Union bound:
$\mathbb{P}\{$ any geodesic crosses 0$\} \sim$ box $^{1 / 3} \cdot\left(\right.$ box $^{-3 / 8}+$ box $\left.^{-2 / 5}\right)$

$$
=\mathrm{box}^{-1 / 24} \rightarrow 0
$$

So, the counting

- Intervals on the left are of size $\sim b_{0} x^{2 / 3}$.
- Have box/box ${ }^{2 / 3} \sim$ box $^{1 / 3}$ many of these.
\rightsquigarrow Union bound:

$$
\begin{aligned}
\mathbb{P}\{\text { any geodesic crosses } 0\} & \sim \mathrm{box}^{1 / 3} \cdot\left(\mathrm{box}^{-3 / 8}+\mathrm{box}^{-2 / 5}\right) \\
& =\mathrm{box}^{-1 / 24} \rightarrow 0
\end{aligned}
$$

These sharper, probabilistic estimates open up the way to further understanding of geodesics, with rather intuitive arguments.

Thank you.

