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◮ Given a Markov Chain,

Px{τa < τb} = ux

with ua = 1, ub = 0, and conductances ∼ transition
probabilities.

◮ The current also has a probabilistic interpretation.
◮ Effective resistances are monotone functions of the edge

resistances.
◮ Can be used for lots of things (e.g., recurrence-transience,

commute times).
◮ Only works for reversible Markov chains.
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Suppose ua, ub given, the solution is {ux}x∈Ω and {ixy}x∼y∈Ω.
Current

ia =
∑

x∼a

iax

flows in the network at a.

;The ”Markovian” property has another solution: constant ub

potentials with zero external currents.

; The difference of these two: {ux − ub}x∈Ω is a solution too,
with ia flowing in the network.

; Going backwards from ub − ub = 0 at b, all currents and
potentials are proportional to ua − ub at a.

; In particular, ia is proportional to ua − ub. We have effective
resistance.



Reversible Irreversible Engineering The part Chain Network Effective Works...

What works

... the analogy with Px{τa < τb}.



Reversible Irreversible Engineering The part Chain Network Effective Works...

What works

... the analogy with Px{τa < τb}.

The analogy with the current in the reversed network!



Reversible Irreversible Engineering The part Chain Network Effective Works...

What works

... the analogy with Px{τa < τb}.

The analogy with the current in the reversed network!

Theorem (Chandra, Raghavan, Ruzzo, Smolensky and
Tiwari ’96 for reversible)
Commute time = Reff · all conductances.
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What works

For all sets A, B, capacity∼escape probability.

cap(A, B) = Ceff
AB =

1

Reff
AB

=
1
2

∑

x∼y∈V

Cxy (ux − uy )
2.

This is non-physical!

In particular, symmetrising the chain (Pxy →
Pxy+P̂xy

2 ) cannot
increase escape probabilities:

◮ symmetrising leaves Cxy unchanged;
◮ the above sum is minimised by the symmetric voltages, not

{ux} (Classical Dirichlet principle).
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The electric network
Series:

R/2 R/2

∗λ

Q/2 Q/2

∗µ

Rpr

∗λ

Qse

∗µ

Rpr Qse

∗λµ

Rpr Q′pr

∗λµ

Spr

∗λµ

S/2 S/2

∗λµ

S = R
(λ+ 1)µ
λµ+ 1

+ Q
µ+ 1
λµ+ 1

.
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The electric network

Parallel:

R/2 R/2

∗λ

Q/2 Q/2

∗µ

Rse

∗λ

Qse

∗µ

Compare this with

Sse

∗ν

S =
RQ

R + Q

ν =
Qλ(µ+ 1) + Rµ(λ+ 1)

Q(µ+ 1) + R(λ+ 1)
.
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The electric network

Star-Delta:

Star to Delta works,

Delta to Star only works if Delta does not produce a circular
current by itself (λµν = 1).

S/2 S/2

∗νR
/2

R
/2

∗
λ

Q
/2

Q
/2

∗µ
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Thank you.
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Kolmogorov’s criterion

Theorem (Kolmogorov’s criterion)
A Markov chain is reversible if and only if for every closed cycle
x0, x1, x2, . . . , xn = x0 in Ω we have

Px0x1 · Px1x2 · · ·Pxn−1x0 = Px0xn−1 · Pxn−1xn−2 · · ·Px1x0 .

In particular, any Markov chain on a finite connected tree G is
necessarily reversible.
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Dx
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λx0x1 · λx1x2 · · ·λxn−1x0 = 1.

◮ Total multiplication factor along any loop is one.
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Kolmogorov’s criterion

Electrical proof.
Repeat for trees:

◮ There are no loops.
◮ Zero current and free vertices is a solution.
◮ It’s the only solution.
◮ The network is ”Markovian”: potential is constant.
◮ All λ’s are 1, and the chain is reversible.

Second thank you.
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