Electric network for non-reversible Markov chains Joint work with Áron Folly

Márton Balázs

University of Bristol

Random walks on Random Networks @ BMC 2016 University of Bristol, 24th March 2016.

Reversible chains and electric networks

Irreversible chains and electric networks

The part From network to chain From chain to network Effective resistance What works

The electric network

Reducing the network Nonmonotonicity Dirichlet principle

Given a Markov Chain,

$$\mathbf{P}_{\mathbf{X}}\{\tau_{\mathbf{a}} < \tau_{\mathbf{b}}\} = u_{\mathbf{x}}$$

Given a Markov Chain,

$$\mathbf{P}_{\mathbf{X}}\{\tau_{\mathbf{a}} < \tau_{\mathbf{b}}\} = u_{\mathbf{x}}$$

with $u_a = 1$, $u_b = 0$, and conductances \sim transition probabilities.

The current also has a probabilistic interpretation.

Given a Markov Chain,

$$\mathbf{P}_{\mathbf{X}}\{\tau_{\mathbf{a}} < \tau_{\mathbf{b}}\} = u_{\mathbf{x}}$$

- The current also has a probabilistic interpretation.
- Effective resistances are monotone functions of the edge resistances.

Given a Markov Chain,

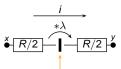
$$\mathbf{P}_{\mathbf{X}}\{\tau_{\mathbf{a}} < \tau_{\mathbf{b}}\} = u_{\mathbf{x}}$$

- The current also has a probabilistic interpretation.
- Effective resistances are monotone functions of the edge resistances.
- Can be used for lots of things (e.g., recurrence-transience, commute times).

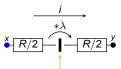
Given a Markov Chain,

$$\mathbf{P}_{\mathbf{X}}\{\tau_{\mathbf{a}} < \tau_{\mathbf{b}}\} = u_{\mathbf{x}}$$

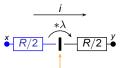
- The current also has a probabilistic interpretation.
- Effective resistances are monotone functions of the edge resistances.
- Can be used for lots of things (e.g., recurrence-transience, commute times).
- Only works for reversible Markov chains.



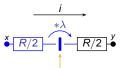
$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$



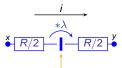
$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$



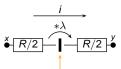
$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$



$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

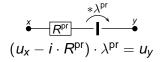


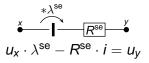
$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

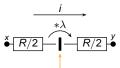


Voltage amplifier: keeps the current, multiplies the potential.

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

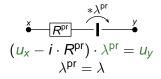


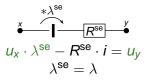


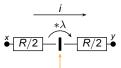


Voltage amplifier: keeps the current, multiplies the potential.

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

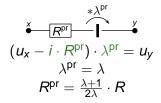


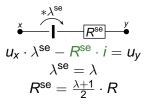


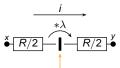


Voltage amplifier: keeps the current, multiplies the potential.

$$(u_{\mathbf{x}}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{\mathbf{y}}$$







Voltage amplifier: keeps the current, multiplies the potential.

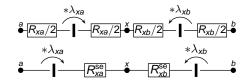
$$(u_{\mathbf{x}}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{\mathbf{y}}$$

$$R^{\mathsf{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = rac{\lambda+1}{2} \cdot R$$

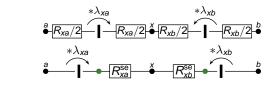
$$R^{\mathsf{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = rac{\lambda+1}{2} \cdot R$$



$$R^{\rm pr} = rac{\lambda+1}{2\lambda} \cdot R$$

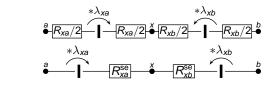
$$R^{se} = rac{\lambda+1}{2} \cdot R$$



$$u_{\mathbf{x}} = \sum_{\mathbf{y}} \frac{C_{\mathbf{x}\mathbf{y}}^{\mathrm{se}}}{\sum_{\mathbf{z}} C_{\mathbf{x}\mathbf{z}}^{\mathrm{se}}} \cdot \lambda_{\mathbf{x}\mathbf{y}} u_{\mathbf{y}}$$

$$R^{\mathsf{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$

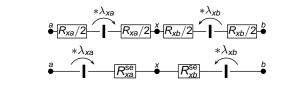
$$R^{se} = rac{\lambda+1}{2} \cdot R$$

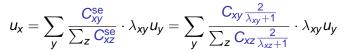


$$u_{\rm x} = \sum_{\rm y} \frac{C_{\rm xy}^{\rm se}}{\sum_{\rm z} C_{\rm xz}^{\rm se}} \cdot \lambda_{\rm xy} u_{\rm y}$$

$$R^{\rm pr} = rac{\lambda+1}{2\lambda} \cdot R$$

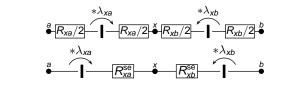
$$R^{se} = rac{\lambda+1}{2} \cdot R$$

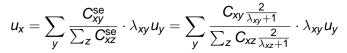




$$R^{\mathsf{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

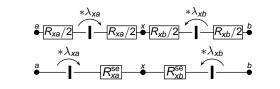
 $R^{se} = \frac{\lambda+1}{2} \cdot R$





$$R^{\mathsf{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = rac{\lambda+1}{2} \cdot R$$

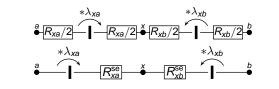


$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy+1}}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz+1}}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y}$$

with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}$, $D_{xy} = \frac{2\gamma_{xy}C_{xy}}{(\lambda_{xy}+1)} = D_{yx}$.

$$R^{ ext{se}} = rac{\lambda+1}{2} \cdot R$$

 $R^{\rm pr} = \frac{\lambda+1}{2\lambda} \cdot R$

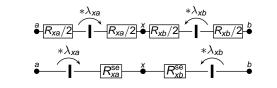


$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy+1}}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz+1}}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y}$$

with
$$\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}, \qquad D_{xy} = \frac{2\gamma_{xy}C_{xy}}{(\lambda_{xy}+1)} = D_{yx}.$$

$$R^{\mathsf{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$

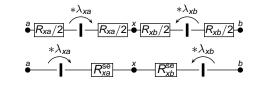
$$R^{ ext{se}} = rac{\lambda+1}{2} \cdot R$$



$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$
with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{xy}}, \qquad D_{xy} = \frac{2\gamma_{xy} C_{xy}}{(\lambda_{xy}+1)} = D_{yx}.$

 $R^{\rm pr} = \frac{\lambda + 1}{2\lambda} \cdot R$

$$R^{se} = rac{\lambda+1}{2} \cdot R$$



$$u_{x} = \sum_{y} \frac{C_{xy}^{\text{se}}}{\sum_{z} C_{xz}^{\text{se}}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$

with $\gamma_{xy} = \sqrt{\lambda_{xy}} = \frac{1}{\gamma_{yx}}$, $D_{xy} = \frac{2\gamma_{xy}C_{xy}}{(\lambda_{xy}+1)} = D_{yx}$.

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

 $h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$ (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy}h_y, \qquad h_a = 1, \quad h_b = 0.$$

$$u_x = \sum_y \frac{D_{xy} \gamma_{xy}}{D_x} \cdot u_y, \qquad u_a = 1, \quad u_b = 0.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

 $h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$ (τ is the hitting time)

is harmonic:

$$\begin{split} h_{x} &= \sum_{y} P_{xy} h_{y}, \qquad h_{a} = 1, \quad h_{b} = 0. \\ u_{x} &= \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}, \qquad u_{a} = 1, \quad u_{b} = 0. \\ P_{xy} &= \frac{D_{xy} \gamma_{xy}}{D_{x}}. \end{split}$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

 $h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$ (τ is the hitting time)

is harmonic:

$$\begin{split} h_{x} &= \sum_{y} P_{xy} h_{y}, \qquad h_{a} = 1, \quad h_{b} = 0. \\ u_{x} &= \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}, \qquad u_{a} = 1, \quad u_{b} = 0. \\ P_{xy} &= \frac{D_{xy} \gamma_{xy}}{D_{x}}. \end{split}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Stationary distribuion:

$$\mu_{x} = \sum_{z} \mu_{z} P_{zx} = \sum_{z} \mu_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$D_{x} = \sum_{z} D_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Stationary distribuion:

$$\mu_{x} = \sum_{z} \mu_{z} P_{zx} = \sum_{z} \mu_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$D_{x} = \sum_{z} D_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$\rightsquigarrow D_{x} = \mu_{x}.$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

 $u_x \equiv \text{const.}$ is a solution of the network with no external sources. This is now nontrivial.

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$
 $P_{xy} = D_{xy} \gamma_{xy} / D_x$

$$D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

 $u_x \equiv \text{const.}$ is a solution of the network with no external sources. This is now nontrivial.

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$
$$D_{x} := \sum_{z} D_{xz} \gamma_{zx}$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$
 $P_{xy} = D_{xy} \gamma_{xy} / D_x$

$$D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

 $u_x \equiv \text{const.}$ is a solution of the network with no external sources. This is now nontrivial.

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$
$$D_{x} := \sum_{z} D_{xz} \gamma_{zx} = \sum_{z} D_{xz} \gamma_{xz}.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$
 $P_{xy} = D_{xy} \gamma_{xy} / D_x$

$$D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

 $u_x \equiv$ const. is a solution of the network with no external sources. This is now nontrivial.

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$
$$D_{x} := \sum_{z} D_{xz} \gamma_{zx} = \sum_{z} D_{xz} \gamma_{xz}.$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

From chain to network

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x} = \frac{D_{xy}\gamma_{xy}}{\mu_x}$$
$$\mu_x P_{xy} \cdot \mu_y P_{yx} = D_{xy}^2;$$
$$\frac{\mu_x P_{xy}}{\mu_y P_{yx}} = \gamma_{xy}^2 = \lambda_{xy}$$

•

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

From chain to network

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x} = \frac{D_{xy}\gamma_{xy}}{\mu_x}$$
$$\mu_x P_{xy} \cdot \mu_y P_{yx} = D_{xy}^2;$$
$$\frac{\mu_x P_{xy}}{\mu_y P_{yx}} = \gamma_{xy}^2 = \lambda_{xy}.$$

Reversed chain: Replace P_{xy} by $\hat{P}_{xy} = P_{yx} \cdot \frac{\mu_y}{\mu_x}$.

 $\sim D_{xy}$ stays, λ_{xy} reverses to λ_{yx} .

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \sim The "Markovian" property has another solution: constant u_b potentials with zero external currents.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \sim The "Markovian" property has another solution: constant u_b potentials with zero external currents.

→ The difference of these two: $\{u_x - u_b\}_{x \in \Omega}$ is a solution too, with i_a flowing in the network.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \sim The "Markovian" property has another solution: constant u_b potentials with zero external currents.

→ The difference of these two: $\{u_x - u_b\}_{x \in \Omega}$ is a solution too, with i_a flowing in the network.

→ Going backwards from $u_b - u_b = 0$ at *b*, all currents and potentials are proportional to $u_a - u_b$ at *a*.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \sim The "Markovian" property has another solution: constant u_b potentials with zero external currents.

→ The difference of these two: $\{u_x - u_b\}_{x \in \Omega}$ is a solution too, with i_a flowing in the network.

→ Going backwards from $u_b - u_b = 0$ at *b*, all currents and potentials are proportional to $u_a - u_b$ at *a*.

 \sim In particular, i_a is proportional to $u_a - u_b$. We have effective resistance.

... the analogy with $\mathbf{P}_{\mathbf{x}} \{ \tau_{\mathbf{a}} < \tau_{\mathbf{b}} \}$.

... the analogy with $\mathbf{P}_{x}\{\tau_{a} < \tau_{b}\}$.

The analogy with the current in the reversed network!

... the analogy with $\mathbf{P}_{x}\{\tau_{a} < \tau_{b}\}$.

The analogy with the current in the reversed network!

Theorem (Chandra, Raghavan, Ruzzo, Smolensky and Tiwari '96 for reversible) Commute time = R_{eff} · all conductances.

For all sets A, B, capacity~escape probability.

$$\operatorname{cap}(A, B) = C_{AB}^{\operatorname{eff}} = \frac{1}{R_{AB}^{\operatorname{eff}}}$$

For all sets A, B, capacity~escape probability.

$$\operatorname{cap}(A, B) = C_{AB}^{\operatorname{eff}} = \frac{1}{R_{AB}^{\operatorname{eff}}} = \frac{1}{2} \sum_{x \sim y \in V} C_{xy} (u_x - u_y)^2.$$

This is non-physical!

For all sets A, B, capacity~escape probability.

$$\operatorname{cap}(A, B) = C_{AB}^{\operatorname{eff}} = \frac{1}{R_{AB}^{\operatorname{eff}}} = \frac{1}{2} \sum_{x \sim y \in V} C_{xy} (u_x - u_y)^2.$$

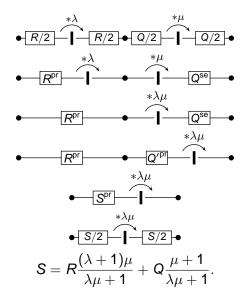
This is non-physical!

In particular, symmetrising the chain $(P_{xy} \rightarrow \frac{P_{xy} + \hat{P}_{xy}}{2})$ cannot increase escape probabilities:

- symmetrising leaves C_{xy} unchanged;
- the above sum is minimised by the symmetric voltages, not {*u_x*} (Classical Dirichlet principle).

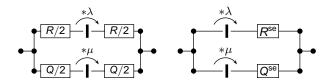
Reducing Nonmonotonicity Dirichlet

The electric network Series:

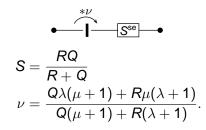


The electric network

Parallel:



Compare this with

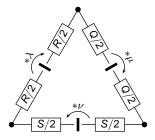


The electric network

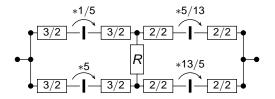
Star-Delta:

Star to Delta works,

Delta to Star only works if Delta does not produce a circular current by itself ($\lambda \mu \nu = 1$).

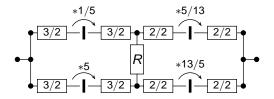


Nonmonotonicity



$$R^{\rm eff} = \frac{27}{14} + \frac{1296}{1225R + 2268}.$$

Nonmonotonicity



$$R^{\rm eff} = \frac{27}{14} + \frac{1296}{1225R + 2268}.$$

Dirichlet principle Classical case:

Dirichlet principle Classical case:

$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$

$$E_{Ohm}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

Dirichlet principle

Classical case:

$$C_{ab}^{\mathrm{eff}} = E_{\mathrm{Ohm}}(i_u),$$

$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

Dirichlet principle

Classical case:

$$C_{ab}^{\text{eff}} = \min_{\substack{u:u(a)=1, u(b)=0}} E_{\text{Ohm}}(i_u),$$
$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

Dirichlet

Dirichlet principle

Classical case:

$$C_{ab}^{\text{eff}} = \min_{u:u(a)=1, u(b)=0} E_{\text{Ohm}}(i_u),$$
$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

$$(i_u^*)_{xy} = D_{xy} \cdot \left(\gamma_{xy}u(x) - \gamma_{yx}u(y)\right),$$
$$E_{Ohm}(i_u^* - \Psi) = \sum_{x \sim y} \left(i_u^* - \Psi\right)_{xy}^2 \cdot R_{xy}.$$

Dirichlet principle

Classical case:

$$C_{ab}^{\text{eff}} = \min_{u:u(a)=1, u(b)=0} E_{\text{Ohm}}(i_u),$$
$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

Dirichlet

$$C_{ab}^{\mathrm{eff}}= E_{\mathrm{Ohm}}(i_u^*-\Psi),$$

$$(i_u^*)_{xy} = D_{xy} \cdot \left(\gamma_{xy} u(x) - \gamma_{yx} u(y)\right),$$
$$E_{Ohm}(i_u^* - \Psi) = \sum_{x \sim y} \left(i_u^* - \Psi\right)_{xy}^2 \cdot R_{xy}.$$

Dirichlet principle

Classical case:

$$C_{ab}^{\text{eff}} = \min_{u:u(a)=1, u(b)=0} E_{\text{Ohm}}(i_u),$$
$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

$$\begin{split} C_{ab}^{\text{eff}} &= \min_{\Psi: \text{flow}} E_{\text{Ohm}}(i_u^* - \Psi), \\ (i_u^*)_{xy} &= D_{xy} \cdot \left(\gamma_{xy} u(x) - \gamma_{yx} u(y)\right), \\ E_{\text{Ohm}}(i_u^* - \Psi) &= \sum_{x \sim y} \left(i_u^* - \Psi\right)_{xy}^2 \cdot R_{xy}. \end{split}$$

Dirichlet

Dirichlet principle

Classical case:

$$C_{ab}^{\text{eff}} = \min_{u:u(a)=1, u(b)=0} E_{\text{Ohm}}(i_u),$$
$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$
$$E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

$$\begin{split} C_{ab}^{\text{eff}} &= \min_{u:u(a)=1, u(b)=0} \min_{\Psi: \text{flow}} E_{\text{Ohm}}(i_u^* - \Psi), \\ &(i_u^*)_{xy} = D_{xy} \cdot \left(\gamma_{xy} u(x) - \gamma_{yx} u(y)\right), \\ &E_{\text{Ohm}}(i_u^* - \Psi) = \sum_{x \sim y} \left(i_u^* - \Psi\right)_{xy}^2 \cdot R_{xy}. \end{split}$$

$$\begin{split} C_{ab}^{\text{eff}} &= \min_{u:u(a)=1, \ u(b)=0} E_{\text{Ohm}}(i_u), \\ (i_u)_{xy} &= C_{xy} \cdot (u(x) - u(y)), \\ E_{\text{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

Dirichlet

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

$$\begin{split} \boldsymbol{C}_{ab}^{\text{eff}} &= \min_{\boldsymbol{u}:\boldsymbol{u}(a)=1, \, \boldsymbol{u}(b)=0} \, \min_{\boldsymbol{\Psi}: \, \text{flow}} \boldsymbol{E}_{\text{Ohm}}(\boldsymbol{i}_{u}^{*}-\boldsymbol{\Psi}), \\ & (\boldsymbol{i}_{u}^{*})_{xy} = \boldsymbol{D}_{xy} \cdot \left(\gamma_{xy} \boldsymbol{u}(x) - \gamma_{yx} \boldsymbol{u}(y)\right), \\ & \boldsymbol{E}_{\text{Ohm}}(\boldsymbol{i}_{u}^{*}-\boldsymbol{\Psi}) = \sum_{x \sim y} \left(\boldsymbol{i}_{u}^{*}-\boldsymbol{\Psi}\right)_{xy}^{2} \cdot \boldsymbol{R}_{xy}. \end{split}$$

Thank you.

Theorem (Kolmogorov's criterion)

A Markov chain is reversible if and only if for every closed cycle $x_0, x_1, x_2, \ldots, x_n = x_0$ in Ω we have

$$P_{X_0X_1} \cdot P_{X_1X_2} \cdots P_{X_{n-1}X_0} = P_{X_0X_{n-1}} \cdot P_{X_{n-1}X_{n-2}} \cdots P_{X_1X_0}.$$

In particular, any Markov chain on a finite connected tree G is necessarily reversible.

Electrical proof.

Plug in

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}, \qquad D_{xy} \text{ symmetric:}$$

$$\begin{split} P_{x_{0}x_{1}} \cdot P_{x_{1}x_{2}} \cdots P_{x_{n-1}x_{0}} &= P_{x_{0}x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_{1}x_{0}} \\ \gamma_{x_{0}x_{1}} \cdot \gamma_{x_{1}x_{2}} \cdots \gamma_{x_{n-1}x_{0}} &= \gamma_{x_{0}x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_{1}x_{0}} , \text{ or } \\ \lambda_{x_{0}x_{1}} \cdot \lambda_{x_{1}x_{2}} \cdots \lambda_{x_{n-1}x_{0}} &= 1. \end{split}$$

Total multiplication factor along any loop is one.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}, \qquad D_{xy} \text{ symmetric:}$$

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \quad , \text{ or } \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}, \qquad D_{xy} \text{ symmetric:}$$

$$\begin{split} P_{x_0x_1} \cdot P_{x_1x_2} \cdots P_{x_{n-1}x_0} &= P_{x_0x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_1x_0} \\ \gamma_{x_0x_1} \cdot \gamma_{x_1x_2} \cdots \gamma_{x_{n-1}x_0} &= \gamma_{x_0x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_1x_0} \quad , \text{ or } \\ \lambda_{x_0x_1} \cdot \lambda_{x_1x_2} \cdots \lambda_{x_{n-1}x_0} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.
- It's the only solution.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}, \qquad D_{xy} \text{ symmetric:}$$

$$\begin{split} P_{x_{0}x_{1}} \cdot P_{x_{1}x_{2}} \cdots P_{x_{n-1}x_{0}} &= P_{x_{0}x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_{1}x_{0}} \\ \gamma_{x_{0}x_{1}} \cdot \gamma_{x_{1}x_{2}} \cdots \gamma_{x_{n-1}x_{0}} &= \gamma_{x_{0}x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_{1}x_{0}} , \text{ or } \\ \lambda_{x_{0}x_{1}} \cdot \lambda_{x_{1}x_{2}} \cdots \lambda_{x_{n-1}x_{0}} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.
- It's the only solution.
- ► The network is "Markovian": potential is constant.

Electrical proof.

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x}, \qquad D_{xy} \text{ symmetric:}$$

$$\begin{split} P_{x_{0}x_{1}} \cdot P_{x_{1}x_{2}} \cdots P_{x_{n-1}x_{0}} &= P_{x_{0}x_{n-1}} \cdot P_{x_{n-1}x_{n-2}} \cdots P_{x_{1}x_{0}} \\ \gamma_{x_{0}x_{1}} \cdot \gamma_{x_{1}x_{2}} \cdots \gamma_{x_{n-1}x_{0}} &= \gamma_{x_{0}x_{n-1}} \cdot \gamma_{x_{n-1}x_{n-2}} \cdots \gamma_{x_{1}x_{0}} , \text{ or } \\ \lambda_{x_{0}x_{1}} \cdot \lambda_{x_{1}x_{2}} \cdots \lambda_{x_{n-1}x_{0}} &= 1. \end{split}$$

- Total multiplication factor along any loop is one.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.
- All λ 's are 1, and the chain is reversible.

Electrical proof.

Repeat for trees:

There are no loops.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.

Electrical proof.

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.
- ► The network is "Markovian": potential is constant.
- All λ 's are 1, and the chain is reversible.

Electrical proof.

Repeat for trees:

- There are no loops.
- Zero current and free vertices is a solution.
- It's the only solution.
- The network is "Markovian": potential is constant.
- All λ 's are 1, and the chain is reversible.

Second thank you.