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The Bernoulli(̺) distribution is time-stationary for any
(0 ≤ ̺ ≤ 1). Any translation-invariant stationary distribution is a
mixture of Bernoullis.
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(
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)
with rate q(ωi , ωi+1), where

◮ p and q are such that they keep the state space (ASEP,
ZRP),

◮ p is non-decreasing in the first, non-increasing in the
second variable, and q vice-versa (attractivity),

◮ they satisfy some algebraic conditions to get a product
stationary distribution for the process,

◮ they satisfy some regularity conditions to make sure the
dynamics exists.
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Integrated particle current

i
t=0

t

h t

0

0

hVt (t)

Vt

hVt(t) = height as seen by a moving observer of velocity V .

= net number of particles passing the window s 7→ Vs.

(Remember: particle current=change in height.)
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The density ̺ : = E(ω) and the hydrodynamic flux
H : = E[growth rate] both depend on a parameter of the
stationary distribution.

◮ H(̺) is the hydrodynamic flux function.
◮ If the process is locally in equilibrium, but changes over

some large scale (variables X = εi and T = εt), then

∂T̺(T , X ) + ∂X H(̺(T , X )) = 0 (conservation law).

◮ The characteristics is a path X (T ) where ̺(T , X (T )) is
constant.
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A single discrepancy , the second class particle, is conserved.
Its position at time t is Q(t).
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Microscopic convexity/concavity

We say that a model has the microscopic convexity
property, if there is such a three-process coupling by which
Q(t) ≥ X (t)−tight error can be achieved.

C = H ′(̺) = EQ/t < EX/t = R = [H(̺)− H(λ)]/(̺− λ)
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We (almost) say that a model has the microscopic convexity
property, if there is such a three-process coupling by which
Q(t) ≥ X (t)−tight error can be achieved.

We (almost) say that a model has the microscopic concavity
property, if there is such a three-process coupling by which
Q(t) ≤ X (t)+tight error can be achieved.

C = H ′(̺) = EQ/t < EX/t = R = [H(̺)− H(λ)]/(̺− λ)
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Theorem (Ferrari-Fontes (ASEP); B. (TAZRP, TABL))

lim
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Var(hVt(t))
t

= Var(ω) · |C − V |
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Normal fluctuations:
Once we have the microscopic convexity/concavity property,

Theorem (Ferrari-Fontes (ASEP); B. (TAZRP, TABL))

lim
t→∞

Var(hVt(t))
t

= Var(ω) · |C − V |

i
t=0

t

h t

0

0

hVt (t)

VtCt

Initial fluctuations are transported along the characteristics on
this scale.
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Once we have the microscopic convexity/concavity property,
On the characteristics V = C,

Theorem (B. - Komjáthy - Seppäläinen (ASEP, WASEP,
exponential concave TAZRP, exponential convex TABLP
so far...))

0 < lim inf
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Var(hCt(t))
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< ∞.



Models Hydrodynamics 2nd class Results Proof Normal Abnormal

Abnormal fluctuations:

Once we have the microscopic convexity/concavity property,
On the characteristics V = C,
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Important preliminaries were Cator and Groeneboom 2006, B.,
Cator and Seppäläinen 2006.
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Abnormal fluctuations:

Once we have the microscopic convexity/concavity property,
On the characteristics V = C,

Theorem (B. - Komjáthy - Seppäläinen (ASEP, WASEP,
exponential concave TAZRP, exponential convex TABLP
so far...))

0 < lim inf
t→∞

Var(hCt(t))
t2/3

≤ lim sup
t→∞

Var(hCt(t))
t2/3

< ∞.

Important preliminaries were Cator and Groeneboom 2006, B.,
Cator and Seppäläinen 2006.

Other exclusion processes: Quastel and Valkó 2007.



Models Hydrodynamics 2nd class Results Proof Normal Abnormal

Abnormal fluctuations:

Once we have the microscopic convexity/concavity property,
On the characteristics V = C,

Theorem (B. - Komjáthy - Seppäläinen (ASEP, WASEP,
exponential concave TAZRP, exponential convex TABLP
so far...))

0 < lim inf
t→∞

Var(hCt(t))
t2/3

≤ lim sup
t→∞

Var(hCt(t))
t2/3

< ∞.

Important preliminaries were Cator and Groeneboom 2006, B.,
Cator and Seppäläinen 2006.

Other exclusion processes: Quastel and Valkó 2007.

There is a huge literature now on limit distribution results, using
combinatorial and asymptotic analytic tools.
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the flux matters.
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relate Var(hCt(t)) to Var(hCt(t)).

The computations result in (remember E(Q(t)) = Ct)

P{Q(t)− Ct ≥ u} ≤ c ·
t2

u4 · Var(hCt(t)).

Micro conc.: Q(t)<X (t)+ tight error
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Lower bound

In the upper bound, the relevant orders were

u (deviation of Q(t)) ∼ t2/3, ̺− λ ∼ t−1/3.

The lower bound works with similar arguments: compare
models of which the densities differ by t−1/3, and use
connections between Q(t),X (t) and heights.
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Lower bound

In the upper bound, the relevant orders were

u (deviation of Q(t)) ∼ t2/3, ̺− λ ∼ t−1/3.

The lower bound works with similar arguments: compare
models of which the densities differ by t−1/3, and use
connections between Q(t),X (t) and heights.

The critical feature in both the upper bound and lower bound
was microscopic convexity/concavity: Q(t) ≥ X (t) (convex) or
Q(t) ≤ X (t) (concave).
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Goal: to understand Q(t) on the background process of the ’s.
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This process mQ(t) is influenced by the background, and is
pretty complicated in general.

In the cases we succeeded so far, mQ(t) behaved nicely:
◮ Either mQ(t) ≤ 0 a.s. (TASEP, Rate 1 TAZRP);

deterministicly adorable!

◮ Or mQ(t)
d
≤ Geometric (ASEP, concave exponential rate

TAZRP,
d
≥ −Geometric for convex exponential rate TABLP);

behaves like a drifted simple random walk.

This is the form of microscopic concavity we currently use:
mQ(t) is dominated by a time-independent distribution with
finite variance.
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If we drop “exponentially”, we loose the uniform bound. Then
mQ(t) starts behaving like a diffusion.
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The critical feature: microscopic concavity

The exponentially convex/concave rates make it possible to
separate the drift of mQ(t) from the background process: the
drift has a uniform lower bound for all background
configurations. Drifted random walk only wants to cross the
origin occasionally, hence the geometric bound.

If we drop “exponentially”, we loose the uniform bound. Then
mQ(t) starts behaving like a diffusion. Diffusion in the random
environment of second class particles!

We don’t yet see the techniques to bound this diffusion in the
order of magnitude our arguments would require.

Once this is done, we could proceed with less and less
convex/concave models to see how t1/3 scaling turns to t1/4 for
linear models (random average process, linear rate AZRP)...
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Thank you.
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