Second class particles can perform simple random walks (in some cases)
 Joint with
 György Farkas, Péter Kovács and Attila Rákos

Márton Balázs

Budapest University of Technology and Economics

BME Stochastics Seminar
Budapest, October 22, 2009.

The models

Asymmetric simple exclusion process
Zero range process
Generalized ZRP
Bricklayers process
Stationary distributions
Hydrodynamics
The second class particle
Earlier results
The question
Branching coalescing random walk

Asymmetric simple exclusion

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

Asymmetric simple exclusion

Particles try to jump
to the right with rate p,
to the left with rate $q=1-p<p$.
The jump is suppressed if the destination site is occupied by another particle.

The totally asymmetric zero range process

The totally asymmetric zero range process

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

The totally asymmetric zero range process

Particles jump to the right from site i with rate $r\left(\omega_{i}\right)$
(r non-decreasing).

A generalized totally asymmetric zero range process:

 $\omega_{i} \in \mathbb{Z}$

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process: $\omega_{i} \in \mathbb{Z}$

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

A generalized totally asymmetric zero range process:

$\omega_{i} \in \mathbb{Z}$

a brick is added with rate $r\left(\omega_{i}\right)$.
(r non-decreasing).

The totally asymmetric bricklayers process

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $\mathbf{r}\left(\omega_{\mathrm{i}}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+\mathbf{r}\left(-\omega_{\mathbf{i}+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.

The totally asymmetric bricklayers process

a brick is added with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$.
A mirror-symmetrized version of the extended zero range. Left and right jumps of the dynamics cooperate, if $(r(\omega) \cdot r(1-\omega)=1 ; \quad r$ non-decreasing $)$.

Stationary product distributions

For the ASEP: the Bernoulli (ϱ) distribution is time-stationary for any ($0 \leq \varrho \leq 1$).

Stationary product distributions

For the ASEP: the Bernoulli (ϱ) distribution is time-stationary for any $(0 \leq \varrho \leq 1)$.

For zero range, bricklayers: the product of marginals

$$
\mu^{\theta}\left(\omega_{i}\right)=\frac{\mathrm{e}^{\theta \omega_{i}}}{r\left(\omega_{i}\right)!} \cdot \frac{1}{Z(\theta)}
$$

is stationary for any $\theta \in \mathbb{R}$ that makes $Z(\theta)$ finite.

Stationary product distributions

For the ASEP: the Bernoulli (ϱ) distribution is time-stationary for any $(0 \leq \varrho \leq 1)$.

For zero range, bricklayers: the product of marginals

$$
\mu^{\theta}\left(\omega_{i}\right)=\frac{\mathrm{e}^{\theta \omega_{i}}}{r\left(\omega_{i}\right)!} \cdot \frac{1}{Z(\theta)}
$$

is stationary for any $\theta \in \mathbb{R}$ that makes $Z(\theta)$ finite.
Here $r(0)!:=1$, and $r(z+1)!=r(z)!\cdot r(z+1)$ for all $z \in \mathbb{Z}$.

Hydrodynamics (very briefly)

The density $\varrho:=\mathbf{E}(\omega)$ and the hydrodynamic flux $H:=$ E[growth rate] both depend on a parameter ϱ or θ of the stationary distribution.

Hydrodynamics (very briefly)

The density $\varrho:=\mathbf{E}(\omega)$ and the hydrodynamic flux $H:=\mathbf{E}$ [growth rate] both depend on a parameter ϱ or θ of the stationary distribution.

- $H(\varrho)$ is the hydrodynamic flux function.

Hydrodynamics (very briefly)

The density $\varrho:=\mathbf{E}(\omega)$ and the hydrodynamic flux $H:=\mathbf{E}$ [growth rate] both depend on a parameter ϱ or θ of the stationary distribution.

- $H(\varrho)$ is the hydrodynamic flux function.
- If the process is locally in equilibrium, but changes over some large scale (variables $X=\varepsilon i$ and $T=\varepsilon t$), then

$$
\partial_{T} \varrho(T, X)+\partial_{X} H(\varrho(T, X))=0 \quad \text { (conservation law). }
$$

Hydrodynamics (very briefly)

For the ASEP, $H(\varrho)=(p-q) \cdot \varrho(1-\varrho)$, concave.

Hydrodynamics (very briefly)

For the ASEP, $H(\varrho)=(p-q) \cdot \varrho(1-\varrho)$, concave.
For the zero range and bricklayers, $H(\varrho)$ is convex/concave if the rate function r is convex/concave.

Hydrodynamics (very briefly)

For the ASEP, $H(\varrho)=(p-q) \cdot \varrho(1-\varrho)$, concave.
For the zero range and bricklayers, $H(\varrho)$ is convex/concave if the rate function r is convex/concave.

Special case: $r(\omega)=$ const. $\cdot \mathrm{e}^{\beta \omega} ; \quad H(\varrho)$ is convex.
\rightsquigarrow will be interested in TAGEZRP, TAEBLP.

Hydrodynamics (very briefly)

For the ASEP, $H(\varrho)=(p-q) \cdot \varrho(1-\varrho)$, concave.
For the zero range and bricklayers, $H(\varrho)$ is convex/concave if the rate function r is convex/concave.

Special case: $r(\omega)=$ const. $\cdot \mathrm{e}^{\beta \omega} ; \quad H(\varrho)$ is convex.
\rightsquigarrow will be interested in TAGEZRP, TAEBLP.
\rightsquigarrow Either convex or concave, discontinuous shock solutions exist.

Hydrodynamics (very briefly)

For the ASEP, $H(\varrho)=(p-q) \cdot \varrho(1-\varrho)$, concave.
For the zero range and bricklayers, $H(\varrho)$ is convex/concave if the rate function r is convex/concave.

Special case: $r(\omega)=$ const. $\cdot \mathrm{e}^{\beta \omega} ; \quad H(\varrho)$ is convex.
\rightsquigarrow will be interested in TAGEZRP, TAEBLP.
\rightsquigarrow Either convex or concave, discontinuous shock solutions exist. Let's look for the corresponding microscopic structure.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

The second class particle

States ω and ω only differ at one site.

Growth on the right: rate \leq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left: rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left: rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left: rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left: rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

The second class particle

States ω and ω only differ at one site.

Growth on the left:

 rate \geq rate with rate-rate:

A single discrepancy \uparrow, the second class particle, is conserved.

Earlier results: as seen by the second class particle

From now on: ASEP, TAGEZRP, TAEBLP only; "E"=exponential.

Theorem (Derrida, Lebowitz, Speer '97)
For the ASEP, the Bernoulli product distribution with densities

is stationary for the process, as seen from the second class particle, if

$$
\frac{\varrho_{\text {right }} \cdot\left(1-\varrho_{\text {left }}\right)}{\varrho_{\text {left }} \cdot\left(1-\varrho_{\text {right }}\right)}=\frac{p}{q}
$$

Earlier results: as seen by the second class particle

From now on: ASEP, TAGEZRP, TAEBLP only; "E"=exponential.

Theorem (Derrida, Lebowitz, Speer '97)
For the ASEP, the Bernoulli product distribution with densities

is stationary for the process, as seen from the second class particle, if

$$
\frac{\varrho_{\text {right }} \cdot\left(1-\varrho_{\text {left }}\right)}{\varrho_{\text {left }} \cdot\left(1-\varrho_{\text {right }}\right)}=\frac{p}{q}
$$

Earlier results: random walking shocks

Theorem (Belitsky and Schütz '02)
For the ASEP with the very same parameters, the Bernoulli product distribution μ_{0} with densities

evolves according to

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Theorem (Belitsky and Schütz '02)
For the ASEP with the very same parameters, the Bernoulli product distribution μ_{0} with densities

evolves according to

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{\varrho_{\text {elf }}}{\varrho_{\text {right }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{\varrho_{\text {elf }}}{\varrho_{\text {right }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{\varrho_{\text {elf }}}{\varrho_{\text {right }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{\varrho_{\text {elf }}}{\varrho_{\text {right }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{\varrho_{\text {elf }}}{\varrho_{\text {right }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{\varrho_{\text {elf }}}{\varrho_{\text {right }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $q \cdot \frac{e_{\text {right }}}{e_{\text {let }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $q \cdot \frac{e_{\text {ofght }}}{e_{\text {let }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $q \cdot \frac{e_{\text {right }}}{e_{\text {lett }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $q \cdot \frac{e_{\text {right }}}{e_{\text {lett }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $q \cdot \frac{e_{\text {right }}}{e_{\text {let }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $q \cdot \frac{e_{\text {right }}}{e_{\text {let }}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=p \cdot \frac{\varrho_{\text {left }}}{\varrho_{\text {right }}} \cdot\left[\mu_{-1}-\mu_{0}\right]+q \cdot \frac{\varrho_{\text {right }}}{\varrho_{\text {left }}} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: as seen by the second class particle

Theorem (B. '01)
For the TAEBLP, the product distribution of marginals $\mu^{e_{i}}$ with densities

is stationary for the process, as seen from the second class particle, if

$$
\varrho_{\text {left }}-\varrho_{\text {right }}=1 .
$$

Earlier results: as seen by the second class particle

Theorem (B. '01)
For the TAEBLP, the product distribution of marginals $\mu^{e_{i}}$ with densities

is stationary for the process, as seen from the second class particle, if

$$
\varrho_{\text {left }}-\varrho_{\text {right }}=1 .
$$

Earlier results: random walking shocks

Theorem (B. '04)
For the very same parameters, the product distribution μ_{0} with densities

evolves according to

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Theorem (B. '04)
For the very same parameters, the product distribution μ_{0} with densities

evolves according to

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Multiple shocks and their interactions are also handled.

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {left }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {left }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {left }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {left }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {left }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {left }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right]
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {right }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {right }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {right }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {right }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {right }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $C_{\text {right }}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0}=C_{\text {left }} \cdot\left[\mu_{-1}-\mu_{0}\right]+C_{\text {right }} \cdot\left[\mu_{1}-\mu_{0}\right] .
$$

The question

\rightsquigarrow Of course, the drift of the walk $X(t)$ is the same as the expected drift of the second class particle in its stationary shock distribution,

The question

\rightsquigarrow Of course, the drift of the walk $X(t)$ is the same as the expected drift of the second class particle in its stationary shock distribution,
and also agrees with the Rankine Hugoniot formula for the speed of shocks.

The question

\rightsquigarrow Of course, the drift of the walk $X(t)$ is the same as the expected drift of the second class particle in its stationary shock distribution,
and also agrees with the Rankine Hugoniot formula for the speed of shocks.

Is it the second class particle that performs the simple random walk in the middle of a shock?

The question

\rightsquigarrow Of course, the drift of the walk $X(t)$ is the same as the expected drift of the second class particle in its stationary shock distribution,
and also agrees with the Rankine Hugoniot formula for the speed of shocks.

Is it the second class particle that performs the simple random walk in the middle of a shock?

In what sense? Annealed w.r.t. the initial shock distribution... But what does this mean?

Here is the question:

For the ASEP, let ν_{0} be the Bernoulli product distribution

$$
\nu_{0}=\left(\bigotimes_{i<0} \mu^{\varrho_{\text {left }}}\right) \otimes(\delta) \otimes\left(\bigotimes_{i>0} \mu^{\varrho_{\text {right }}}\right)
$$

where

$$
\begin{gathered}
\mu^{\varrho}(\omega=\omega)=\left\{\begin{array}{ll}
\varrho, & \text { if } \omega=1, \\
1-\varrho, & \text { if } \omega=0 ;
\end{array} \quad \delta(0,1)=1 .\right. \\
\varrho_{i} \\
\end{gathered}
$$

Here is the question:

For the ASEP, let ν_{0} be the Bernoulli product distribution

Does it satisfy

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \nu_{0}=p \cdot \frac{\varrho_{\mathrm{left}}}{\varrho_{\mathrm{right}}} \cdot\left[\nu_{-1}-\nu_{0}\right]+q \cdot \frac{\varrho_{\mathrm{right}}}{\varrho_{\mathrm{left}}} \cdot\left[\nu_{1}-\nu_{0}\right]
$$

when

$$
\frac{\varrho_{\text {right }} \cdot\left(1-\varrho_{\text {left }}\right)}{\varrho_{\text {left }} \cdot\left(1-\varrho_{\text {right }}\right)}=\frac{p}{q} \quad ?
$$

Here is the question:

For the TAEBLP, let ν_{0} be the product distribution

$$
\nu_{0}=\left(\bigotimes_{i<0} \mu^{\varrho_{\mathrm{eft}}}\right) \otimes\left(\delta^{\varrho_{\mathrm{right}}}\right) \otimes\left(\bigotimes_{i>0} \mu^{\varrho_{\mathrm{right}}}\right)
$$

where

$$
\begin{aligned}
\mu^{\varrho}(\omega=\omega) & =\frac{\mathrm{e}^{\theta(\varrho) \cdot \omega}}{r(\omega)!} \cdot \frac{1}{Z(\theta(\varrho))} \\
\delta^{\varrho}(\omega, \omega+1) & =\frac{\mathrm{e}^{\theta(\varrho) \cdot \omega}}{r(\omega)!} \cdot \frac{1}{Z(\theta(\varrho))}
\end{aligned}
$$

$$
\varrho_{i}
$$

Here is the question:

For the TAEBLP, let ν_{0} be the product distribution

$$
\begin{aligned}
& \nu_{0}=\left(\bigotimes_{i<0} \mu^{\varrho_{\mathrm{left}}}\right) \otimes\left(\delta \varrho_{\mathrm{right}}\right) \otimes\left(\bigotimes_{i>0} \mu^{\varrho_{\mathrm{right}}}\right),
\end{aligned}
$$

Does it satisfy

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \nu_{0}=C_{\text {left }} \cdot\left[\nu_{-1}-\nu_{0}\right]+C_{\text {right }} \cdot\left[\nu_{1}-\nu_{0}\right] .
$$

when

$$
\varrho_{\text {left }}-\varrho_{\text {right }}=1 \quad ?
$$

Here is the answer:

Theorem (Gy. Farkas, P. Kovács, A. Rákos, B. '09)
Yes, and yes. Even more, the thing also works for the TAGEZRP.

Here is the answer:

Theorem (Gy. Farkas, P. Kovács, A. Rákos, B. '09)
Yes, and yes. Even more, the thing also works for the TAGEZRP.

The second class particle, annealed w.r.t. the initial shock product distribution, does perform a drifted simple random walk in these cases.

Here is the answer:

Theorem (Gy. Farkas, P. Kovács, A. Rákos, B. '09)
Yes, and yes. Even more, the thing also works for the TAGEZRP.

The second class particle, annealed w.r.t. the initial shock product distribution, does perform a drifted simple random walk in these cases.

This explains both types of the previous results.

Here is the answer:

Theorem (Gy. Farkas, P. Kovács, A. Rákos, B. '09)
Yes, and yes. Even more, the thing also works for the TAGEZRP.

The second class particle, annealed w.r.t. the initial shock product distribution, does perform a drifted simple random walk in these cases.

This explains both types of the previous results.
The presence of a second class particle in the measure significantly simplifies the computations. \rightsquigarrow This is how we discovered the TAGEZRP.

Nice, since

This might open up the path for applying methods physicists like (e.g. Bethe Ansatz).

Nice, since

This might open up the path for applying methods physicists like (e.g. Bethe Ansatz).

It also gives a rough tail bound for the second class particle in a flat initial distribution; essential in the $t^{2 / 3}$ proofs for the exponential models.

Interactions:

We also see that shocks+second class particles

- locally interact by exclusion in ASEP, and don't locally interact in TAGEZRP, TAEBLP, but

Interactions:

We also see that shocks+second class particles

- locally interact by exclusion in ASEP, and don't locally interact in TAGEZRP, TAEBLP, but
- their jump rates depend on their position, making them attract each other such that

Interactions:

We also see that shocks+second class particles

- locally interact by exclusion in ASEP, and don't locally interact in TAGEZRP, TAEBLP, but
- their jump rates depend on their position, making them attract each other such that
- their center of mass has the Rankine-Hugoniot velocity for the large shock they jointly represent.

Interactions:

We also see that shocks+second class particles

- locally interact by exclusion in ASEP, and don't locally interact in TAGEZRP, TAEBLP, but
- their jump rates depend on their position, making them attract each other such that
- their center of mass has the Rankine-Hugoniot velocity for the large shock they jointly represent.

Macroscopically it's one shock after all.

A similar result: branching coalescing random walk

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate p : jump to the right

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate q : jump to the left

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate c_{r} : coalescence to the right

A similar result: branching coalescing random walk

With rate b_{1} : branching to the left

A similar result: branching coalescing random walk

With rate b_{l} : branching to the left

A similar result: branching coalescing random walk

With rate b_{l} : branching to the left

A similar result: branching coalescing random walk

With rate b_{1} : branching to the left

A similar result: branching coalescing random walk

With rate b_{1} : branching to the left

A similar result: branching coalescing random walk

With rate b_{l} : branching to the left

A similar result: branching coalescing random walk

With rate b_{1} : branching to the left

A similar result: branching coalescing random walk

With rate b_{l} : branching to the left

A similar result: branching coalescing random walk

With rate b_{1} : branching to the left

A similar result: branching coalescing random walk

With rate b_{l} : branching to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate c_{l} : coalescence to the left

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right

A similar result: branching coalescing random walk

With rate b_{r} : branching to the right
The Bernoulli(ϱ^{*}) distribution is stationary for

$$
\varrho^{*}=\frac{b_{l}+b_{r}}{b_{l}+b_{r}+c_{l}+c_{r}} .
$$

Earlier results: as seen by the rightmost particle

Theorem
For the BCRW, the Bernoulli product distribution with densities

is stationary for the process, as seen from the rightmost particle.

Earlier results: random walking shocks

Theorem (Krebs, Jafarpour and Schütz '03)
For the BCRW with the very same parameters, the Bernoulli product distribution μ_{0} with densities

evolves according to

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}}$:

$$
\varrho_{i}
$$

$$
X(t)=0
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right]
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}}$:
ϱ_{i}

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{b_{1}+b_{r}+c_{1}+c_{r}}{c_{l}+c_{r}}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right]
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}}$:
ϱ_{i}

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}}$:
ϱ_{i}

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}}$:
ϱ_{i}

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}}$:
ϱ_{i}

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right] .
\end{aligned}
$$

Earlier results: random walking shocks

Interpretation: random walking shock $\mu(t)=\mu_{X(t)}$:
with rate $p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}}$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\mu_{-1}-\mu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\mu_{1}-\mu_{0}\right]
\end{aligned}
$$

The question:

Is it the rightmost particle that performs the random walk?

Here is the question:

For the BCRW, let ν_{0} be the Bernoulli product distribution

$$
\nu_{0}=\left(\bigotimes_{i<0} \mu^{\varrho^{*}}\right) \otimes(\delta) \otimes\left(\bigotimes_{i>0} \mu^{0}\right)
$$

where $\delta(0)=1$.

Does it satisfy

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \nu_{0} & =\frac{c_{l} \cdot\left(b_{l}+b_{r}\right)+q \cdot\left(c_{l}+c_{r}\right)}{b_{l}+b_{r}+c_{l}+c_{r}} \cdot\left[\nu_{-1}-\nu_{0}\right] \\
& +p \cdot \frac{b_{l}+b_{r}+c_{l}+c_{r}}{c_{l}+c_{r}} \cdot\left[\nu_{1}-\nu_{0}\right] ?
\end{aligned}
$$

The answer

- ... is, of course, yes again. [Gy. Farkas, P. Kovács, A. Rákos, B. '09]

The answer

- ... is, of course, yes again. [Gy. Farkas, P. Kovács, A. Rákos, B. '09]
- Fronts of the other direction: $0-1-\varrho^{*}$ can also be handled.

Thank you.

