Queues, stationarity, and stabilisation of last passage percolation

Joint with Ofer Busani and Timo Seppäläinen

Márton Balázs

University of Bristol

Warwick, 23 February, 2023.

Last passage percolation

- Place ω_z i.i.d. Exp(1) for $z \in \mathbb{Z}^2$.
- The *geodesic* $\pi_{a,y}$ from *a* to *y* is the a.s. unique heaviest up-right path from *a* to *y*. Its weight is $G_{a,y}$.

 $G_{0,y}$ is the time TASEP hole y_1 swaps with particle y_2 if started from 1-0 initial condition.

Coalescing: OK

But loops: not OK

у

$$I_x = G_{a,x} - G_{a,x-e_1}$$

у

a

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

a

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

~ Act as boundary weights for a smaller, embedded model.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1}$$
 $J_x = G_{a,x} - G_{a,x-e_2}$

Then $J_x \sim \text{Exp}(\varrho)$, $I_x \sim \text{Exp}(1 - \varrho)$, independent.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

$$G_{a,x} = (G_{a,x-e_1} \lor G_{a,x-e_2}) + \omega_x$$

$$I_x = G_{a,x} - G_{a,x-e_1}$$
 $J_x = G_{a,x} - G_{a,x-e_2}$

$$G_{a,x} = (G_{a,x-e_1} \lor G_{a,x-e_2}) + \omega_x$$
$$G_{a,x} - G_{a,x-e_1} = (G_{a,x-e_2} - G_{a,x-e_1})^+ + \omega_x$$

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

$$G_{a,x} = (G_{a,x-e_1} \lor G_{a,x-e_2}) + \omega_x$$
$$G_{a,x} - G_{a,x-e_1} = (G_{a,x-e_2} - G_{a,x-e_1})^+ + \omega_x$$
$$I_x = (I_{x-e_2} - J_{x-e_1})^+ + \omega_x$$

$$I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$$

$$G_{a,x} = (G_{a,x-e_1} \lor G_{a,x-e_2}) + \omega_x$$

$$G_{a,x} - G_{a,x-e_1} = (G_{a,x-e_2} - G_{a,x-e_1})^+ + \omega_x$$

$$I_x = (I_{x-e_2} - J_{x-e_1})^+ + \omega_x$$

$$J_x = (J_{x-e_1} - I_{x-e_2})^+ + \omega_x.$$

$$I_{X} = (I_{X-e_2} - J_{X-e_1})^+ + \omega_X \qquad J_{X} = (J_{X-e_1} - I_{X-e_2})^+ + \omega_X$$

$$I = (U - V)^+ + \omega$$
 $J = (V - U)^+ + \omega$

$$I = (U - V)^+ + \omega$$
 $J = (V - U)^+ + \omega$

Proposition

$$\begin{array}{ll} U \sim \textit{Exp}(1-\varrho), \\ V \sim \textit{Exp}(\varrho), \\ \omega \sim \textit{Exp}(1), \end{array} \right\} \textit{ indep. } \begin{array}{ll} I \sim \textit{Exp}(1-\varrho), \\ J \sim \textit{Exp}(\varrho), \\ Z := U \wedge V \sim \textit{Exp}(1), \end{array} \right\} \textit{ indep. } \end{array}$$

$$I = (U - V)^+ + \omega$$
 $J = (V - U)^+ + \omega$ $Z := U \wedge V$

$$egin{aligned} & U \sim \mathsf{Exp}(1-arrho), \ & V \sim \mathsf{Exp}(arrho), \ & \omega \sim \mathsf{Exp}(1), \end{aligned} egin{aligned} & I \sim \mathsf{Exp}(1-arrho), \ & J \sim \mathsf{Exp}(arrho), \ & Z \sim \mathsf{Exp}(1), \end{aligned} egin{aligned} & \text{indep.} \ & Z \sim \mathsf{Exp}(1), \end{aligned}$$

U - V and Z are independent.

$$\begin{split} I &= (U - V)^{+} + \omega \qquad J = (V - U)^{+} + \omega \qquad Z := U \wedge V \\ U &\sim \mathsf{Exp}(1 - \varrho), \\ V &\sim \mathsf{Exp}(\varrho), \\ \omega &\sim \mathsf{Exp}(1), \end{split} \ \ \, \begin{array}{l} \mathsf{I} \sim \mathsf{Exp}(1 - \varrho), \\ \mathsf{J} \sim \mathsf{Exp}(\varrho), \\ Z &\sim \mathsf{Exp}(1), \end{array} \right\} \text{ indep. } \end{split}$$

U - V and Z are independent.

$$I = (U - V)^{+} + \omega \qquad J = (V - U)^{+} + \omega \qquad Z := U \wedge V$$

$$U \sim \operatorname{Exp}(1 - \varrho), \qquad I \sim \operatorname{Exp}(1 - \varrho), \qquad I \sim \operatorname{Exp}(\varrho), \qquad U \sim \operatorname{Exp}(\varrho), \qquad Z \sim \operatorname{Exp}(\varrho), \qquad Z \sim \operatorname{Exp}(1), \qquad I \sim \operatorname{E$$

U - V and Z are independent.

$$(\omega, (U-V), Z) \stackrel{\mathsf{d}}{=} (Z, (U-V), \omega)$$

$$I = (U - V)^{+} + \omega \qquad J = (V - U)^{+} + \omega \qquad Z := U \wedge V$$

$$U \sim \text{Exp}(1 - \varrho),$$

$$V \sim \text{Exp}(\varrho),$$

$$\omega \sim \text{Exp}(1),$$

$$I \sim \text{Exp}(1 - \varrho),$$

$$I \sim \text{Exp}(1 - \varrho),$$

$$J \sim \text{Exp}(\varrho),$$

$$Z \sim \text{Exp}(\varrho),$$

$$U - V \text{ and } Z \text{ are independent.}$$

$$(\omega, (U-V), Z) \stackrel{\mathsf{d}}{=} (Z, (U-V), \omega)$$

Hence

$$((U - V)^+ + \omega, (V - U)^+ + \omega, Z)$$

$$\stackrel{d}{=} ((U - V)^+ + Z, (V - U)^+ + Z, \omega)$$

$$I = (U - V)^{+} + \omega \qquad J = (V - U)^{+} + \omega \qquad Z := U \wedge V$$

$$U \sim \operatorname{Exp}(1 - \varrho),$$

$$V \sim \operatorname{Exp}(\varrho),$$

$$\omega \sim \operatorname{Exp}(1),$$

$$I \sim \operatorname{Exp}(\varrho),$$

$$Z \sim \operatorname{Exp}(\varrho),$$

$$Z \sim \operatorname{Exp}(1),$$
indep.

U - V and Z are independent.

$$(\omega, (U-V), Z) \stackrel{\mathsf{d}}{=} (Z, (U-V), \omega)$$

Hence

$$(I, J, Z) = ((U - V)^{+} + \omega, (V - U)^{+} + \omega, Z)$$
$$\stackrel{\text{d}}{=} ((U - V)^{+} + Z, (V - U)^{+} + Z, \omega)$$

$$I = (U - V)^{+} + \omega \qquad J = (V - U)^{+} + \omega \qquad Z := U \wedge V$$

$$U \sim \operatorname{Exp}(1 - \varrho),$$

$$V \sim \operatorname{Exp}(\varrho),$$

$$\omega \sim \operatorname{Exp}(1),$$

$$I \sim \operatorname{Exp}(2),$$

$$J \sim \operatorname{Exp}(\varrho),$$

$$Z \sim \operatorname{Exp}(1),$$
indep.
$$Z \sim \operatorname{Exp}(1),$$
indep.
$$U \sim \operatorname{Exp}(1),$$
indep.
$$U$$

U - V and Z are independent.

$$(\omega, (U-V), Z) \stackrel{\mathsf{d}}{=} (Z, (U-V), \omega)$$

Hence

$$(I, J, Z) = ((U - V)^{+} + \omega, (V - U)^{+} + \omega, Z)$$

$$\stackrel{d}{=} ((U - V)^{+} + Z, (V - U)^{+} + Z, \omega) = (U, V, \omega).$$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

Then $J_x \sim \text{Exp}(\varrho)$, $I_x \sim \text{Exp}(1 - \varrho)$, independent. The embedded model has the same structure.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

 $I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

 $I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

 $I_x = G_{a,x} - G_{a,x-e_1} \qquad J_x = G_{a,x} - G_{a,x-e_2}$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1}$$
 $J_x = G_{a,x} - G_{a,x-e_2}$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1}$$
 $J_x = G_{a,x} - G_{a,x-e_2}$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

$$I_x = G_{a,x} - G_{a,x-e_1}$$
 $J_x = G_{a,x} - G_{a,x-e_2}$

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

Then $J_x \sim \text{Exp}(\varrho)$, $I_x \sim \text{Exp}(1 - \varrho)$, independent. The embedded model has the same structure.

Replace the boundary to $| \sim Exp(\varrho), _ \sim Exp(1 - \varrho)$ independent.

B., Cator, Seppäläinen '06: $\mathbb{P}\{|Z_{a,y}^{\varrho}| \ge \ell\} \le box^2/\ell^3$, good directional control.

Infinite geodesics

Infinite geodesics

Infinite geodesics

Infinite geodesics

Result 1)

Result 1)

Result 1)

With probability at least $1 - Cc^{\frac{3}{8}}$, stationary and point-to-point paths already coalesce in the small box. (Busani, Ferrari '20)

Result 2)

Result 2)

Result 2)

Result 3)

The Airy₂ process minus a parabola is locally well approximated in total variation by Brownian motion.

What is an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

What is also an i.i.d. $Exp(\lambda)$ boundary?

These two boundaries are **jointly** stationary; (Ferrari, Martin '06; Fan, Seppäläinen '20)

Result 1): P-2-P is like stati path

Result 1): P-2-P is like stati path

Result 2): P-2-P paths coalesce soon

Result 2): P-2-P paths coalesce soon

Result 2): P-2-P paths coalesce soon

This can be boosted by pulling the small box left by αN .
Result 2): P-2-P paths coalesce soon

This can be boosted by pulling the small box left by αN . Rescale these boundaries: *Stationary Horizon* (Busani'21, +Seppäläinen, Sorensen'22).

Result 2): P-2-P paths don't coalesce soon

Coalescing too soon would mean stationary paths getting squeezed to each other too soon so they bend.

Result 2): P-2-P paths don't coalesce soon

Coalescing too soon would mean stationary paths getting squeezed to each other too soon so they bend.

Thank you.